Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression

Department of Gynecology and Obstetrics, University Hospital Münster, D-48149 Münster, Germany, 1Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, 2Agencourt Biosciences Corporation, Beverly, MA 01915, USA, 3Department of Medical Chemistry and Pathobiology and 4Institute of Transfusion Medicine and Transplantation Immunology, University Hospital of Münster, D-48149 Münster, Germany.

Abbreviations:
ADAMs, a disintegrin and metalloproteinases; BSA, bovine serum albumin; FCS, fetal calf serum; FGF, fibroblast growth factor; HS, heparan sulfate; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; mRNA, messenger RNA; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; PE, phycoerythrin; PMA, phorbol myristate acetate; Sdc1, syndecan-1; siRNA, small-interfering RNA; TIMP, tissue inhibitor of metalloproteinase; uPAR, urokinase-type plasminogen activator receptor; WT, wild-type.

Introduction

The syndecans are a family of four highly conserved cell surface heparan sulfate (HS) proteoglycans, which are expressed in a cell-type- and tissue-specific, developmentally regulated manner (1–3). In the adult, syndecan-1 (Sdc1) is predominantly expressed by epithelial cells and leucocyte subpopulations. Moreover, its expression can be induced in a variety of cell types during development, wound repair and tumor progression (1,3,4). The Sdc1 core protein contains highly conserved transmembrane and cytoplasmic domains, which mediate oligomerization and interact with the cytoskeleton (1,5–7). The extracellular domain harbors attachment sites for HS, as well as chondroitin sulfate chains (1,3), which are linear polymers of repetitive disaccharide units of uronic acids and variably sulfated N-acetylgalactosamine (HS) or N-acetylgalactosamine (chondroitin sulfate), capable of forming specific ligand-binding motifs (1,8). The HS chains are considered the major functional extracellular domain of Sdc1, whereas few functions have been assigned to the extracellular protein moiety (9–11). Ectodomain shedding reduces the number of surface receptors, thus downregulating signal transduction, converting membrane-bound Sdc1 into a soluble effector competing for the same ligands. Protein kinase C, protein tyrosine kinase and mitogen-activated protein kinase (MAPK) signal transduction pathways activate shedding, which is mediated by several metalloproteases in a context-dependent manner (1,10,12).

Sdc1 modulates numerous biological processes relevant to tumor progression. Sdc1 is a classical coreceptor for growth factors, angiogenic factors and chemokines (1,3,8) and acts as a cell and matrix adhesion receptor (1,3). In concert with integrins, Sdc1 influences cell spreading and motility (13,14) and modulates protease activities and chemokine functions during inflammation and wound repair (2,3,15,16). An engagement of Sdc1 in angiogenesis has been suggested in different mouse models and in clinical correlation studies (2,3,17–19). Sdc1-deficient mice are resistant to induced breast cancer due to a cancer stem cell phenotype, further underlining its relevance for breast cancer progression (4,8,20).

A prognostic value for Sdc1 expression was assigned in several cancer types, including breast cancer (8). High Sdc1 expression has a predictive value for the response to neoadjuvant chemotherapy of primary breast cancer (21). A study on 254 breast carcinoma cases correlated strong epithelial Sdc1 expression in 42% of the carcinomas with negative prognostic parameters (22). A different study on 200 patients showed a significantly reduced 10 years of breast cancer-specific overall survival for patients displaying epithelial Sdc1 expression and estrogen receptor (ER)-negative status or stromal Sdc1 expression and ER-positive status (23). In contrast, a study on 80 invasive ductal carcinoma patients indicated a loss of epithelial Sdc1 expression correlating with relapse-free survival (24). These data strongly suggest important roles for Sdc1 in breast cancer progression; however, its exact function is still unknown, hampering efficient glycosaminoglycan-targeting therapies (8). We hypothesized that some controversial clinical findings may be due to opposing functions of membrane-bound and shed Sdc1. Therefore, we studied the individual contributions of membrane-bound and soluble Sdc1 to breast cancer cell proliferation and invasiveness in vitro. Our findings confirm a differential role of both Sdc1 forms in the modulation of fibroblast growth factor (FGF)-mediated MAPK signaling, E-cadherin expression and protease activity.

Materials and methods

Abbreviations: ADAMs, a disintegrin and metalloproteinases; BSA, bovine serum albumin; FCS, fetal calf serum; FGF, fibroblast growth factor; HS, heparan sulfate; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; mRNA, messenger RNA; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; PE, phycoerythrin; PMA, phorbol myristate acetate; Sdc1, syndecan-1; siRNA, small-interfering RNA; TIMP, tissue inhibitor of metalloproteinase; uPAR, urokinase-type plasminogen activator receptor; WT, wild-type.

Advance Access publication January 6, 2009
Carcinogenesis vol.30 no.3 pp.397–407, 2009
doi:10.1093/carcin/bgp001

© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Cell culture
The human breast cancer cell line MCF-7 was maintained in RPMI 1640 containing 10% FCS, 1% glutamine and 1% penicillin-streptomycin (19) in a humidified atmosphere of 5% CO\textsubscript{2} at 37°C. Sdc1 shedding was induced by treatment with 1 μM phorbol myristate acetate (PMA) (Calbiochem, La Jolla, CA) in serum-free medium for 15 min (10).

Generation of stably transfected cell lines
pcdNA3.1-based plasmids (Invitrogen, Karlsruhe, Germany) overexpressing a wild-type (WT), a constitutively membrane-bound (Sdc1-388UC) and a constitutively shed form (Sdc1-392CS) of murine Sdc1 have been described previously (10). Stable MCF-7 cell transfection was performed using lipofectamine (Invitrogen) according to the manufacturer’s instructions. After 48 h, cells were split and cultured in the presence of 1 mg/ml G418 to select for clones containing the plasmids. Neomycin-resistant clones were cultured in the presence of 800 μg/ml G418.

Cell proliferation assay
Basal cell proliferation was evaluated using the indicator dye Alamar Blue (Biosource, Camarillo, CA). A total of 2.5 × 103 cells per well were plated in triplicate in 96-well plates and cultured at 37°C for 48 h. Dye was added, and the colorimetric change was measured photometrically after 6 h according to the manufacturer’s protocol. The median absorbance values of at least three independent experiments were used for statistical analysis.

Detection

Invasion assay and matrix metalloproteinase inhibitor treatments
Twenty-five thousand cells in 0.5 ml RPMI/10% FCS were added to triplicates to the upper compartments of BioCoat Matrigel Invasion Chambers (BD Biosciences, Heidelberg, Germany). After 24 h, the medium was replaced by serum-free RPMI. To the lower compartment, 0.75 ml RPMI/20% FCS was added. After 48 h, the cells on the lower surface were fixed and stained with Diff-Quik dye (Medion, Duedinengen, Switzerland). Excised and mounted filter membranes were photographed using a Zeiss Axiosvert microscope equipped with Axiovision software (Zeiss, Jena, Germany) at ×100 magnification. For each membrane, cells in five visual fields were counted. Relative invasiveness was expressed as percentage of the cell number on compound-treated inserts compared with control inserts (n > 3). For matrix metalloproteinase (MMP) inhibitor studies, the following inhibitors were added to both compartments 24 h after cell plating: 3.5 nM tissue inhibitor of metalloproteinase (TIMP)-1 (Biomol, Hamburg, Germany), 10 nM TIMP-2 (Calbiochem), 1 μM (2R)-2-[4-(biphenylsulfonyl)amino]-3-phenylpropionic acid (MMP-2/MMP9 inhibitor, Calbiochem), 1.5 and 15 μM N-isobutyl-N-(4-methoxyphenyl)sulfonyl) glycyl hydroxidonic acid (Biomol).

Immunocytochemistry
Ten thousand cells per well were grown for 16 h in eight-well chamber slides (Nunc, Wiesbaden, Germany). For Sdc1/vinculin colocalization experiments, chamber slides were precoated with 10 μg/ml fibronectin (BD Biosciences). Cells were fixed with either ice-cold methanol (muSdc1/huSdc1) or 37% phosphate-buffered saline (PBS)-buffered formaldehyde (muSdc1/vinculin) and permeabilized with 0.1% Triton X-100 in PBS. Non-specific binding was blocked with PBS containing 1% Aurion BSA-c (DAKO, Glostrup, Denmark). Slides were subsequently incubated with rat-anti-mouse Sdc1 mAb 281-2 [BD Pharmingen, San Jose, CA, 1:1000 in PBS/1% bovine serum albumin (BSA)] and mouse-anti-human vinculin mAb (Sigma, 1:250) overnight at 4°C. Primary antibody omission served as a negative control. Subsequently, samples were incubated for 1 h with ALEXA-Fluor-568-labeled goat-anti-rat IgG and ALEXA-Fluor-488 goat-anti-mouse IgG (both Invitrogen, 1:600 in PBS/1% BSA). Cell nuclei were visualized by 4,6-diamidino-2-phenylindole staining. Slides were analyzed with a Leica DMLB fluorescence microscope (Cell Signaling, Beverly, MA) diluted 1:1000 and horseradish peroxidase-conjugated anti-rabbit IgG (Cell Signaling, 1:2000). Subsequently, membranes were subjected to an enhanced chemiluminescence reaction and signal quantification with NIH Image J software normalizing the densitometric values of phospho-MUC1 to the total MUC1 MAPK signal. For total MAPK detection, membranes were stripped with glycine buffer (pH 2.5), washed and reincubated with primary antibodies against p44/42-MAPK (Cell Signaling) followed by the procedure described above (25). Urokinase-type plasminogen activator receptor (uPAR), furin, murine Sdc1 and human Sdc1 were detected analogously using rabbit-anti-uPAR (Santa Cruz Biotechnology, Santa Cruz, CA, 1:800), rabbit-anti-furin (Santa Cruz, 1:200), rat-anti-murine Sdc1 clone 281-2 (1:1000) and goat-anti-human Sdc1 (R&D systems, 1:1000) as primary antibodies.

Flow cytometry
Cells were harvested from culture flasks by incubation with 1.5 mM ethylenediaminetetraacetic acid in Ca/Mg-free PBS buffer for 10 min at 37°C with gentle agitation. Cells were washed in PBS and resuspended in cold buffer containing 1% FCS. A total of 2 × 105 cells per sample were used for a single analysis. Following centrifugation, cells were resuspended in Hanks’ balanced salt solution/2% BSA and incubated for 15 min at 25°C with titrated antibodies [phycoerythrin (PE) rat IgG2a, x-isotype control clone R35-95 ‘R-IgG-PE’, 0.1 μg and PE rat-anti-mouse CD138 clone 281-2 ‘RAM CD138-PE’, 0.1 μg (both BD Pharmingen)]. Tiotest Anti-CD138-PC5 clone B-A38 ‘MAH-CD138-PCS’, 3 μl and IOTest IgG1 (mouse) clone 679.1Mc7 ‘M-IgG-PC5’, 3 μl (both Beckman Coulter, Fullerton, CA)]. The samples were analyzed using a Beckman Coulter FC500 flow cytometer. Murine Sdc1 expression was analyzed comparing the relative amount of mouse or human CD138-stained cells with the IgG-controls in triplets. Isotype matched antibodies to the used controls were used as negative controls and <2% non-specific background staining was observed (c.f. Supplementary Figure 2, available at Carcinogenesis Online, for details).

TIMP-1 enzyme-linked immunosorbent assay
Fifty microliters of cell culture supernatant from the upper chamber of matrigel invasion assays was analyzed using the Quantikine human TIMP-1 immunoassay (R&D systems) as described by the manufacturer.

Quantitative real-time PCR
Cellular RNA was isolated using the RNeasy kit (Qiagen) and transcribed into complementary DNA using the Advantage RT-for-PCR Kit (Clontech, Heidelberg, Germany). Quantitative PCR was performed using the Qiagen QuantiTect SYBR Green PCR kit in a LightCycler (Roche, Indianapolis, IN) as described previously (26). Amplification specificity was verified using melting curve analysis and 2% agarose gel electrophoresis of the PCR products. Data were analyzed using the 2−ΔΔCt method after normalization to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Primer sequences are listed in Table I.

Microarray expression analysis
Total RNA was isolated from three biological replicates of Sdc1-392CS-silenced and control MCF-7 cells using the RNeasy kit (Qiagen). Preparation of labeled complementary RNA using the one-cycle labeling protocol, hybridization and scanning of the arrays was performed according to the manufacturer’s instructions. A total of 3.6 μg of purified RNA and poly-A controls were used to generate complementary DNA, which was used to synthesize biotin-labeled complementary RNA. Fragmented complementary RNA was hybridized to Human Genome U133 Plus 2.0 arrays for 16 h at 60°C in a GeneChip Hybridization Oven 640 at 60 r.p.m. The arrays were washed and stained in a GeneChip Fluidics 540 station (Affymetrix, Santa Clara, CA),
followed by scanning using an Affymetrix GeneChip Scanner 3000. The raw data image was processed with GeneChip Operating Software v1.2 and analyzed using DNA-Chip Analyzer (27). Cell intensity files were normalized to data image was processed with GeneChip Operating Software v1.2 and analyzed using DNA-Chip Analyzer (27). Cell intensity files were normalized to a gene expression analysis tool. Integrated Discovery 2008 was used to verify the annotations of the filtered data. The raw data was analyzed using DNA-Chip Analyzer (27). Cell intensity files were normalized to data image was processed with GeneChip Operating Software v1.2 and analyzed using DNA-Chip Analyzer (27). Cell intensity files were normalized to
Fig. 1. Heterologous overexpression of Sdc1 constructs encoding WT murine Sdc1 (Sdc1-WT), an uncleavable Sdc1 construct resistant to MMP-mediated shedding (Sdc1-388UC) or a constitutively shed soluble ectodomain construct (Sdc1-392CS) in stably transfected MCF-7 breast cancer cells. (A) Quantitative PCR analysis of murine (Mm_SDC1, upper panel) and human (Hs_SDC1, lower panel) Sdc1 expression. Data are expressed as fold change versus control vector-transfected MCF-7 cells. *P < 0.05, n ≥ 3, error bars = SEM. (B) Dot blot analysis for heterologous Sdc1 ectodomain expression in conditioned media of the stably transfected cell lines. Horizontal line = background signal in vector control MCF-7 cells. *P < 0.05, n = 3, error bars = SEM. (C) Coimmunolocalization of endogenous and heterologously expressed Sdc1. Stably transfected MCF-7 cells were processed for immunostaining with monoclonal antibodies against human (green fluorescent secondary antibody) and murine (red fluorescent secondary antibody) Sdc1 as described in Materials and Methods. Yellow color denotes Sdc1 colocalization and blue color denotes 4′,6-diamidino-2-phenylindole nuclear staining. Like endogenous Sdc1, overexpressed Sdc1-WT and Sdc1-388UC show a largely membranous staining. No membranous staining is observed for the constitutively shed Sdc1-392CS construct. The uncleavable Sdc1-388UC construct retains its membrane location even after exposure to 1 μM PMA, a strong inducer of Sdc1 shedding (10). (D) HS disaccharide analysis of the cell lines employed in this study. HS was isolated from the indicated cell lines and products were exhaustively digested with a mixture of heparin lyases (see Materials and Methods). Upper panel: the disaccharide products containing non-reducing-terminal 4,5-unsaturated hexuronic acid residues (ΔHexA) were analyzed by reversed-phase ion-pair chromatography–high-performance liquid chromatography, as described in Materials and Methods. The disaccharide composition is indicated with N-acetylgalactosamine (NAc), N-sulfated glucosamine (NS) and sulfate group at indicated position (S). Lower panel: overall sulfate contents (total sulfation), specified according to the type of substituent as non-sulfated (OS), total N-sulfated (NS), total 6-O-sulfated (6S) and total 2-O-sulfated disaccharides (2S). (E) Western blot of MCF-7 transfectant extracts with the monoclonal antibody 281-2 directed against murine Sdc1 (anti-muSdc1 mAb) and a polyclonal rabbit antiserum directed against human Sdc1 (anti-huSdc1 poly-AS). Western blotting reveals the presence and overexpression of the glycosaminoglycan-substituted forms (80–190 kDa) of murine Sdc1. Due to the extensive sequence homology of muSdc1 and huSdc1, a slight crossreactivity of the antibodies is observed. Mr = migration position of molecular weight standards.
endogenous and heterologously overexpressed Sdc1 was studied (Figure 1C; supplementary Figure 1 is available at Carcinogenesis Online). Similar to endogenous Sdc1 expression in breast cancer cells (M.Goette, unpublished data), heterologously expressed Sdc1 showed variable expression levels. Both WT forms of Sdc1 colocalized at the cell surface (Figure 1C panel Sdc1-WT), as independently confirmed by flow cytometry (supplementary Figure 2 is available at Carcinogenesis Online). Occasionally, an additional perinuclear or nuclear localization of Sdc1 was observed. In contrast to WT Sdc1, the constitutively shed form was detected intracellularly only (Figure 1C panel Sdc1-392CS) since soluble extracellular Sdc1 may have been washed out during the staining procedure. However, cell-associated soluble Sdc1 could be detected by flow cytometry, possibly due to secondary HS-mediated association with cell surface receptors (supplementary Figure 2 is available at Carcinogenesis Online). MCF-7 Sdc1-392CS cells showed a more rounded morphology compared with vector controls (Figure 1C panel Sdc1-392CS). A potential downregulation of endogenous Sdc1 protein expression, as suggested by mRNA expression data and conventional immunostainings (Figure 1C panel Sdc1-392CS), could not be confirmed by confocal immunofluorescence microscopy and flow cytometry (supplementary Figures 1 and 2 are available at Carcinogenesis Online). The constitutively membrane-bound form showed a prominent membrane localization (Figure 1c panel Sdc1-388UC). Flow cytometric analysis confirmed cell surface localization, reaching ~60% of the mean fluorescence intensity of the Sdc1-WT construct (supplementary Figure 2 is available at Carcinogenesis Online). Treatment of MCF-7 Sdc1-388UC cells with PMA did not result in induced cleavage of the Sdc1-388UC mutant, whereas endogenous Sdc1 was shed following this treatment (Figure 1C panel Sdc1-388UC), demonstrating functionality of the Sdc1-388UC 'uncleavable' construct (10). Since the HS chains represent the major functional extracellular domain of Sdc1, we analyzed the transfectants for glycosaminoglycan substitution of heterologously expressed Sdc1 and for possible changes in HS structure. A disaccharide analysis of the transfected cells did not reveal major differences in HS composition, except for a reduced sulfation degree in Sdc1-392CS-overexpressing cells (Figure 1D). Western blotting analysis of cell extracts for the expression of murine and human Sdc1 confirmed glycosaminoglycan substitution of both human and murine Sdc1, as revealed by the presence of high-molecular weight (80–190 kDa) bands (Figure 1E).

Differential effect of soluble and membrane-bound Sdc1 on breast cancer cell proliferation

Sdc1 acts as a membrane-bound coreceptor for FGF receptor-mediated signaling (31). However, soluble Sdc1 ectodomains can competitively inhibit heparin-mediated FGF-2 mitogenicity (29,32,33). To characterize the role of endogenous Sdc1 in MCF-7 cell proliferation, we studied its function in FGF-2-mediated MAPK signaling as a downstream readout of FGF receptor activity. siRNA knockdown resulted in an 80% downregulation of endogenous Sdc1 expression in MCF-7 cells 48 h after transfection, as confirmed by quantitative PCR and flow cytometry (Figure 2A and B). FGF-2 stimulation of serum-starved MCF-7 cells induced p44/42 MAPK phosphorylation, which could be significantly reduced by Sdc1 siRNA knockdown (Figure 2C). Proliferation assays revealed significantly increased proliferation rates in MCF-7 cells overexpressing WT Sdc1 compared with vector controls (Figure 2D). In contrast, overexpression of soluble Sdc1 inhibited MCF-7 breast cancer cell proliferation (Figure 2D).

The soluble Sdc1 ectodomain promotes breast cancer cell invasiveness via a TIMP-1-dependent mechanism

Sdc1 acts as a matrix receptor and as a modulator of cell motility and of the proteolytic environment, key elements of the metastatic process (1,8,11). We therefore investigated if MCF-7 cell invasiveness was differentially affected by overexpression of the soluble ectodomains, constitutively membrane-bound or WT Sdc1 using matrigel invasion chamber assays. Overexpression of WT Sdc1 increased MCF-7 cell invasiveness by 50% compared with vector controls (Figure 3A).

Overexpression of the soluble Sdc1 ectodomain led to a 130% increase, whereas constitutively membrane-bound Sdc1 overexpression entailed a 40% decrease of invasiveness (Figure 3A). Since Sdc1 modulates the activity of a variety of proteases, with potentially opposing physiological effects of the soluble and membrane-bound form (2,30,34,35), we tested if MMP inhibitors would differentially reduce invasiveness. N-isobutyl-N-(4-methoxyphenylsulfonyl) glycyl hydroxamic acid, an MMP inhibitor with broad specificity (36–38), inhibited MCF-7 Sdc1-392CS invasiveness by 50%; however, it did not influence invasiveness of the other transfectants. The physiological inhibitor TIMP-1 inhibited MCF-7 Sdc1-392CS invasion by 40% and MCF-7 Sdc1-388UC invasion by >50%, whereas TIMP-2 and an MMP2/MMP9 inhibitor had no effect (Figure 3B–E).

Affymetrix microarray analysis for differential gene expression in MCF-7 control cells and MCF-7 cells overexpressing soluble Sdc1

Since Sdc1 modulates both expression and function of many factors relevant to cancer cell invasion and metastasis (8), we performed an Affymetrix microarray analysis to screen for genes differentially expressed between low-invasive MCF-7 vector control and highly invasive MCF-7 Sdc1-392CS cells. Relative to controls, 59 genes were significantly upregulated and 330 genes downregulated in cells overexpressing soluble Sdc1 by at least a factor of two (Figure 4A; supplementary Tables I and II are available at Carcinogenesis Online). Differentially regulated genes were placed into categories based on their Gene Ontology annotations (39), and candidate groups of genes potentially involved in the observed phenotypic changes in MCF-7 392CS cells were subjected to further analysis (Figure 4B; supplementary Table III is available at Carcinogenesis Online). Microarray analysis revealed a significant downregulation of TIMP-1. Quantitative PCR confirmed significant downregulation of TIMP-1 mRNA and upregulation of uPAR in MCF-7 Sdc1-392CS cells, providing clues for a proinvasive mechanism induced by soluble Sdc1 (Table I). Expression changes affecting members of the Rho family of small guanosine triphosphatases and of integrin alphaV and beta5 subunits indicated that changes in cell motility might have caused increased invasiveness in MCF-7 Sdc1-392CS cells. However, quantitative PCR analysis (Table I) and western blotting (results not shown) could not confirm differential expression of RhoB and β5-integrin and of additional proinvasive factors like the hepatocyte growth factor receptor cMet or heparanase (8,19). Moreover, confocal immunofluorescence microscopy indicated that all cell lines were capable of forming focal adhesions (Figure 4C; supplementary Figure 1 is available at Carcinogenesis Online).

Overexpression of the soluble Sdc1 ectodomain induces downregulation of TIMP-1 and E-cadherin and increased uPAR expression

We next aimed at confirming the results of Affymetrix screening and real-time PCR analysis at the protein level. Since TIMP-1 mRNA expression was downregulated in MCF-7 Sdc1-392CS cells, we determined TIMP-1 protein in cell culture supernatants of all four transfected cell lines by enzyme-linked immunosorbent assay. TIMP-1 levels were significantly decreased in cells overexpressing soluble Sdc1, whereas increased TIMP-1 amounts were detected in the media of cells overexpressing constitutively membrane-bound Sdc1 (Figure 5A). While E-cadherin mRNA expression was not significantly altered in MCF-7-Sdc1-392CS cells (Table I), western blot analysis revealed significant downregulation of E-cadherin protein expression compared with controls (Figure 5B). Expression of the uPAR in MCF-7 cells overexpressing soluble Sdc1 was significantly upregulated at both mRNA and protein levels (Figure 5C). In contrast, transcriptional downregulation of the proprotein convertase furin did not translate into changes in protein expression (Figure 5D).

Discussion

In this study, we employed an overexpression approach to delineate the role of membrane-bound and soluble forms of Sdc1 in breast cancer cell behavior. We confirmed the correct localization and
functional properties of the overexpressed Sdc1 constructs. In addition, we observed an occasional perinuclear and/or nuclear staining for Sdc1. While the perinuclear staining may be indicative of high biosynthetic activity in the ER of the syndecan-overexpressing cell lines, the nuclear localization is conform with reports on a cotrafficking of syndecans with nuclear FGF-2 in injured neurons (40) and on tubulin-mediated nuclear translocation of Sdc1 (41). Although speculative, nuclear trafficking of Sdc1 may exert an influence on cell-cycle progression or on FGF2-mediated transcriptional regulation.

We demonstrated extensive glycosaminoglycan substitution of the heterologously expressed Sdc1 constructs (Figure 1E), which is a prerequisite for their HS-dependent functions, as a multitude of ligands functionally interact with Sdc1 via its HS chains (1,3). Disaccharide analysis revealed the presence of very similar HS structures in the different MCF-7 transfectants. A slightly reduced overall sulfation was noted in MCF-7 Sdc1 392CS cells, yet unchanged levels of trisulfated disaccharides. Reduced 6-O-sulfation can influence growth factor binding by HS (42), as recently shown for the MCF-7-derived HS-editing enzyme HSulf-2 (43). Therefore, we cannot fully exclude a partial contribution of reduced HS sulfation to the phenotype of MCF-7 Sdc1 392CS cells. The presence of unchanged amounts of trisulfated disaccharides together with the notion that much more HS was produced in these cells (data not shown) may suggest a high ligand-binding capacity also in these cells.

Our communolocalization data suggest that in cells overexpressing the uncleavable Sdc1 mutant, endogenous Sdc1 may also become resistant to shedding, possibly due to heterodimer formation (5,10). A cell rounding upon soluble Sdc1 ectodomain overexpression (Figure 1C panel Sdc1 392CS) has previously been attributed to β_1-integrin activation (44); however, focal adhesion formation was not impaired (Figure 4C; supplementary Figure 1 is available at Carcinogenesis Online). Moreover, no significantly different alphaV- and β_5-integrin expression was observed, consistent with reports on the lack of an inhibitory effect of Sdc1 on alphaVbeta1-integrin-dependent spreading and of Sdc1 inhibition on MCF-7 migration through vitronectin- and fibronectin-coated filters (13).

Sdc1 siRNA knockdown caused significantly decreased FGF-2-induced MAPK activation (Figure 2), in accordance with its coreceptor role for FGF-2 signaling (1,31). In MCF-7 cells, Sdc1 and -4 contribute to the formation of a ternary complex of FGF-2, FGFR-1 and the syndecans’ HS chains (45). In line with the inhibitory effect of Sdc1 knockdown on mitogenic signaling, overexpression of WT Sdc1.

![Fig. 2. Sdc1 modulates FGF-2-mediated MAPK signaling and proliferation in MCF-7 breast cancer cells. (A) siRNA-mediated knockdown of endogenous Sdc1 mRNA expression in MCF-7 cells at indicated time points (P < 0.05, n = 5 for 48 h, n = 2 for other timepoints, error bars = SD). (B) Flow cytometric analysis of siRNA-mediated Sdc1 knockdown in MCF-7 cells. Each plot shows MS-lgG-PC5 control (dotted line) and MAH-CD138-PC5-stained cells (solid line). The median fluorescence intensity is given for each peak (two values from repeated measurements, plots from first measurement). (C) Western blot analysis of FGF-2-mediated p44/42 MAPK activation in Sdc1-silenced MCF-7 cells. MCF-7 cells were transfected with a control siRNA or a Sdc1 siRNA construct and serum-starved for 24 h after transfection. Cells were treated ± 10 nM FGF-2 for 10 min, lysed and analyzed by western blotting as described. Upper panel: representative blotting result; lower panel: densitometric analysis of five individual experiments. *P < 0.05, n = 5, error bars = SEM. (D) Differential effect of soluble and WT Sdc1 on breast cancer cell proliferation. Control vector-transfected MCF-7 and MCF-7 cells stably overexpressing WT (Sdc1-WT), constitutively membrane-bound (Sdc1-388) or the soluble ectodomain of Sdc1 were subjected to an Alamar Blue cell proliferation assay for 6 h. *P < 0.05, n ≥ 3, error bars = SEM.](https://academic.oup.com/carcin/article-abstract/30/3/397/2476714)
increased the number of coreceptors at the cell surface, resulting in increased cell proliferation rates (Figure 2). In contrast, soluble ectodomain overexpression significantly inhibited MCF-7 proliferation (Figure 2). Soluble Sdc1 inhibits both heparin-binding epidermal growth factor-like growth factor and heparin-mediated FGF-2 mitogenicity (1,32), and exogenously added Sdc1 ectodomains inhibit MCF-7 cell proliferation (28). In turn, FGF-2 induces Sdc1 shedding, providing a mechanism for coreceptor desensitization (30). Decreased TIMP-1 expression (Figure 5) may have additionally reduced MCF-7 Sdc1-392CS cell proliferation since TIMP-1 stimulates MCF-7 cell proliferation via MAPK activation (46,47).

Our study demonstrated that overexpression of WT Sdc1 and its soluble ectodomain significantly promote, whereas the constitutively membrane-bound form inhibits invasiveness of MCF-7 cells (Figure 3). Microarray analysis revealed differential expression of genes involved in proteolytic processes (TIMP-1, uPAR and furin) between highly invasive MCF-7 Sdc1-392CS and control cells. Membrane-bound and soluble Sdc1 differentially modulate proteolytic processes in various experimental systems by targeting different proteins such as elastases, MMP-7, MMP-17 a disintegrin and metalloproteinase with thrombospondin-like motifs-4 and proprotein convertase PC5A (2,15,30,35,48). Our data point to a role for differential TIMP-1 expression as a relevant proinvasive factor in MCF-7 Sdc1-392CS cells and an anti-invasive factor in MCF-7 Sdc1-388UC cells since TIMP-1 secretion was either downregulated or upregulated in these cells. Moreover, addition of TIMP-1 to the culture medium of MCF-7 Sdc1-392CS cells significantly inhibited the increased invasiveness. The preferential inhibitory effect of N-isobutyl-N-(4-methoxyphenylsulfonyl) glycy1 hydroxamic acid may indicate an important role of a disintegrin and metalloproteinases (ADAMs) in this process, conform with the role of ADAM10 in E-cadherin shedding (49) and the observed downregulation of E-cadherin levels (Figure 5A). TIMP-1
inhibits the proteolytic activity of (non-MT-) MMPs and some ADAMs (ADAM10 and a disintegrin and metalloproteinase with thrombospondin-like motifs) via non-covalent binding to both active and pro-forms of these enzymes (47,50,51). Surprisingly, TIMP-1 did not reduce invasiveness of MCF-7 Sdc1-WT cells. This finding suggests a regulatory function of the equilibrium between membrane-bound and soluble forms of Sdc1. The observed Sdc1-induced changes in TIMP-1 expression and susceptibility are probably based on altered signaling processes, as suggested by the effect of Sdc1 siRNA knockdown on MAPK signaling (Figure 2C), and by the differential regulation of several members of the MAPK family (MAP3K8 and MAP2K), and upstream signaling molecules (EGF receptor ERBB2, epidermal growth factor receptor pathway substrate 15-like 1 and integrin-linked kinase) observed in the Affymetrix screening (supplementary Tables I and II are available at Carcinogenesis Online). In turn, TIMP-1 modulates MAPK signaling in MCF-7 cells grown on a fibronectin substrate (c.f. supplementary Figure 1, available at Carcinogenesis Online, for color separation figure of Sdc1/vinculin costaining).
invasion in vitro (54). Like PMA, SDF-1 induces upregulation of uPAR and Sdc1 shedding (12) resulting in increased proteolysis and cancer cell invasiveness. Finally, downregulation of E-cadherin protein expression was identified as a contributing factor to increased invasiveness of MCF-7 Sdc1-392CS cells (Figure 5). Reduced E-cadherin expression in
breast cancer is associated with lymph node metastasis and reduced disease-free survival (55,56). Sdc1 and E-cadherin are co-ordinately regulated [c.f. (19) for discussion] and co-munoinhibitory with the transcriptional regulator β-catenin, suggesting functional and physical association (6). Since E-cadherin, like Sdc1, is required for maintaining the epitheloid phenotype (1,55), its downregulation in soluble Sdc1-overexpressing cells facilitates loosening of cell–cell contacts, thus promoting invasiveness. Affymetrix data on the downregulation of 33 genes involved in cell adhesion support this mechanistic concept (Figure 4B).

In summary, we have demonstrated opposing roles for membrane-bound and soluble forms of Sdc1 in human MCF-7 breast cancer cells. In MCF-7 cells, WT Sdc1 promoted cell proliferation as a coreceptor of mitogenic MAPK signaling, whereas its soluble form inhibited proliferation. In contrast, the constitutively membrane-bound form inhibited in vitro invasiveness, whereas soluble Sdc1 vastly promoted MCF-7 invasion. Among the multitude of established human breast cancer cell lines, MCF-7 cells represent the more benign spectrum (57). Therefore, the observed Sdc1-induced phenotype may not be representative for all breast cancer cells and may be modulated by the cell-type-specific expression signature of additional receptors, adhesion molecules, growth factors and proteases (19). Microarray analysis revealed that overexpression of soluble Sdc1 was associated with complex changes in the expression pattern of nearly 400 gene products, among which the modulation of proteolytic activity and signal transduction pathways emerged as important motifs relevant to the observed phenotypic changes (Figure 3, Table I; supplementary Tables I–III are available at Carcinogenesis Online). Although dysregulation of RhoB was not confirmed in an independent data set (Table I), the large number of differentially regulated Rho-family guanosine triphosphatases (RhoB, RhoC, RhoD and Cdc42) of associated regulatory proteins (Rho-related BTB domain 3, Rho guanine nucleotide exchange factor and SLIT-ROBO Rho GTPase activating protein) and of cytoskeletal elements (smoothelin, alpha actinin and transgulin) identified by Affymetrix screening is highly suggestive of a mechanistic contribution of soluble Sdc1 to the modulation of cell motility as part of the invasion phenotype (supplementary Tables I–III are available at Carcinogenesis Online). This view is supported by an increasing number of reports on the interplay of syndecans and Rho-family guanosine triphosphatases (reviewed in ref. 14) and warrants future investigation. We confirmed a coreceptor role for Sdc1 in MAPK-mediated signaling in breast cancer cells and a role for soluble Sdc1 in the regulation of TIMP-1, uPAR and E-cadherin expression, resulting in synergistic promotion of breast cancer cell invasiveness. We propose that TIMP-1-sensitive protease-mediated shedding of Sdc1, mimicked by the Sdc1-392CS expression construct, represents a switch from a proliferative to an invasive phenotype in MCF-7 cells. This model is able to explain seemingly contradictory results on the prognostic role of Sdc1 in breast cancer (18,22–24). In histopathological analyses, soluble Sdc1 may have been lost during sample preparation. Therefore, specimens regarded as Sdc1 negative due to low membranous epithelial staining may in fact represent a tumor subtype with a high potential to metastasize. Our findings also have a therapeutic perspective, considering that the major functional domains of soluble Sdc1 are its heparin-related HS chains. In early stages of tumor progression, competitive glycosaminoglycan-based approaches targeting the interaction of growth factors with Sdc1 emerge as a promising anti-proliferative strategy. In contrast, some glycosaminoglycans may potentially mimic the soluble Sdc1 ectodomain and may promote rather than inhibit metastasis at later stages of cancer progression. Heparanase induces Sdc1 expression and shedding, which promotes tumor invasion (58). Therefore, the combined use of Sdc1 shedding inhibitors, MMP inhibitors and heparanase-inhibiting heparinoids may be a promising anti-metastatic approach at late stages of breast cancer progression (8,59). The results of our study therefore underline the importance of a mechanistic understanding of the biological roles of prognostic markers for the development of targeted therapeutic approaches.

Supplementary materials
Supplementary Tables I–III and Figures 1 and 2 can be found at http://carcin.oxfordjournals.org/

Funding
Deutsche Forschungsgemeinschaft (DFG GO1392 1-2 to M.G.); National Medical Research Council, Singapore (NMRC/1023/2005 to G.W.Y.); German Academic Exchange service (DAAD A/06/90277 to S.A.I.); Graduate Research Scholarship, National University of Singapore to C.-Y.K.

Acknowledgements
We thank Birgit Pers, Eng-Siang Yong, Siew-Hua Choo and Ruth Goez for their excellent technical assistance.

Conflict of Interest Statement: None declared.

References

Received June 24, 2008; revised November 9, 2008; accepted December 21, 2008.