Cisplatin overcomes Bcl-2-mediated resistance to apoptosis via preferential engagement of Bak: critical role of Noxa-mediated lipid peroxidation

Ozgur Kutuk1, Elif Damla Arisan1, Tugsan Tezil1, Maria C.Shoshan2 and Huveyda Basaga1,∗

1Biological Sciences and Bioengineering Program, Sabanci University, 34956 Tuzla, Istanbul, Turkey and 2Department of Oncology-Pathology, CCK R8:03, Karolinska Institute, S-17176 Stockholm, Sweden

Introduction

Several studies have shown that expression of Bcl-2 confers resistance to apoptosis insults including chemotherapeutics (1–5). Intrinsic or mitochondrial apoptotic pathway is regulated mainly by protein–protein interactions of Bcl-2 protein family members. Briefly, activation and oligomerization of proapoptotic multidomain Bax and Bak triggers mitochondrial outer membrane permeabilization, which is followed by the release of cytochrome c into cytosol. When cytochrome c translocates into cytosol, it promotes the activation of caspase-9 by a mechanism involving formation of apoptosome complex with Apaf-1 and procaspase-9 (6). Antiapoptotic Bcl-2 proteins (Bcl-2, Bcl-XL, Mcl-1, Bcl-w, Bcl-1/A1) interfere with engagement of mitochondrial apoptotic machinery by inhibiting oligomerization of Bax and Bak. To exert this antiapoptotic function, they either directly sequester Bax and Bak to prevent their oligomerization or sequester activator BH3-only proteins, including Bid and Bim, to block the activation of Bax and Bak (7,8). Following the transduction of a proapoptotic signal, sensitizer BH3-only proteins (Bad, Bmf, Puma, Noxa, Hrk, Bik) displace Bax and Bak or activator BH3-only proteins from their antiapoptotic guardians to promote cell death (7,9,10). Moreover, it has been recently shown that BH3-only proteins selectively interact with antiapoptotic Bcl-2 proteins (11). For example, Noxa exhibits a high affinity for Mcl-1 and not Bcl-2 or Bcl-XL, whereas Bim interacts with all three antiapoptotic proteins.

Oxidative alteration of biological membranes or lipoproteins may generate a spectrum of lipid peroxidation end products which may lead to modification of proteins. For instance, lipoxygenases and cyclooxygenases catalyze the stereospecific insertion of molecular oxygen to polyunsaturated fatty acids and formation of prostaglandins and leukotrienes. Post-translational modification of cellular proteins by reactive lipid products and induction of apoptosis by lipid peroxidation end products has been shown to play an important role in the pathogenesis of various human pathologies involving atherosclerosis, diabetes and neurodegenerative disorders (12). Activation of upstream prodeath signaling pathways such as stress kinases c-jun N-terminal kinase and p38 by lipid peroxidation end products was demonstrated to trigger mitochondrial apoptotic pathway (13,14). In addition to its direct prosurvival effect on mitochondria via protein–protein interaction, Bcl-2 was shown to inhibit lipid peroxidation and reactive oxygen species (ROS) production, but the significance of this function of Bcl-2 is not well understood (15–17).

Cisplatin is a commonly used DNA-damaging drug in the treatment of a variety of human malignancies. A p53-dependent apoptotic pathway or cell cycle arrest or p53-independent apoptosis have all been suggested to be involved in the anticancer effect of cisplatin (18–22). Evidently, the downstream effectors of cisplatin-induced p53-mediated apoptosis remain incompletely defined. An added complexity of p53-mediated apoptosis model is that p53 was reported to translocate to mitochondria and interact with Bcl-2 protein family members to promote transcription-independent apoptosis (23–27).

Here, we report that cisplatin treatment overcomes Bcl-2-mediated protection in MCF-7 cells (wt p53), but not in MDA-MB-231 cells (mt p53), whereas a taxane (paclitaxel) or a small-molecule Bcl-2 Inhibitor (HA14-1) failed to act similarly. We also find that p53-dependent Noxa upregulation and lipid peroxidation is essential in this process. Additionally, Noxa upregulation is accompanied by increased Noxa/Mcl-1 and reduced Bak–Mcl-1 complexes, which triggers the activation of Bak, but not Bax. In addition to its transcription-dependent proapoptotic function, p53 potentiates cisplatin-induced apoptosis by directly binding and neutralizing Bcl-XL. Overall, our data suggest a novel mode of action for cisplatin to overcome Bcl-2-mediated protection against apoptosis, which requires preferential engagement of Bak-dependent mitochondrial apoptotic pathway.

Material and methods

Cell lines

MCF-7 and MDA-MB-231 breast cancer cell lines were grown in RPMI 1640 and Dulbecco’s modified Eagle’s medium (Biological Industries, Beit-Haemek, Israel) with 2 mM l-glutamine, 10% fetal calf serum, 100 IU/ml penicillin and 100 μg/ml streptomycin in a humidified incubator at 37°C and 5% CO2. For stable transfection of MCF-7 and MDA-MB-231, cells were transfected with pcDNA3 Bcl-2 plasmid (Addgene plasmid 8768) (28), using Fugene 6 (Roche, Mannheim, Germany) and clonal selection was carried out using G418 (Sigma, St Louis, MO). Selected clones were verified by immuno blot analysis of Bcl-2 and maintained in growth medium with 0.25 mg/ml G418. MCF-7 Bcl-2 cells were grown to 50% confluency and transiently transfected with pCMV empty vector (Vector) or pCMV-p53DD (plasmid encoding a dominant-negative p53 lacking DNA-binding domain; kindly provided by Moshe Oren, Weizmann Institute of Science (29), using Fugene 6 (Roche) for 16 h before treatments. Expression of p53DD (14 kDa) was confirmed by immunoblotting using a pan-p53 antibody (pAB421; Calbiochem, San Diego, CA).

Chemicals

Bcl-2 inhibitor HA14-1 [Ethyl-2-aminono6-bromo-4-(lcyano-2-ethoxy-2-oxoethyl)-2H-chromene-3-carboxylate] was purchased from Calbiochem. Solutions of HA14-1 were freshly prepared before each experiment (dissolved in dimethyl sulphoxide as 5 mM stock solution). Cisplatin, paclitaxel, N-acetylt-cysteine, 2,2,6,6-tetramethylpiperidinyloxy, Tiron and dichlorofluorescein diacetate (DCF-DA) were purchased from Sigma. Trolox and U-74389G were from Calbiochem. C11-BODIPY (581/591) and MitoTracker Red CMXRos were purchased from Molecular Probes (Invitrogen, Carlsbad, CA).

Abbreviations: ELISA, enzyme-linked immunosorbent assay; MMP, mitochondrial membrane potential; PCR, polymerase chain reaction; ROS, reactive oxygen species; RT, reverse transcription; siRNA, small interfering RNA; 4-HNE, 4-hydroxynonenal.

© The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Apoptosis assay
Apoptosis was assessed by quantifying the expression of phosphatidylserine using Annexin V-fluorescein isothiocyanate (Roche). Briefly, cells were treated as described in the figure legends, incubated in binding buffer for 10 min and analyzed by flow cytometry. Accumulated DVADase activity was assessed as levels of specifically DVEDase-cleaved cytokeratin-18 (CK18) in total cell lysates using a 50% DVEDase enzyme-linked immunosorbent assay (ELISA) (EVIVA AB, Bromma, Sweden) (30). MCF-7 and MDA-MB-231 breast cancer cell lines were seeded in 96-well plates and treated as indicated. M30 ELISA plate was assayed according to the manufacturer’s instructions and the concentration of M30 antigen, indicating cleaved CK18, is presented as fold increase in units per liter.

Detection of ROS and lipid peroxidation
ROS produced by different drugs was determined using the oxidation-sensitive probe DCF-DA as described before on a Spectramax Gemini Fluorometer plate reader (31). The extent of lipid peroxidation in untreated and drug-exposed samples was determined by measuring the thiobarbituric acid reactive substance as described before (32). Lipid peroxidation was also evaluated using C2-BODIPY (581/591) as described previously (33). Cells were incubated with C2-BODIPY (581/591) fluorescence dye for 30 min before measurements. C2-BODIPY (581/591) fluorescence was analyzed 395 nm excitation and 535 nm excitation/615 nm emission to measure its oxidized and reduced forms on a multiplate fluorometer. Data are expressed as C11-Bodipy Green (oxidized)/total ratio.

Real-time quantitative polymerase chain reaction
Total RNA was isolated using a TRIzol reagent (Invitrogen) following the procedure described by the manufacturer. Reverse transcription (RT) was performed using a specific RT kit (QIAGEN, Hilden, Germany). The RT reaction mixture contained 1 μg of total RNA, 500 ng of oligo(dT) primer, 5 μl RT reaction buffer, 10 mM dextrose oxidized triphosphates and 200 U of a reverse transcriptase (QIAGEN) in a total volume of 20 μl. Then, all samples were incubated in 37°C for 1 h. The quantity of cDNA was calculated using spectrophotometry by determination of optical density at 260 nm. Purity was calculated using OD260/280 ratio. Real-time quantitative polymerase chain reaction (PCR) was performed in 96-well 0.2 ml thin wall PCR plates using the iCycler Thermal Cycler (Bio-Rad, Hercules, CA) and carried out with Quant iTect SYBR Green PCR Master Mix (QIAGEN), which contains HotStarTaq DNA Polymerase, Quant iTect SYBR Green PCR Buffer and SYBR Green I. The real-time PCR mixture contained 1x Quant iTect SYBR Green PCR Master Mix, 0.3 μM primer pairs and 500 ng cDNA in a total volume of 25 μl. Specific primers were from Qiagen: Hs_PMAIP1_11696 QIAGEN Primer Assay for Noxa and Hs_BBC3_11696 QIAGEN Primer Assay for Puma. The mixture was heated initially at 95°C for 15 min in order to activate HotStarTaq DNA Polymerase and then followed by 40 cycles with denaturation at 94°C for 1 min, annealing at 50-54°C for 1 min and extension at 72°C for 1 min. Furthermore, the generation of amplified products was identified by melting curve analysis. The melt curve protocols designed for increment temperatures of 0.5°C with a starting temperature of 45°C and ending at 90°C were repeated that ensure that primer dimers and other non-specific products had been minimized or eliminated. Data were analyzed using iCycler IQ software with all samples normalized to the 18 S ribosomal RNA.

Immunoblot analysis
Cells were treated with drugs as indicated before and total cell lysates were prepared in 20 mM Tris–HCl (pH 7.5), 150 mM NaCl, NP-40 0.5%, (vol/vol), 1 mM ethylenediaminetetraacetic acid, 0.5 mM phenylmethylsulfonyl fluoride, 1 mM Dithiothreitol, protease inhibitors (Roche). Proteins (1200 μg) were separated in 10% SDS-PAGE and proteins were transferred to nitrocellulose membrane. The blots were blocked in 5% non-fat milk in TBS-Tween for 2 h. The blots were incubated with primary antibodies for 2 h or overnight. Immunoblot detection was performed using horseradish peroxidase-conjugated secondary antibodies in the buffer containing 5% (vol/vol) milk in TBS-Tween 20 and incubated with appropriate primary and horseradish peroxidase-conjugated secondary antibodies in the buffer containing 5% (vol/vol) milk in TBS-Tween 20. Proteins were stained with Polyvinylidene difluoride membranes (GE Healthcare, Little Chalfont, UK). Membranes were then blocked with 5% milk blocking solution in Tris-buffered saline-Tween 20 and incubated with appropriate primary and horseradish peroxidase-conjugated secondary antibodies in the buffer containing 5% (vol/vol) milk in TBS-Tween 20. Proteins were stained with Polyvinylidene difluoride membranes (GE Healthcare) and exposed to Hyperfilm enhanced chemiluminescence (GE Healthcare). The following antibodies were used for immunoblotting: anti-Bcl-2 (#2782), anti-Bak-1 (#2745), anti-Mcl-1 (#4572), anti-Puma (#4976), anti-Bax (#2774), anti-Noxa (#3814), anti-β-Actin (#4967), anti-caspase-9 (#9501) (Cell Signaling, Beverly, MA), anti-Noxa (114C307; Calbiochem), p53 (DO-1; Santa Cruz), anti-Noxa (114C307; Calbiochem) at 4°C for 2 h or overnight. Immunoprecipitates were captured by 50% slurry of protein G-Sepharose (GE Healthcare) in lysis buffer at 4°C for 2 h. Immunoprecipitates were then recovered by centrifugation and washed three times in 1% Chaps buffer. The samples were subsequently analyzed by immunoblot to detect interacting proteins.

Caspase activation assays
The activity of caspase-9 was determined by ApoAlert Caspase-9/6 Fluorescent Assay Kit (Clontech, Palo Alto, CA) according to the manufacturer’s protocol. The release of fluorescent 7-amino-4-methylcoumarin was analyzed at 380 nm excitation and 460 nm emission using a multiplate fluorometer. Results are derived as mean ± SE of three independent experiments in duplicate and expressed in arbitrary fluorescence units per mg of protein. Data are shown as fold increase over control.

Assessment of Bax and Bak activation
Cells were lysed in 1% Chaps buffer and activation of Bax and Bak was evaluated by immunoprecipitation using active conformation-specific antibodies anti-Bax (6A7; BD Pharmingen) and anti-Bak (Ab-2; Calbiochem) and the immunoprecipitated proteins were detected by immunoblot analysis. Detection of Bax and Bak activation by intracellular staining and flow cytometry using active conformation-specific antibodies anti-Bax (6A7; BD Pharmingen) and anti-Bak (Ab-2; Calbiochem) was performed as described previously (36). Activation of Bax or Bak was determined by a shift to the right in the histogram.

Measurement of mitochondrial membrane potential
The loss of mitochondrial membrane potential (MMP) was evaluated as described previously using MitoTracker Red CMXRos (37). The percentage of MMP loss corresponds to the percentage of cells with low MMP.

Statistical analysis
Statistical significance of the results was analyzed using Student’s t-test using GraphPad Prism software. P < 0.05 and P < 0.01 were considered significant.

Results
Cisplatin activates mitochondrial apoptosis in Bcl-2-overexpressing MCF-7 cells
Since Bcl-2 is known to protect against various apoptotic insult including chemotherapeutic drugs, we initially evaluated how Bcl-2 overexpression alters apoptotic response induced by three drugs with different mechanism of action: a microtubule-damaging taxane (paclitaxel), a DNA-damaging platinum agent (cisplatin) and a small-molecule Bcl-2 inhibitor (HA14-1). In MCF-7 and MDA-MB-231 cells, paclitaxel, cisplatin or HA14-1 significantly induced apoptosis after 24 and 48 h of treatment. MCF-7 and MDA-MB-231 cells were stably transfected with Bcl-2 and the expression level of Bcl-2 in parental and Bcl-2-transfected cells was verified by using immunoblotting (supplementary Figure S1A is available at https://academic.oup.com/carcin/article-abstract/30/9/1517/2477016 by guest on 09 February 2019).
Carcinogenesis Online). As shown in Figure 1A, overexpression of Bcl-2 protected against apoptosis triggered by paclitaxel, cisplatin or HA14-1 following treatment for 24 h in both MCF-7 Bcl-2 and MDA-MB-231 Bcl-2 cells. This protective potency of Bcl-2 was observed still after 48 h treatment in MDA-MB-231 Bcl-2 cells. Although Bcl-2 expression decreased paclitaxel- and HA14-1-induced apoptosis following 48 h treatment in MCF-7 Bcl-2 cells, cisplatin was able to trigger apoptosis as determined by Annexin V staining (Figure 1A). Activation of apoptosis by cisplatin in MCF-7 Bcl-2 cells was also confirmed by M30 Apoptosens assay (supplementary Figure S1B is available at Carcinogenesis Online). In addition, cisplatin treatment for 48 h led to mitochondrial release of cytochrome c into cytosol and loss of MMP in MCF-7 Bcl-2 cells (Figure 1B and C), even though paclitaxel or HA14-1 did not elicit similar effects. Treatment with cisplatin, paclitaxel or HA14-1 caused loss of MMP in MDA-MB-231 cells. In contrast, they did not lead to loss of MMP in Bcl-2-overexpressing MDA-MB-231 cells after treatment for 48 h (Figure 1C). Furthermore, exposure of MCF-7 Bcl-2 cells to cisplatin, but not to paclitaxel or HA14-1 resulted in activation of caspase-9, whereas all three drugs induced activation of caspase-9 in parental MCF-7 cells (Figure 1D). Treatment of MDA-MB-231 cells with cisplatin, paclitaxel or HA14-1 resulted in activation of caspase-9 and overexpression of Bcl-2 decreased caspase-9 activation by all three drugs in MDA-MB-231 Bcl-2 cells (Figure 1D). Taken together, these results show that cisplatin treatment overcomes Bcl-2-mediated resistance to apoptosis in MCF-7 Bcl-2 cells via promoting mitochondrial apoptotic signaling.

Cisplatin activates Bak, not Bax in Bcl-2-overexpressing MCF-7 cells

The multidomain proapoptotic Bcl-2 proteins Bax and Bak are activated upon apoptotic stimuli to facilitate the permeabilization of mitochondrial outer membrane and cytochrome c release into cytosol. To explore the activation of Bax or Bak in MCF-7 Bcl-2 treated with cisplatin for 36 h, we immunoprecipitated Bak and Bak using conformation-specific antibodies which recognize their exposed N-terminal epitopes. Whereas both Bax and Bak were activated by cisplatin in MCF-7 cells following treatment with cisplatin, Bak, but not Bax, was activated in MCF-7 Bcl-2 cells (Figure 2A). Moreover, we confirmed these results by analyzing active Bax and active Bak by means of immunofluorescence staining and flow cytometry detection (Figure 2B). However, activation of Bax and Bak by cisplatin in MDA-MB-231 cells was completely blocked in MDA-MB-231 Bcl-2 cells (Figure 2A). These results suggest that cisplatin treatment triggers a preferential activation of Bak-mediated apoptosis pathway in MCF-7 Bcl-2 cells, even though Bcl-2 overexpression decreases Bax activation.

Increased lipid peroxidation accompanies cisplatin-induced apoptosis in MCF-7 Bcl-2 cells

To establish the role of Bcl-2 in the apoptotic response, ROS production and lipid peroxidation in MCF-7 cells, we performed knockdown experiments with Bcl-2 siRNA and scramble siRNA. We transfected MCF-7 cells with Bcl-2 siRNA and monitored the formation of apoptotic response, ROS formation and lipid

Fig. 1. Cisplatin but not paclitaxel or HA14-1 induces apoptosis in MCF-7 Bcl-2 cells. (A) MCF-7, MCF-7 Bcl-2, MDA-MB-231 and MDA-MB-231 Bcl-2 cells were treated with paclitaxel (20 nM), cisplatin (30 μM) and HA14-1 (20 μM) for 24 h and apoptosis was evaluated by Annexin V staining. Columns, mean of three independent experiments; bars, standard error. ** P < 0.01, cisplatin-treated compared with untreated control cells. (B) MCF-7 and MCF-7 Bcl-2 cells were treated with paclitaxel (20 nM), cisplatin (30 μM) and HA14-1 (20 μM) for 0–48 h. Cytoplasmic and mitochondrial fractions were probed for cytochrome c by immunoblotting. CoxIV was used as a loading control for mitochondrial fractions. MCF-7 cells following treatment with cisplatin, Bak, but not Bax, was activated in MCF-7 Bcl-2 cells (Figure 2A). Moreover, we confirmed these results by analyzing active Bax and active Bak by means of immunofluorescence staining and flow cytometry detection (Figure 2B). However, activation of Bax and Bak by cisplatin in MDA-MB-231 cells was completely blocked in MDA-MB-231 Bcl-2 cells (Figure 2A). These results suggest that cisplatin treatment triggers a preferential activation of Bak-mediated apoptosis pathway in MCF-7 Bcl-2 cells, even though Bcl-2 overexpression decreases Bax activation.

To establish the role of Bcl-2 in the apoptotic response, ROS production and lipid peroxidation in MCF-7 cells, we performed knockdown experiments with Bcl-2 siRNA and scramble siRNA. We transfected MCF-7 cells with Bcl-2 siRNA and monitored the formation of apoptotic response, ROS formation and lipid peroxidation using MitoTracker Red CMXRos. Columns, mean of three independent experiments; bars, standard error. P < 0.05, cisplatin-treated compared with untreated control cells. (D) MCF-7, MCF-7 Bcl-2, MDA-MB-231 and MDA-MB-231 Bcl-2 cells were treated with paclitaxel (20 nM), cisplatin (30 μM) and HA14-1 (20 μM) for 48 h and caspase-9 activation was determined by fluorometric caspase assay (top). Results were shown as fold increase over control. Columns, mean of three independent experiments; bars, standard error. In similar treatment conditions, activation of caspase-9 was also analyzed by immunoblotting using antiactive caspase-9 antibody that recognizes 37 kDa cleaved caspase-9 fragment (bottom). Actin was used as a loading control.
peroxidation in cells either untreated or treated with cisplatin. The efficiency of knockdown was evaluated by immunoblot analysis of Bcl-2 (Figure 3A). Depletion of Bcl-2 by siRNA did not cause a significant increase in apoptotic response by cisplatin as demonstrated by M30 Apoptosense assay (Figure 3A). Treatment of MCF-7 cells with cisplatin for 24 h significantly increased ROS production compared with untreated cells, but we could not detect a similar effect when cells were treated for 48 h. While knockdown of Bcl-2 in MCF-7 cells led to increased cisplatin-mediated ROS formation after 24 h of treatment, this effect was not observed following 48 h of cisplatin treatment (Figure 3B, left). Bcl-2 siRNA or scramble siRNA alone did not show any significant effect on ROS formation in MCF-7 cells after 24 or 48 h of treatment. Additionally, pretreatment of MCF-7 cells with scramble siRNA did not effect ROS production by cisplatin.

Cisplatin led to increased lipid peroxidation in MCF-7 cells after 24 and 48 h of treatment as demonstrated by thiobarbituric acid reactive substance formation (Figure 3B, right). Moreover, pretreatment of MCF-7 cells with Bcl-2 siRNA resulted in significantly increased cisplatin-induced lipid peroxidation after 24 and 48 h, although scramble siRNA did not exert such an effect (Figure 3B, right). Of note, Bcl-2 siRNA treatment alone increased lipid peroxidation compared with untreated MCF-7 cells after 48 h, but not after

Fig. 2. Cisplatin selectively activates Bak in MCF-7 Bcl-2 cells. (A) MCF-7, MCF-7 Bcl-2, MDA-MB-231 and MDA-MB-231 Bcl-2 cells were treated with cisplatin (30 μM) for 36 h. Activation of Bax and Bak was assessed by immunoprecipitation using active conformation-specific anti-Bax (6A7) and anti-Bak (Ab-2) antibodies followed by immunoblot analysis. Five percent of the input for immunoprecipitation was also subjected to immunoblot analysis. Actin was used as a loading control. (B) MCF-7 and MCF-7 Bcl-2 cells were treated as in (A), stained for active configuration of Bax (6A7) or Bak (Ab-1), analyzed by fluorescence activated cell sorting for using fluorescein isothiocyanate-labeled secondary antibody for detection. Black line, control cells; gray filled, cisplatin-treated cells.
24 h, and scramble siRNA alone did not alter lipid peroxidation in MCF-7 cells.

To test whether ROS production was important for cisplatin-induced apoptosis in MCF-7 Bcl-2 cells, we monitored intracellular ROS formation in MCF-7 and MCF-7 Bcl-2 cells. Exposure of MCF-7 Bcl-2 to cisplatin for 24 or 48 h did not cause any increase in DCF-DA-reactive ROS production compared with untreated control cells, although we observed increased ROS in MCF-7 cells treated with cisplatin for 24 h (Figure 3C). In contrast, cisplatin treatment for 48 h induced increased levels of lipid peroxidation as determined by elevated levels of thiobarbituric acid reactive substance in MCF-7 Bcl-2 cells, although treatment for 24 h did not exert such an effect (Figure 3C). Intriguingly, we observed increased lipid peroxidation in MCF-7 Bcl-2 cells at 48 h compared with 24 h without cisplatin treatment. Cisplatin treatment alone induced lipid peroxidation in MCF-7 cells at both 24 and 48 h of treatment. These data suggest that Bcl-2 expression down-regulates cisplatin-induced ROS production only at 24 h. We therefore preincubated MCF-7 Bcl-2 cells with antioxidants (N-acetyl-L-cysteine, 2,2,6,6-tetramethylpiperidinyloxy, Tiron) and lipid peroxidation inhibitors (Trolox, U-74389G) for 48 h. Apoptotic response was evaluated by Annexin V staining. As demonstrated in Figure 3D, cisplatin-induced apoptosis was decreased by lipid peroxidation inhibitors Trolox and U-74389G, but not by the hydrogen peroxide scavenger N-acetyl-L-cysteine and superoxide scavengers 2,2,6,6-tetramethylpiperidinyloxy and Tiron. In
contrast, both ROS scavengers and lipid peroxidation inhibitors decreased cisplatin-induced apoptosis in MCF-7 cells (supplementary Figure S2 is available at Carcinogenesis Online). 4-HNE is a highly reactive end product of lipid oxidation of arachidonic acid, linoleic acid or their hydroperoxides (38). We also tested whether Bcl-2 directly scavenges lipid peroxidation end products by using an anti-HNE antibody to detect (4-HNE)-histidine adducts in total cell lysates following Bcl-2 immunoprecipitation. As shown in supplementary Figure S3 (available at Carcinogenesis Online), cisplatin treatment for 12 h generated (4-HNE)-histidine adducts in Bcl-2 protein in both MCF-7 and MCF-7 Bcl-2 cells.

In addition, lipid peroxidation inhibitors Trolox and U-74389G decreased cisplatin-induced Bak activation in MCF-7 Bcl-2 cells (supplementary Figure S4 is available at Carcinogenesis Online).

Collectively, these data indicate that cisplatin-induced lipid peroxidation but not ROS production is required for cisplatin-induced apoptosis in Bcl-2-overexpressing MCF-7 cells.

Cisplatin induces apoptosis in MCF-7 Bcl-2 cells through upregulation of Noxa

To evaluate the effect of cisplatin treatment on the protein levels of p53, Noxa and Puma in MCF-7 Bcl-2 cells, MCF-7 Bcl-2 cells were treated with cisplatin for 48 h and total protein lysates were analyzed by immunoblotting. As shown in Figure 4A, cisplatin induced increased protein levels of p53, Noxa and Puma in MCF-7 Bcl-2 cells.

Fig. 4. Noxa mediates cisplatin-induced apoptosis in MCF-7 Bcl-2 cells. (A) Immunoblot analysis of p53, Puma and Noxa in untreated and cisplatin-treated (30 µM) MCF-7 Bcl-2 cells for 48 h. Actin was probed as a loading control. Noxa and Puma mRNA levels were analyzed by quantitative PCR in untreated and cisplatin-treated (30 µM) MCF-7 Bcl-2 cells for 48 h. Results were normalized to the 18 S ribosomal RNA. (B) MCF-7 Bcl-2 cells were treated with Noxa siRNA, Puma siRNA or scramble siRNA for 48 h and exposed to cisplatin (30 µM) for 48 h. Apoptosis was assessed by flow cytometric analysis after Annexin V staining. Total cell lysates were analyzed by immunoblot for Noxa and Puma to verify the effectiveness of Noxa siRNA and Puma siRNA. Actin was used as a loading control. Columns, mean of three independent experiments; bars, standard error. **P < 0.01, cisplatin-treated compared with cisplatin plus Noxa siRNA-treated cells. (C) MCF-7 Bcl-2 cells were treated with Noxa siRNA and exposed to cisplatin (30 µM) for 36 h. Activation of Bak was explored by immunoprecipitation using active conformation-specific anti-Bak (Ab-2) antibody followed by immunoblot analysis. Five percent of the input for immunoprecipitation was also subjected to immunoblot analysis. Actin was used as a loading control. (D) MCF-7 Bcl-2 cells were transfected with Noxa siRNA or scramble siRNA. Cells were treated with cisplatin (30 µM) for 48 h and lipid peroxidation was assessed by C11-BODIPY (581/591) fluorescence probe. Data were shown as C11-BODIPY Green/Total fluorescence ratio. Columns, mean of three independent experiments; bars, standard error. **P < 0.01, cisplatin-treated compared with cisplatin plus Noxa siRNA-treated cells.

Downloaded from https://academic.oup.com/carcin/article-abstract/30/9/1517/2477016 by guest on 09 February 2019
Moreover, quantitative real-time PCR analysis demonstrated that Noxa and Puma mRNA levels increased in MCF-7 Bcl-2 cells treated with cisplatin suggesting transactivation of both genes (Figure 4A). To test whether cisplatin-induced apoptosis is mediated by upregulation of Noxa or Puma, MCF-7 Bcl-2 cells were transfected with Noxa siRNA, Puma siRNA or scramble siRNA. The efficiency of siRNA-mediated knockdown was verified by monitoring Noxa and Puma protein levels using immunoblot analysis (Figure 4B). As demonstrated in Figure 4B, cisplatin-induced apoptosis was significantly decreased in Noxa siRNA-treated MCF-7 Bcl-2 cells, whereas Puma siRNA or scramble siRNA had no effect on cisplatin-induced apoptosis. On the other hand, transfection of cells with Noxa, Puma or scramble siRNA alone did not affect apoptotic response. M30 Apoptosense ELISA experiments further confirmed that knockdown of Noxa impaired cisplatin-induced apoptotic response in MCF-7 Bcl-2 cells (supplementary Figure S5A is available at Carcinogenesis Online).

In addition, knockdown of Noxa by siRNA also decreased cisplatin-induced MMP loss and caspase-9 activation in MCF-7 Bcl-2 cells (supplementary Figure S5B and C are available at Carcinogenesis Online). Next, we sought to determine whether Bak activation by cisplatin in MCF-7 Bcl-2 cells was dependent on Noxa induction. Bak was immunoprecipitated with the active conformation antibody in untreated, cisplatin-treated, Noxa siRNA-treated or cisplatin plus Noxa siRNA-treated MCF-7 Bcl-2 cells and active Bak was detected by means of immunoblot. Knockdown of Noxa by siRNA completely blocked cisplatin-triggered Bak activation in MCF-7 Bcl-2 cells (Figure 4C). Since lipid peroxidation was required for induction of apoptosis by cisplatin in MCF-7 Bcl-2 cells, we evaluated whether siRNA-mediated knockdown of Noxa has any effect on cisplatin-induced lipid peroxidation using C11-Bodipy (581/591) fluorescence probe. Treatment with Noxa siRNA dramatically attenuated cisplatin-induced lipid peroxidation in MCF-7 Bcl-2 cells (Figure 4D), which suggests that formation of lipid peroxidation end products by cisplatin is downstream of Noxa induction.

p53 transactivation is involved in cisplatin-induced apoptosis

To evaluate the involvement of p53 pathway cisplatin-induced apoptosis, MCF-7 Bcl-2 cells were transfected with either pCMV vector (Vector) or dominant-negative p53 mutant p53DD. The expression of p53 and p53DD was confirmed by immunoblot analysis (Figure 5A). Cells were treated with cisplatin for 48 h and apoptotic response was evaluated by Annexin V assay. As shown in Figure 5B, expression of p53DD clearly decreased cisplatin-induced apoptosis in MCF-7 Bcl-2 cells, while cisplatin successfully activated apoptosis in untransfected or vector-transfected cells. Transfection with vector or p53DD alone did not alter the apoptotic response. As an alternative approach, we utilized siRNA-mediated knockdown of p53 in MCF-7

Fig. 5. p53 activity is required for cisplatin-induced apoptosis in MCF-7 Bcl-2 cells. (A) MCF-7 Bcl-2 cells were transfected either with pCMV empty vector (Vector) or with pCMV-p53DD (dominant-negative p53 mutant). Cells were treated with cisplatin for 48 h and the expression of p53 (using anti-p53 DO-1; Santa Cruz) and 14 kDa p53DD (using anti-p53 pAB421; Calbiochem) was verified by immunoblot analysis (top). MCF-7 Bcl-2 cells were treated with p53 siRNA or scramble siRNA for 48 h and treated with cisplatin (30 μM) for 48 h. Knockdown of p53 was determined by immunoblot analysis (bottom). (B) pCMV empty vector (Vector)-transfected, p53DD-transfected, p53 siRNA-transfected, scramble siRNA-transfected or pifithrin-α-treated (20 μM) MCF-7 Bcl-2 cells were exposed to cisplatin (30 μM) for 48 h and apoptotic response was evaluated by Annexin V staining and flow cytometry. Columns, mean of three independent experiments; bars, standard error. **P < 0.01, cisplatin-treated compared with cisplatin-treated plus p53DD-transfected cells, cisplatin plus p53 siRNA-treated cells and cisplatin plus pifithrin-α-treated cells. p53DD-transfected or untransfected MCF-7 Bcl-2 cells were treated with cisplatin (30 μM) for 48 h and lipid peroxidation was assessed by C11-BODIPY (581/591) fluorescence probe. Data were shown as C11-BODIPY Green/Total fluorescence ratio. Columns, mean of three independent experiments; bars, standard error. **P < 0.01, cisplatin-treated compared with cisplatin-treated plus p53DD-transfected cells. (C) MCF-7 Bcl-2 cells were transfected with pCMV-p53DD and treated with cisplatin for 48 h. Noxa protein levels were detected by immunoblot analysis. Actin was probed as a loading control. (D) MCF-7 Bcl-2 cells were transfected with pCMV-p53DD and treated with cisplatin for 36 h. Activation of Bak was explored by immunoprecipitation using active conformation-specific anti-Bak (Ab-2) antibody followed by immunoblot analysis. Five percent of the input for immunoprecipitation was also subjected to immunoblot analysis. Actin was used as a loading control.
Bcl-2 cells to examine the contribution of p53 in cisplatin-induced apoptosis. We transfected MCF-7 Bcl-2 cells with either p53 siRNA or scramble siRNA and treated with cisplatin for 48 h. Knockdown of p53 by siRNA-mediated silencing was determined by immunoblot analysis of untreated or cisplatin-treated cells (78% efficiency by densitometric analysis when normalized for actin, cisplatin treated compared with cisplatin plus p53 siRNA-treated cells) (Figure 5A). As shown in Figure 5B, p53 siRNA significantly inhibited apoptosis promoted by cisplatin in MCF-7 Bcl-2 cells, while scramble siRNA did not have a similar effect. In addition, transfection with p53 siRNA or scramble siRNA alone did not have any significant effect. Furthermore, pretreating MCF-7 Bcl-2 cells with a small-molecule inhibitor of p53 transactivation, pifithrin-α, decreased cisplatin-triggered apoptotic response (Figure 5B). Pifithrin-α treatment alone had no effect on apoptotic response of MCF-7 Bcl-2 cells. Expression of p53DD in MCF-7 Bcl-2 cells decreased cisplatin-induced lipid peroxidation, which underscores the important role of p53 transactivation activity for cisplatin-induced lipid peroxidation. Moreover, expression of p53DD decreased Noxa induction by cisplatin in MCF-7 Bcl-2 cells (Figure 5C). These findings indicate that p53 transactivation activity is required for cisplatin-induced upregulation of Noxa and apoptosis of MCF-7 Bcl-2 cells.

Next, we explored whether p53 is functioning upstream of Bak activation upon cisplatin treatment in MCF-7 Bcl-2 cells. Immunoprecipitation analysis with active conformation-specific Bak antibody demonstrated that transfection of MCF-7 Bcl-2 cells with dominant-negative p53DD impaired cisplatin-induced Bak activation (Figure 5D). Together, these data suggest that p53 acts upstream of Bak activation to promote cisplatin-mediated activation of apoptotic machinery through induction of Noxa.

Cisplatin promotes Noxa–Mcl-1 and p53–Bcl-xL interactions

In Figure 6A, we demonstrated that Noxa complexed to Mcl-1 dramatically increased following cisplatin treatment in MCF-7 Bcl-2 cells, whereas Bak–Mcl-1 interaction was disrupted. Reciprocal communoprecipitation experiments also revealed that cisplatin induced an increased Noxa–Mcl-1 interaction in parallel to increased Noxa protein levels (Figure 6A). However, we did not detect any Mcl-1–Bax or Mcl-1–p53 interaction. We observed increased Bcl-xL–p53 interaction in cisplatin-treated cells, which was confirmed by reciprocal communoprecipitation (Figure 6B). We could not detect any Bcl-xL–Noxa, Bcl-xL–Bax or Bak–Bcl-xL interaction in MCF-7 Bcl-2 cells. These results suggest that p53 mediates cisplatin-induced apoptosis in MCF-7 Bcl-2 cells via two concomitantly engaged mechanisms: (i) by increasing Noxa levels to inhibit Mcl-1 antiapoptotic function via transactivation activity and (ii) by directly binding and blocking Bcl-xL antiapoptotic function. In MCF-7 Bcl-2 cells, we found that Bcl-2 did not interact with Noxa, Bak, Bax or p53 in untreated or cisplatin-treated cells (Figure 6C). A summary of these mechanisms is presented in Figure 6D.

Discussion

Mitochondrial apoptotic signaling is mainly governed by Bcl-2 protein family members. Antiapoptotic Bcl-2 proteins have been shown to inhibit apoptosis induced by various stimuli including chemotherapy (1–5). p53 is an important tumor suppressor gene, but the involvement of p53 in mitochondrial apoptosis signaling remains to be identified. Our results in this study show that cisplatin activates a proapoptotic pathway that bypasses Bcl-2-mediated protection against apoptosis in Bcl-2-overexpressing MCF-7 cells, accompanied by the release of cytochrome c into cytosol, loss of MMP and activation of caspases (Figure 1; supplementary Figure 1 is available at Carcinogenesis Online). Previous work has suggested that cisplatin might induce cell death via mechanisms other than apoptosis (39,40), but our results clearly indicate that the mode of cell death triggered by cisplatin in MCF-7 Bcl-2 cells is mitochondrial apoptosis.

Considering the finding that cisplatin induced apoptosis in both parental MCF-7 (p53 wild-type) and MDA-MB-231 (p53 mutated) cell lines, we can conclude that apoptosis induction by cisplatin does not require p53 transactivation activity in parental breast cancer cells consistent with a previous report (41). Interestingly, cisplatin did not lead to apoptosis in MDA-MB-231 cells overexpressing Bcl-2. Thus, proapoptotic mechanisms which were activated by cisplatin in MDA-MB-231 cells could be successfully decreased by Bcl-2. We conclude that this differential response in MCF-7 Bcl-2 and MDA-MB-231 Bcl-2 cells may be related to selective activation of p53 proapoptotic pathway in MCF-7 Bcl-2 cells.

Our results show that selective activation of Bak is a key event for the promotion of mitochondrial membrane permeabilization by cisplatin in MCF-7 Bcl-2 cells. Independent action of Bak and Bax has been shown in other systems, e.g. in primary baby mouse kidney epithelial cells, Bax and Bak were shown to independently mediate tumor necrosis factor-α-mediated apoptosis (42). Also, enforced expression of p14ARF in osteosarcoma and colon cancer cell lines triggered apoptosis through activation of a Bax-independent apoptotic pathway (43), and Bax-deficient Jurkat T leukemia cells were demonstrated to be resistant to apoptosis triggered by ultraviolet or anticancer drugs (44). It has been shown that expression of antisense Bak in MCF-7 cells renders them more resistant to cisplatin and that cisplatin preferentially activates Bak in cisplatin-sensitive melanoma cell lines (45,46). In addition, MCF-7 cells expressing green fluorescent protein-Bak were also shown to be more sensitive to apoptosis induced by staurosporine, actinomycin D, TRAIL and Puma overexpression (47). These results argue that the Bak-mediated mitochondrial apoptotic pathway is a promising target even in cells with compromised Bax function.

Puma and Noxa are two important proapoptotic BH3-only proteins and transcriptional targets of p53-mediated apoptosis signaling, although p53-independent induction of Puma and Noxa has been reported (48–52). Here, we demonstrated the critical involvement of Noxa, but not Puma, upstream of Bak activation and mitochondrial membrane permeabilization in cisplatin-induced apoptosis in MCF-7 Bcl-2 cells. Induction of Noxa was p53 dependent and absolutely required for cisplatin-induced apoptosis in Bcl-2-overexpressing MCF-7 cells. The protein–protein interaction patterns of Bcl-2 proteins are hierarchically regulated (9,11). It was shown previously that Noxa selectively engages Mcl-1 and does not interact with Bcl-2 or Bcl-xL (11,53). We utilized communoprecipitation analysis to identify the interaction pattern of Noxa with antiapoptotic Bcl-2 proteins, which indicated Noxa–Mcl-1 interaction following cisplatin treatment in MCF-7 Bcl-2 cells. Concordantly, Mcl-1-bound Bak was displaced by Noxa to promote apoptosis. In contrast, Noxa did not interact with Bcl-xL or Bcl-2 in untreated or cisplatin-treated cells.

Of note, activation of apoptosis by cisplatin in MCF-7 Bcl-2 cells occurred at a fairly late time point compared with parental MCF-7 cells, which suggests a gradual engagement of the proapoptotic machinery to overcome Bcl-2-mediated antiapoptotic potency. In contrast, two other drugs with distinct modes of action, paclitaxel and HA14-1, failed to exert a similar effect both in MCF-7 Bcl-2 and MDA-MB-231 Bcl-2 cell lines. This gradual development of apoptosis is consistent with a gradual buildup of lipid peroxidation effects, as indicated by our present findings. Both ROS and lipid peroxidation have been reported to mediate cisplatin-induced apoptosis in various cancer cell types (19,54). Previous studies revealed the protective function of Bcl-2 against ROS production and lipid peroxidation (15–17), but the mechanism by which Bcl-2 exerts these effects is not clearly understood. Intriguingly, both knockdown and overexpression of Bcl-2 led to increased lipid peroxidation levels at 48 h compared with cells at 24 h. In both parental MCF-7 cells and MCF-7 Bcl-2 cells, cisplatin treatment resulted in increased (4-HNE)-histidine adducts in Bcl-2 protein, which suggested that lipid peroxidation end products might directly modify Bcl-2. Moreover, we observed substantial amount of (4-HNE)-histidine adducts in Bcl-2 protein in untreated MCF-7 Bcl-2 cells, which may explain the increased level of peroxidation in Bcl-2-overexpressing cells.
Increased lipid peroxidation at 48 h in Bcl-2 siRNA-treated MCF-7 cells may be due to increased targeting of other proteins and membranous structures by lipid peroxidation end products as a result of decreased Bcl-2 levels, but the exact mechanism of this observation merits further investigation.

Lipid peroxidation end products were also involved in cisplatin-induced apoptosis downstream of Noxa induction in MCF-7 Bcl-2 cells. Similarly, cisplatin-induced lipid peroxidation was inhibited by enforced expression of a dominant-negative form of p53 (p53DD). On the other hand, treatment of parental MCF-7 cells with cisplatin resulted in induction of ROS formation at 24 h and lipid peroxidation at 24 and 48 h. In addition, treatment of MCF-7 cells with antioxidants and lipid peroxidation inhibitors decreased cisplatin-induced cell death, which indicates the critical role of ROS production and lipid peroxidation in cisplatin-induced cell death.

In a recent report, acute apoptosis induced by cisplatin was shown to be mediated by ROS without involvement of nuclear DNA damage response (55). A yet-to-be-defined mechanism is how lipid peroxidation end products contribute Noxa-mediated proapoptotic pathway. Given that lipid peroxidation acts downstream of Noxa induction as confirmed by siRNA-mediated silencing of Noxa, it may be possible that generation of lipid peroxidation is required for Bak activation, oligomerization and mitochondrial membrane permeabilization.

Of interest, p53 was shown previously to translocate to mitochondria to facilitate apoptosis through interaction with antiapoptotic or proapoptotic Bcl-2 proteins (23–27). Consistent with our findings, p53 was found to interact with Bcl-xL to promote apoptosis in cooperation with Puma (26). Mitochondrial targeting of p53 has been demonstrated to exert tumor suppressor effect in vivo in Eμ-myc transgenic lymphoma model (25). It is reasonable to assume
that the interaction of p53 with Bcl-xL directly contributes to cisplatin-induced apoptosis of MCF-7 Bcl-2 cells by neutralizing the binding cleft of Bcl-xL and thereby facilitating a Bak-dependent apoptotic pathway. In fact, p53 appears to act as an activator BH3-only protein in intact cells as well as in isolated mitochondria, leading to mitochondrial outer membrane permeabilization and release of cytochrome c (26). Consequently, the cytoplasmic (transcription independent) proapoptotic role of p53 in parallel to its transcriptional activity in nucleus seems to be critical for cisplatin-induced apoptosis, perhaps particularly in cells with high antiapoptotic potency due to overexpression of Bcl-2.

In summary, our results indicate three important findings. First, cisplatin treatment may overcome Bcl-2-mediated antiapoptotic protection. Second, this effect of cisplatin requires an intact p53 proapoptotic pathway, at both cytoplasmic/mitochondrial and nuclear levels. Third, this effect also involves lipid peroxidation. These insights may be useful for the development of novel treatment of cancer cells overexpressing antiapoptotic Bcl-2 proteins.

Funding

Turkish Association for Cancer Research and Control, Terry Fox Cancer Research Grant (O.K.); Swedish Cancer Society (M.C.S.).

Supplementary material

Supplementary Figures S1–5 can be found at http://carcin.oxfordjournals.org/

Acknowledgements

We thank Dr M.Oren for kindly providing p53DD plasmid and Dr Koji Uchida for kindly providing anti-HNE monoclonal antibody.

Conflict of Interest Statement: None declared.

References

Received January 21, 2009; revised May 27, 2009; accepted June 27, 2009