Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cell killing is associated with modulation of upstream events in the extrinsic apoptotic pathway

Olga Vondálová Blanárová1, Iva Jelínková1, Árpád Szőör1, Belma Skender, Karel Souček, Viktor Horváth, Alena Vaculová, Ladislav Andéra2, Petr Sová3, János Szőllősi1, Jirína Hofmanová, György Vereb1 and Alois Kozubík

Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Crálovopolská 135, CZ-602 65 Brno, Czech Republic, 1Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary, 2Laboratory of Cell Signaling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., CZ-142 20 Prague, Czech Republic and 3R&D, Pliva-Lachema a.s., CZ-621 33 Brno, Czech Republic

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) can selectively trigger apoptosis in various cancer cell types. However, many cancer cells are resistant to death receptor-mediated apoptosis. Combination therapy with platinum complexes may affect TRAIL-induced signaling via modulation of various steps in apoptotic pathways. Here, we show that cisplatin or a more potent platinum(IV) complex LA-12 used in 20-fold lower concentration enhanced killing effects of TRAIL in human colon and prostate cancer cell lines via stimulation of caspase activity and overall apoptosis. Both platinum complexes increased DR5 surface expression in colon cancer cells. Small interfering RNA-mediated DR5 silencing rescued cells from sensitizing effects of platinum drugs on TRAIL-induced caspase-8 activation and apoptosis, showing the functional importance of DR5 in the effects observed. In addition, both cisplatin and LA-12 triggered the relocalization of DR4 and DR5 receptors to lipid rafts and accelerated internalization of TRAIL, which may also affect TRAIL signaling. Collectively, modulations of the initial steps of the extrinsic apoptotic pathway at the level of DR5 and plasma membrane are important for sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis mediated by LA-12 and cisplatin.

Introduction

The main goal of anticancer therapy is to selectively induce apoptosis in cancer cells while sparing untransformed cells and healthy tissues. One promising approach is triggering of the extrinsic apoptotic pathway by TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), a member of tumor necrosis factor superfamily, which has been shown to selectively induce apoptosis in various cancer cells in vitro and in vivo (1,2). The different sensitivity/resistance to TRAIL in normal and cancer cells is still a matter of debates among the experts. Several potential ways of resistance of non-tumorigenic cells to TRAIL have been proposed so far, at the level of both surface and intracellular molecules. Furthermore, many tumor cells have been shown to be resistant to the effects of TRAIL due to deficiencies in apoptotic pathways or over-activated prosurvival signaling (3–6). Elu-

cidation of the molecular mechanisms of the resistance and designing safe combination therapy using agents capable of sensitizing the cancer but not normal cells to TRAIL-induced apoptosis are important prerequisites of the successful clinical application of this cytokine.

There are five known types of TRAIL receptors. Death receptors (DRs) DR4 (TRAIL-R1) and DR5 (TRAIL-R2) containing death domain (DD) are responsible for transmission of the apoptotic signal, whereas decoy receptors (DcsRs) DcR1 (TRAIL-R3, lacking DD) or DcR2 (TRAIL-R4, with truncated DD) and a soluble receptor osteoprotegerin (TRAIL-R5) are unable to signal apoptosis. However, the cell surface expression of particular TRAIL receptor may not fully correlate with its functional importance in induction/inhibition of TRAIL apoptotic signaling. It has been published in several cancer cell types that despite the presence of both DRs at their surface, particular tumors preferentially signal through either DR4 (e.g. lymphocytic leukemia) (7) or DR5 (e.g. colon cancer) (8). The specific DR involvement as well as differences in apoptotic signaling mediated by DR4 or DR5 remain to be answered. Some authors also showed a higher expression of DcsRs in non-tumorigenic compared with tumor cells. However, this phenomenon may be tissue specific, and the sole presence of surface DcsRs has often been found not sufficient to protect the cells from apoptotic effect of TRAIL (9,10).

DR4 and DR5 mediate TRAIL-induced apoptosis by recruiting Fas-associated DD protein and pro-caspase-8 to form a death-inducing signaling complex (DISC). The amount of caspase-8 activated at the DISC is important factor affecting further progression of apoptotic signaling. In so-called type 1 cells, abundantly activated caspase-8 directly cleaves and activates effector caspases, which leads to execution of cell death. In type II cells, the amount of caspase-8 activated at the DISC is not sufficient to trigger an adequate effector caspase stimulation; therefore, amplification of the apoptotic signal via mitochondria is required (11,12). In this case, a BH-3-only protein Bid is cleaved by caspase-8 to tBid and translocated to mitochondria to trigger processes leading to release of proapoptotic proteins such as cytochrome c into the cytosol (12). Cytochrome c, Apaf-1 and pro-caspase-9 then form an apoptosisome where caspase-9 is activated, and the apoptotic signal is augmented.

The initial steps of TRAIL signaling have been studied intensively, especially the regulation of TRAIL receptor expression, their translocation to the cell surface, plasma membrane distribution, lipid raft (co)localization and receptor internalization (endocytosis). Lipid rafts are dynamic plasma membrane microdomains enriched with cholesterol and sphingolipids. They play fundamental roles in diverse cellular processes, particularly in signal transduction, by promoting compartmentalization of membrane proteins and lipids (13,14). Recent studies have suggested the role of lipid rafts as platforms for DR-mediated apoptosis signaling (15). Relocalization of TRAIL DRs into the lipid rafts has been shown to facilitate DISC formation and caspase-8 activation-initiated apoptosis, whereas TRAIL-DISC assembly in the non-raft phase of the plasma membrane resulted in inhibition of caspase-8 cleavage and a promotion of antiapoptotic signaling (15). Changes of the DRs distribution within the plasma membrane may therefore have a crucial impact on modulation of cell sensitivity/resistance to apoptotic signals triggered by TRAIL. Death ligand–receptor interactions may induce receptor clustering and internalization, which targets the active receptor to endocytic compartments. An essential requirement for receptor internalization in transmitting the CD95L-induced apoptotic signal has been reported (16,17). In contrast, although being rapidly internalized, TRAIL and its DRs have been reported not to essentially require internalization for DISC formation, caspase-8 activation and subsequent apoptosis induction in BJAB type I cells (18).

Abbreviations: DcRs, decoy receptors; DD, death domain; DISC, death-inducing signaling complex; DR, death receptor; GM1, monosialotetrahexosylganglioside; mRNA, messenger RNA; PARP, poly(ADP)ribose polymerase; PBS, phosphate-buffered saline; siRNA, small interfering RNA; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

1These authors contributed equally to this work
Compared treatment with chemotherapeutic drugs has been shown to overcome TRAIL resistance in many cancer cell types. Diverse molecular mechanisms have been reported to be responsible for synergistic effects of these agents to induce apoptosis of target cells. Chemotherapy may have a great impact on the crucial steps of the TRAIL signaling pathway, e.g. through increase of TRAIL DR expression (29,30), lipid raft localization and consequentially TRAIL-induced caspase-8 activation and apoptosis, which could be counteracted by other platinum complexes, increased DR5 surface expression (19,20), lipid raft relocalization (21,22), decrease of cellular FLICE-like inhibitory protein level (23), facilitating DISC formation and caspase-8 activation (24), upregulation/downregulation of proapoptotic/antiapoptotic molecules (25) or stimulation of mitochondria (26). The involvement of the particular events depends on the type and/or stage of cancer, type I/II cells and the type of the selected chemotherapeutic drug(s).

Platinum complexes, e.g. cisplatin, carboplatin and oxaliplatin, belong to the most widely used chemotherapeutic agents in the treatment of solid cancers. By creating covalent bonds with DNA, they induce DNA damage signaling, which leads either to cell cycle arrest providing time to repair the damage or to immediate activation of apoptotic signaling via the intrinsic mitochondrial pathway and killing of cancer cells. However, application of therapy using platinum drugs such as cisplatin is limited due to serious side effects and/or development of intrinsic or acquired resistance of the cancer cells. In the past two decades, plenty of newly synthesized analogues of platinum complexes were examined and some of them entered the clinical trials, e.g. Pt(IV) complexes. LA-12 is a novel Pt(IV) adamantylamine ligand-containing complex, currently in phase I of clinical trials, e.g. Pt(IV) complexes. LA-12 is a novel Pt(IV) adamantylamine ligand-containing complex, currently in phase I of clinical trials. It has been shown to be more cytotoxic than satraplatin and to efficiently induce cell death in a panel of 14 cancer cell lines with various sensitivity to cisplatin (27) and in ovarian carcinoma cells with acquired (A2780cis) or intrinsic resistance to cisplatin (SK-OV-3) (28,29). LA-12 has been shown to induce cell cycle arrest and apoptosis in various cancer cells (30–33).

In vivo studies in murine xenografts revealed a higher antimutagenic activity of LA-12 compared with cisplatin and Pt(IV) complex satraplatin and enhanced tissue penetration and lower acute systemic toxicity. Due to its improved lipophilicity, LA-12 was shown to effectively penetrate tissues and tumors and can be administered perorally (34–36). Taken together, these data imply that LA-12 is an interesting candidate for cancer therapy, with high effectiveness in killing cancer cells in vitro and in vivo and low toxic side effects in vivo.

In the present study, we investigated the role of a novel platinum drug LA-12 in modulation colon and prostate cancer cell sensitivity to apoptotic effects of TRAIL and compared the LA-12-mediated effects with those exerted by conventionally used cisplatin in combination with TRAIL. The molecular mechanisms responsible for the enhancement of apoptosis following combined treatments with these agents were investigated, with special focus on the most upstream events of the TRAIL signaling pathway, namely TRAIL DRs and initiator caspase-8. Both platinum complexes increased DR5 surface expression and lipid raft localization and consequently TRAIL-induced caspase-8 activation and apoptosis, which could be counteracted by small interfering RNA (siRNA)-mediated DR5 silencing. Our results demonstrate that modulation of the initial steps of the extrinsic apoptotic pathway by LA-12 and cisplatin at the level of DR5 and plasma membrane are important events in sensitization of colon and prostate cancer cells to TRAIL-induced apoptosis.

Materials and methods

Materials and reagents

The stock solutions of cisplatin (cis-diaminedichloroplatinum(II); FW 327.4) (Sigma–Aldrich Corporation, St Louis, MO) and LA-12 [(OC-6-43)-bis (acetoxy)(1-adamantylamino)amine dichloroplatinum(IV); FW 552.4] (Pliva-Lachema a.s., Brno, Czech Republic) were freshly prepared before use. Human N-terminally His-tagged recombinant Apo2L/TRA1 (peptide coding 95–281) was affinity-purified from cell lysates of the producer bacteria (Escherichia coli, strain BL-21) and contaminating bacterial endotoxins were removed by Endotrap chromatography (Profs AG, Regensburg, Germany) (37).

Cisplatin and LA-12-mediated enhancement of TRAIL-induced apoptosis

Cell culture

The human colon adenocarcinoma HCT-116 (obtained from Prof. B. Vogelstein) and prostate cancer PC-3 (from American Type Culture Collection, LGC Standards Sp. z.o.o., Poland) epithelial cell lines were maintained in McCoy’s 5A-modified medium with 1.5 mM l-glutamine (Sigma–Aldrich Corporation) or F12, respectively, supplemented with penicillin (100 U/ml) and streptomycin (0.1 mg/ml) (PAA, Pasching, Austria), sodium bicarbonate (1.5 g/l; Serva, Heidelberg, Germany) and 10% heat-inactivated fetal bovine serum (HCT-116) or 10% fetal bovine serum (PC-3) (PAA, Pasching, Austria). The cells were incubated in a humidified incubator at 37°C in a 5% CO2 atmosphere and passaged twice a week by ethylenediaminetetraacetic acid/ phosphate-buffered saline (PBS) washing and trypsinization.

WST cytotoxicity assay

HCT-116 and PC-3 cells were seeded in 96-well plates in a density of 20,000 cells/cm². After 24 h (HCT-116) or 48 h (PC-3), the cells were treated with cisplatin (10 μM) or LA-12 (0.5 μM). Twenty-four hours later, various amounts of TRAIL (6.25–100 ng/ml) were added. After 24 h of incubation, tetrazolium salt (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1H-5-tetrazolio)-1,3-benzene disulfonate (WST-1) with 1-methoxy-5-methylphenazinium methylsulfate (Serva) was added for 4 h and absorbance of a soluble formazan compound formed by metabolically active cells was analyzed using a spectrophotometer FLUOSTAR Galaxy (BMG Labtechnologies GmbH, Offenburg, Germany).

Real-time cell impedance analysis

AceA E-plates® 96 and an xCELLigence RTCA SP system including RTCA Software v1.2 (both Roche Applied Science, Prague, Czech Republic) monitors cellular events including cell number, adhesion, viability and morphology and provides information about the biological status of the cells in real time by measuring electrical impedance across microelectrodes integrated on the bottom of its special tissue culture plates (38). First, a standard background measurement was performed using 100 μl of complete culture media. PC-3 cells were trypsinized, counted and seeded in additional 100 μl of culture media in a final concentration of 30,000 cells/cm². The cells were monitored continually every hour after the seeding for a period of 48 h. Next, the cells were pretreated with cisplatin or LA-12 for 24 h followed by treatment with TRAIL (HCT-116 cells: 100 ng/ml, PC-3 cells: 12.5 ng/ml) for another 20 h. During TRAIL treatment, the cells were monitored continually every 2 min in the first 3 h and then every 30 min. AceA E-plates® 16 and xCELLigence RTCA DP Analyzer were used for monitoring the effects of tested compounds after transfection with nontargeting siRNA (sc-37007) or siRNA targeting DR5 (sc-40237; both Santa Cruz Biotechnology, Santa Cruz, CA). Briefly, HCT-116 cells were seeded in 200 μl of cultivation media without antibiotics in a final concentration of 50,000 cells/cm² and overnight incubation, the cells were transfected with control or DR5 siRNA using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. Twenty-four hours later, the cultivation medium was replaced by a fresh one with penicillin/streptomycin and the cells were treated with LA-12 (0.5 μM) for 24 h. Finally, TRAIL (50 ng/ml) was added. During TRAIL treatment, the cells were monitored continually every 2 min for 4 h.

Flow cytometric analysis of TRAIL receptors on the cellular surface

After 24 h of incubation with cisplatin (10 μM) or LA-12 (0.5 μM), the attached cells were harvested by gentle trypsinization, washed twice in cold PBS with 0.2% bovine serum albumin and then incubated with anti-DR4 (#HS101, 1:100) and anti-DR5 (anti-CD261, #1P-403-C025) and anti-DR5 (anti-CD262, #IP-461-C025; both phycoerythrin-conjugated; Exbio, Vestec, Czech Republic) on ice in the dark for 45 min. The cells were washed twice, and 7-AAD or LIVE/DEAD® Fixable Dead Cell Stain Kit from Invitrogen (Invitrogen) were used for monitoring the effects of tested compounds after transfection with nontargeting siRNA (sc-37007) or siRNA targeting DR5 (sc-40237; both Santa Cruz Biotechnology, Santa Cruz, CA). Briefly, HCT-116 cells were seeded in 200 μl of cultivation media without antibiotics in a final concentration of 50,000 cells/cm² and then trypsinized, counted and seeded in additional 100 μl of culture media in a final concentration of 30,000 cells/cm². The cells were monitored continually every 2 min for 48 h.

Flow cytometry analysis of TRAIL receptors on the cellular surface

After 24 h of incubation with cisplatin (10 μM) or LA-12 (0.5 μM), the attached cells were harvested by gentle trypsinization, washed twice in cold PBS with 0.2% bovine serum albumin and then incubated with anti-DR4 (#HS101, 1:100), anti-DR-5 antibody (#HS201, 1:100), both fluorescein isothiocyanate-conjugated; Alexa Bioc hemicals Corporation, Lausen, Switzerland) or anti-DR4 (anti-CD261, #1P-403-C025) and anti-DR5 (anti-CD262, #IP-461-C025; both phycoerythrin-conjugated; Exbio, Vestec, Czech Republic) on ice in the dark for 45 min. The cells were washed twice, and 7-AAD or LIVE/DEAD® Fixable Dead Cell Stain Kit (Invitrogen) were added. After 20 min, the expression of DR4 and DR5 was assessed by flow cytometry (FACS Calibur; Becton Dickinson, San Jose, CA). CellQuest Pro software was used for data acquisition and analysis. Dead cells (7-AAD- and propidium iodide–positive) were excluded from analysis. Receptor expression on the cellular surface was expressed as a ratio of the median fluorescence index of the specific antibody and median fluorescence index of the isotype control antibody. To minimize the possibility of antibody–receptor complex internalization during the incubation period, we performed a staining protocol based on only 10 min of incubation with both antibody and viability probe together. Both analyses gave similar results.

Internalization of TRAIL

TRAIL was labeled using Alexa Fluor 647 Microscale Protein Labeling Kit (A30009: Molecular Probes, Eugene, OR) based on the manufacturer’s instructions. Cells were seeded in a 12-well plate, incubated with cisplatin (10 μM) or...
Fig. 1. Pretreatment of HCT-116 and PC-3 cells with cisplatin or LA-12 intensified cytotoxic effects of TRAIL. (a, b, e and f) WST test was performed in HCT-116 (a and b) and PC-3 (e and f) cell lines pretreated with vehicle, LA-12 (0.5 µM) (a, e) or cisplatin (10 µM) (b and f) for 24 h and then treated with TRAIL (6.25–100 ng/ml) for further 24 h. The ability of the cells to transform WST reagent to soluble formazan salt was measured as relative absorbance using plate reader Fluostar. (c, d, g and h) Real-time measurement of TRAIL toxic effects in HCT-116 (c and d) and PC-3 (g and h) cells pretreated (24 h) with vehicle, LA-12 (0.5 µM) (c and g) or cisplatin (10 µM) (d and h) and then incubated for 20 h with TRAIL. was performed employing the xCELLigence RTCA SP system as described in Materials and Methods. Time of TRAIL application is indicated by an arrowhead.
LA-12 (0.5 μM) for 24 h and then with Alexa Fluor 647-conjugated TRAIL for 5, 10, 20 or 30 min. Sucrose (0.25 M) was added at the same time to inhibit endocytosis of TRAIL. The plates were rapidly chilled on ice to stop internalization. The cells were washed three times in ice-cold 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid twice and incubated in a mixture of 0.2 M acetate acid and 0.2 M NaCl for 5 min on ice. After three washing steps in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid PBS and briefly trypsinized. Trypsin was neutralized by 2% bovine serum albumin in PBS. The cells were centrifuged, resuspended in 2% bovine serum albumin in PBS. The cells were fixed with 4% formaldehyde and mounted with Mowiol toxin B-subunit (C-34778; Molecular Probes) for 10 min on ice. After three washes, the cells were fixed for 10 min with 4% formaldehyde and stained with Mowiol (5 g/ml) for 30 min.

Western blot analysis

The cells were harvested, washed twice in cold PBS and lysed in 1% sodium dodecyl sulfate buffer and western blot analysis was performed as described previously (30). Immunodetection was carried out with the following antibodies: anti-DR5 (1:1000, 710-743; Alexis Biochemicals Corporation), caspase-8 (1:500, 9746; Cell Signaling Technology, Danvers, MA), caspase-3 (1:500, sc-7272), Poly(ADP-ribose) polymerase (PARP) (1:500, sc-7150), lamin B (1:500, sc-6217) (all of them Santa Cruz Biotechnology), anti-DR4 (D3813, 1:500) and β-actin (A5441, 1:5000) (both Sigma–Aldrich Corporation). Denitrometric quantification of the visualized bands was performed by ImageJ software (National Institutes of Health, Bethesda, MD) and normalized to the expression of β-actin.

RNA isoalation and real-time reverse transcription–polymerase chain reaction

Total RNA was isolated using a High Pure RNA Isolation Kit (Roche Applied Science) according to the manufacturer’s instructions. The sequences of a gene-specific primer for combination with Universal ProbeLibrary probes: DR5 (GenBank: AB112628.1), F: 5'-AGAGCGCAACAGGTGCTCAACAF-3' and R: 5'-GGCTCCTCCTCTGTAGACCTT-3' (probe #29, 4068761201); POLR2A [polymerase (RNA II) (DNA directed)] polyphosphate F: 5'-ATCTCCTCTGCAATGACCC-3' and R: 5'-AGACCGGACGAGGGAGTAAC-3' (probe #1, 04684974001; Roche Diagnostics GmbH, Mannheim, Germany). The amplification reactions were carried out in a final volume of 20 μl in a reaction mixture containing 10 μl of Quantitect Probe RT–PCR Master Mix, 0.2 μl of Quantitect RT Mix (Qiagen, Valencia, CA), 2 μl of solution of primers and probe, 5.8 μl of water and 2 μl of RNA sample. The final concentration of each primer was 0.4 μM and the probe was 0.1 μM. The amplifications were run on the RotorGene3000 with RotorGene Real-Time Analysis Software (Corbett Research, Sydney, Australia), using the following program: 50°C for 30 min for reverse transcription and 95°C for 15 min for denaturation of complementary DNA, followed by cycling (40 repeats) 94°C for 15 s and 60°C for 60 s acquiring fluorescence. All polymerase chain reactions were performed in triplicates and changes in gene expression were calculated using the comparative threshold cycle method (39) with POLR2A as a normalizing gene.

Immunofluorescent-labeling TRAIL receptors and lipid rafts

PC-3 and HCT-116 cells were seeded in IBIDI 8-well coverslip chambers. The cells were washed three times in ice-cold 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer and incubated with 15 μg/ml anti-DR4 (MA1–19025) or anti-DR5 (MA1–19416; Affinity Bioreagents, Golden, CO) monoclonal antibodies for 10 min on ice. After three washes, Alexa Fluor 488-conjugated secondary antibody (A-11017; Molecular Probes) was added at 10 μg/ml together with 4 μg/ml Alexa Fluor 647-conjugated cholera toxin B-subunit (C-34778; Molecular Probes) for 10 min on ice. After three washes, the cells were fixed with 4% formaldehyde and mounted with Mowiol (5 g/ml) for 10 min on ice. The images were taken in multitrack mode to completely exclude channel cross talk (although the great spectral separation minimized this already). The 512 × 512-pixel, 1.5 μm thick optical sections were obtained with a ×40 C-Apochromat water immersion objective (NA = 1.2).

Determining colocalization from image cross-correlation

Colocalization of molecules at the few-hundred-nanometer scale was determined from confocal laser scanning microscopy images of double-labeled cells. The optical section was taken from the top horizontal slice of the membrane of adherent cells. The images were gated on the presence of at least one of the fluorophores. For a pair of images, x and y, the cross-correlation coefficient between the intensity distributions of cell surface labeling was calculated as (1),

$$C = \frac{\sum_i x_{ij} - \bar{x} \cdot \overline{y_{ij}}}{\sqrt{\sum_i x_{ij} - \bar{x}^2} \cdot \sqrt{\sum_j y_{ij} - \bar{y}^2}} \cdot \frac{1}{C_0}$$

where x_{ij} and y_{ij} are fluorescence intensities at pixel coordinates i and j in images x and y, respectively, and $\overline{x_{ij}}$ and $\overline{y_{ij}}$ are the mean intensities in each channel. The theoretical maximum is $C = 1$ for identical images and a value of 0 implies independent random localization of the labeled molecules. A custom program was written in LabView to analyze the images. The average intensity of labels in the membrane was also evaluated by the program (13,14).

RNA interference

HCT-116 cells were seeded at a density of 20 000 cells/cm² and cultured for 12 h. The transfections were carried out in McCoy’s medium without antibiotics using a Lipofectamine™2000 transfection reagent (Invitrogen) according to the manufacturer’s protocol. The siRNA targeting DR5 (40 nM; sc-40237) or non-targeting control siRNA (40 nM; sc-37007; Santa Cruz Biotechnology) was added directly to the transfection reagent solution and cells were incubated for 12 h. After the transfection, the medium was replaced by McCoy’s medium.

Caspase activity assay

The cells were collected and caspase activity assay was performed previously (40) using fluorogenic caspase-8 substrate Ac-IETD-AMC (ALX-260-042-M005; Alexis Biochemicals Corporation).

Statistical analysis

The data were expressed as means ± SDs and analyzed by analysis of variance followed by a Tukey’s test or by a nonparametric Mann–Whitney U-test. A P value of <0.05 was considered significant. All statistical analyses were performed by the Statistica for Windows software, V. 6.1 (StatSoft, Tulsa, OK).
Results

LA-12 or cisplatin enhanced cytotoxic effects of TRAIL in HCT-116 and PC-3 cell lines

After pretreatment with cisplatin (10 μM) or LA-12 (0.5 μM), the cytotoxic effects of TRAIL (6.25–100 ng/ml) were significantly enhanced as demonstrated by a decrease of HCT-116 and PC-3 cell metabolic activity (WST test; Figure 1a, b, e and f). Platinum drug-mediated sensitizing effects were clearly evident already when combined with the lowest concentration of TRAIL (6.25 ng/ml). Using a real-time impedance analysis (system xCELLigence; Figure 1c, d, g and h), we also demonstrated a significant decrease of cell surface adhesion following the combined treatment with cisplatin/LA-12 and TRAIL in both cell lines. The pretreatment with platinum drugs prevented recovery of the cell index value observed in cells treated with TRAIL alone.

LA-12 or cisplatin-mediated potentiation of TRAIL-induced cytotoxicity is associated with activation of the apoptotic caspase cascade

In order to examine whether the cytotoxicity induced by combination of platinum drugs and TRAIL occurred via activation of the caspase cascade and apoptotic signaling, analysis of the cleavage of caspase-8, -3 and effector caspase substrate PARP was performed (western blotting). Pretreatment with cisplatin or LA-12, followed by TRAIL, resulted in a substantial potentiation of specific processing of pro-caspase-8, -3 and PARP in HCT-116 cells (Figure 2a) compared with TRAIL alone-treated cells. A similar increase in cleavage of pro-caspase-8 and -3 was also observed in PC-3 cells following combined treatments (Figure 2b). A corresponding significant increase in the number of cells with characteristic apoptotic changes of nuclear morphology (condensation and fragmentation of chromatin, fluorescence microscopy) was also detected in cisplatin/LA-12 and TRAIL-treated cells compared with the agents used alone (data not shown).

LA-12 and cisplatin were responsible for significant increase of surface DR5 expression in HCT-116 but not in PC-3 cells

LA-12 or cisplatin induced a significant concentration-dependent upregulation of the surface DR5 but not DR4 level in HCT-116 cells (Figure 3a). Increased surface expression of DR5 following treatment with platinum drugs in HCT-116 was also confirmed by confocal microscopy (data not shown). No significant effects of any platinum drug in concentrations used on DR4 and DR5 surface levels were detected in PC-3 cells using flow cytometric analysis (Figure 3b). LA-12-mediated changes of DR5 surface level in HCT116 cells were accompanied by an increase in DR5 messenger RNA (mRNA) (Figure 3c) and total protein level (Figure 3d). Similarly, cisplatin enhanced amounts of DR5 mRNA (Figure 3c) and total protein (Figure 3d) in HCT-116 cells. None of the two platinum complexes modulated total amount of DR4 protein in HCT-116 cells (Figure 3d).
Lipid raft localization of DR4 and especially of DR5 was increased upon treatment with cisplatin derivatives.

To determine the membrane domain localization of DR4 and DR5 with respect to lipid rafts, the receptors on the cell surface were labeled with indirect immunofluorescence (specific monoclonal primary antibodies followed by Alexa Fluor 488 secondary Abs) and CTX B was used as a lipid raft marker specific to GM1-rich domains. The extent of colocalization was quantitated by calculating the Pearson’s correlation coefficient from confocal microscopic optical sections of upper horizontal membrane layers from numerous single cells. Both TRAIL DR4 and DR5 receptors colocalized with GM1-rich domains in the plasma membrane of PC3 as well as HCT-116 cells. An example is shown for DR5 in HCT-116 cells (a–c, fields of view: 5 × 5 μm). Confocal optical sections of 1.5 μm in size were used to calculate cross-correlation of cell surface receptors and GM1-rich lipid microdomains for HCT-116 (d) and PC-3 (e) cells. Data are averages of the cross-correlation coefficient ± SEM of 40–60 independent measurements, normalized to control values.

Cisplatin induced an increase of TRAIL internalization in both PC-3 and HCT-116 cell lines, whereas LA-12 was only effective in the latter one.

Following treatment with TRAIL, an acute time-dependent increase of dye-conjugated TRAIL internalization was detected in both HCT-116 and PC-3 cell lines by flow cytometry. Suppression of TRAIL internalization by sucrose was used as a negative control of clathrin-dependent endocytosis (18). Pretreatment with cisplatin or LA-12 treatment, the colocalization between lipid rafts and TRAIL receptors increased in both HCT-116 (Figure 4d) and PC-3 (e) cells. This effect was more pronounced for DR5.

LA-12 or cisplatin-mediated increase of DR5 is essential for potentiation of TRAIL-induced caspase-8 activation and apoptosis in HCT-116 cells.

To determine the functional role of DR5 in the LA-12/cisplatin and TRAIL-induced apoptosis, the expression of DR5 was downregulated using specific siRNA. Transfection of HCT-116 cells with DR5 but not control siRNA resulted in a significant decrease of basal (72%) as well as LA-12/cisplatin-induced (78/80%) surface level of DR5 (Figure 6a). Following DR5 siRNA transfection, LA-12/cisplatin-mediated stimulation of TRAIL-induced caspase-8 processing/activation and apoptosis (demonstrated by PARP and lamin B cleavage) was significantly reduced (Figure 6b and c) compared with control siRNA-transfected cells. To further elucidate the role of DR5 in LA-12/cisplatin-enhanced TRAIL-mediated cell death, the cell index was assessed using the xCELLigence system (Figure 6d). Silencing of DR5 significantly rescued the reduction of the cell index observed in TRAIL- and LA-12/TRAIL-treated cells. The results
imply that cisplatin- or LA-12-mediated enhancement of TRAIL-induced cell death depends on DR5 function.

Discussion

The ability to induce apoptosis in tumor cells while sparing non-transformed cells designates TRAIL for the therapy of cancer diseases. Unfortunately, an increasing number of studies demonstrate that many primary tumors are resistant to TRAIL monotherapy (41). A promising strategy to overcome the resistance of cancer cells and improve the clinical outcome is represented by combination therapy. By this time, combinations of TRAIL with many other antitumor agents with various mechanisms of action including DNA damage have been tested (42,43). However, detailed description of the molecular mechanisms of combined effects of these compounds has to precede their possible clinical application. Chemotherapy-mediated

![Graph showing DR5 expression levels and fold of control for cisplatin and LA-12 with and without siRNA.](image)

![Fig. 6. siRNA-mediated silencing of DR5 prevented enhancement of TRAIL-induced apoptosis by cisplatin and LA-12 in HCT-116 cells.](image)
enhancement of TRAIL toxicity in tumor cells has been shown to be regulated at many levels, e.g. TRAIL receptors expression and localization, DISC components expression and modulation of their assembly, integrity of mitochondria, prosurvival and apoptotic signaling. Interactions of extrinsic and intrinsic pathways of apoptosis may also be profitable for the killing of type II cells as they rely on the mitochondrial loop to activate enough effector caspases and commit TRAIL-mediated programmed cell death. In our study, we showed that pretreatment with subtoxic concentrations of cisplatin and novel Pt(IV) complex LA-12 significantly enhanced TRAIL-induced apoptosis in human colon and prostate carcinoma cells and we studied molecular mechanisms responsible for the observed effects.

Cisplatin has been shown to enhance the killing capacity of TRAIL in several cancer cell lines in in vitro (19,20,44,45), in vivo (46,47) and in ex vivo models (48). Contradictory studies demonstrating a cisplatin-mediated inhibition of TRAIL-induced cell death through direct inactivation of caspases have also been reported. The authors explain the discrepancy in their results compared with the majority of literature by the dependance on the duration of the treatment (49,50).

In our study, cisplatin was responsible for significant potentiation of TRAIL-induced apoptosis in human prostate and colon cancer cell lines. Importantly, similar effects on TRAIL-induced apoptosis were also induced by novel Pt(IV) complex LA-12, although a 20-fold lower dose of LA-12 was used compared with cisplatin. The ability of LA-12 to be effective in significantly lower doses when compared with other conventional therapeutic drugs, together with its favorable pharmacokinetic profile, make LA-12 a promising candidate for combination treatment. This implies that DR5 surface level rescued cells from activation of caspase-8 and apoptosis induced by combination treatment. This implies that DR5 surface level rescued cells from activation of caspase-8 and its substrate PARP and, overall, the fraction of apoptotic cells. We demonstrated a functional role of DR5 in LA-12-mediated enhancement of TRAIL-induced apoptosis was accompanied by accelerated internalization of TRAIL, suggesting its possible role in the effects observed.

We demonstrated that cisplatin- and the novel platinum(IV) complex LA-12-mediated enhancement of TRAIL-induced apoptosis in human colon and prostate carcinoma cells were associated with modulation of upstream events of TRAIL signaling. Cisplatin and LA-12 increased the expression of DR5, stimulated the relocalization of DR4 and DR5 to lipid rafts and accelerated the internalization of TRAIL. Furthermore, these drugs enhanced TRAIL-induced caspase-8 activation, cleavage of caspase-3 and its substrate PARP and, overall, the fraction of apoptotic cells. We demonstrated a functional role of DR5 in the reinforcement of TRAIL-activated apoptosis by cisplatin and LA-12. Our results show the complexity of interactions of signaling pathways triggered by TRAIL and cisplatin or LA-12 and highlight the striking ability of LA-12 to sensitize the cancer cells to TRAIL-induced apoptosis even when applied in significantly lower doses compared with cisplatin. Our observation will help to improve therapeutic approaches to cancer diseases in terms of more efficient killing of cancer cells, while minimizing the side effects of the therapy.

Funding
Czech Science Foundation (301/07/1557, 303/09/H048); Academy of Sciences of the Czech Republic (AV0Z50040507, AV0Z50040702); Ministry of Health of the Czech Republic (IGA MZD 9600-4/2008); Czech-Hungarian cooperation (TET CZ-7/2006); OTKA (K75752); Hungarian National Research Fund (K68763), Hungarian National Development Agency (TAMOP-4.2.2-08/1-2008-001); Baross Gabor programme (REG-EA-09-1-2009-0010).

Acknowledgements
The authors would like to thank Eva Slabaková, Andrea Staršíchová and Zuzana Pernicová for help with generation of preliminary results for this study. Iva Lišková, Kateřina Svobodová and Jaromíra Netíková for superb technical assistance. We thank Roche Czech Republic for providing the xCELLigence RTCA DP system. We also thank Jan Šmarda for the kind provision of the xCELLigence RTCA DP system.

Conflict of Interest Statement: None declared.

Han, J. S. et al. (2009) TRAIL-induced cell death and caspase-8 activation are inhibited by cisplatin but not carboplatin. J. Gynecol. Oncol., 20, 113–116.

Received June 2, 2010; revised September 29, 2010; accepted October 19, 2010