Breast cancer susceptibility polymorphisms and endometrial cancer risk: a Collaborative Endometrial Cancer Study

Catherine S. Healey 1, Shahana Ahmed 1, ANECS 2, AOCS Management Group 3, Tracy A.O’Marra 4, Kaltin Ferguson 2, LES—Diether Lambrechts 5, Diego A. Garcia-Dios 5, Ignace Vergote 6, Frederic Amant 6, NSECG 7, Kimberly Howarth 7, Maggie Gorman 7, Shirley Hodgson 8, Ian Tomlinson 7, PECS—Hannah P. Yang 9, Jolanta Lissowska 10, Louise A. Brinton 10, Stephen Chanock 9, Montserrat Garcia-Closas 9, SASBAC—Per Hall 11, Jianjun Liu 12, SEARCH—Mital Shah 1, Paul D. Pharoah 1, Deborah J. Thompson 13, WISE—Timothy R. Rebeck 14, Brian L. Strom 14, Alison M. Dunning 14, Douglas E. Easton 13 and Amanda B. Spurdle 1

1Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK, 2Division of Genetics and Population Epidemiology and Risk factors in Cancer Heredity (SEARCH) study was initiated, they were SNPs identified to be significantly associated with breast cancer risk. SNPs were selected for this study, if with genetic variants that have previously been identified to be associated with breast cancer susceptibility: rs3803662 (ESR1), rs1045485 (CASP8), and rs3020314 (TOX3) (11); (ii) They showed evidence for significant (P < 0.05) association with endometrial cancer in the Studies of Epidemiology and Risk factors in Cancer Heredity (SEARCH) study during an analysis of 81 SNPs that had originally been selected as candidates for breast cancer susceptibility: rs3803662 (TOX3), rs1045485 (CASP8) and rs3857481 (6q14). We note that rs3857481 was not subsequently confirmed as a breast cancer susceptibility variant (7). The nine SNPs that fitted these criteria were genotyped in three to six collaborating endometrial studies, comprising 2449–4188 cases and 2711–11928 controls.

Materials and methods

Study populations

Seven studies from Australia, USA and Europe contributed pre-existing data from SNP genotyping at each site to these analyses—hence not all SNPs have been analyzed in all studies. Controls recorded as having had a hysterectomy were excluded from all analyses. The majority of endometrial cancer cases were of endometrioid histology (85.5%). Additional details about each study are provided below.

Australian National Endometrial Cancer Study and Australian Ovarian Cancer Study controls. The Australian National Endometrial Cancer Study (ANECS) is an Australian population-based case-control family study of cancer of the uterine corpus (13). Women aged 18–79 years, registered on

Abbreviations: ANECS, Australian National Endometrial Cancer Study; AOCS, Australian Ovarian Cancer Study; CI, confidence interval; GWAS, genome-wide association study; LES, Leuven Endometrial Study; NSECG, National Study of Endometrial Cancer Genetics; OR, odds ratio; PECS, Polish Endometrial Cancer Study; SASBAC, Singapore and Sweden Breast/Endometrial Cancer Study; SEARCH, Studies of Epidemiology and Risk factors in Cancer Heredity; SNP, single-nucleotide polymorphism; WISE, Women’s Insight and Shared Experiences Study.

Introduction

Endometrial cancer is the fourth most common cancer in women in the UK, representing 5% of all female cancers, with most cases developing postmenopausally. The most common subtype, ~80% of cases, is Type 1 estrogen-dependent endometrioid adenocarcinoma, which arises from the lining of the uterus and is associated with excessive estrogen exposure, especially that unopposed by progesterone (1). The known risk factors for this disease are hormone related, e.g. early menarche or late menopause, nulliparity, irregular menstrual periods and obesity. Exogenous hormones, such as oral contraceptives and estrogen hormone replacement therapy, can also increase risk of developing endometrial cancer, although the addition of progesterone counteracts this risk (2). Interestingly, breast cancer risk is increased with the use of progesterone. Furthermore, use of the breast cancer drug, Tamoxifen, is associated with an increased risk of endometrial cancer (3). In normal breast cells and most breast tumors, Tamoxifen acts as an estrogen receptor antagonist and has an antiproliferative effect, but in endometrial cells, it acts in the opposite direction—as an estrogen receptor agonist that increases proliferation and risk of endometrial cancer (4). As there are known similarities and differences in the risk factors for breast and endometrial cancer, it is probably that some but not all genetic risk factors will be shared between these two diseases. A recent genome-wide association study (GWAS) of endometrial cancer (5) revealed a single-nucleotide polymorphism (SNP) at 17q12 (HNF1B), which was associated with risk of endometrial cancer at a genome-wide level of significance [odds ratio (OR) = 0.84, 95% confidence interval (CI) = 0.79–0.89, P = 7 x 10^-10]; however, this SNP does not appear to be associated with breast cancer risk (6).

In this study, we assessed risk of endometrial cancer associated with genetic variants that have previously been identified to be associated with breast cancer risk. SNPs were selected for this study, if they fulfilled one or both of the following criteria: (i) At the time this study was initiated, they were SNPs identified to be significantly associated with breast cancer susceptibility in GWAS or candidate studies carried out by the Breast Cancer Association Consortium (BCAC): rs889312 (MAP3K1), rs3817198 (LSP1) and rs13281615 (8q24) (7–9); rs13397042 (2q35) (8,10); rs1045485 (CASP8) (11); and rs3020314 (ESR1) (12). (ii) They showed evidence for significant (P < 0.05) association with endometrial cancer in the Studies of Epidemiology and Risk factors in Cancer Heredity (SEARCH) study during an analysis of 81 SNPs that had originally been selected as candidates for breast cancer susceptibility: rs3803662 (TOX3), rs1045485 (CASP8) and rs3857481 (6q14). We note that rs3857481 was not subsequently confirmed as a breast cancer susceptibility variant (7).
the Electoral Roll and newly diagnosed with primary cancer of the endome-
trium between July 2005 and December 2007 were identified through major
hospitals nationally and also from state-based cancer registries. Female con-
trols with no personal history of endometrial cancer or hysterectomy were
recruited using two sources. A population-based control group comprising
women randomly selected using the Australian Electoral Roll (voting is com-
pulsory in Australia) and matched to the age and geographic distribution of the
cases. A second control group of female blood donors were recruited with the
aid of the Australian Red Cross Blood Service in Queensland. All participants
completed a detailed questionnaire providing clinical and epidemiological
information including body mass index and ethnicity. In addition, we also
accessed available genotype data from controls only (with no prior history
of hysterectomy) from the Australian Ovarian Cancer Study (AOCs). This is
a national population-based case–control study of ovarian cancer with recruit-
ment strategies almost identical to ANECs, the details of which have been
previously published (14).

The Leuven Endometrial Study. The Leuven Endometrial Study (LES) is a
hospital based case–control study (15). Eligible cases, identified by active
surveillance of electronic patient files at the Leuven University Hospital, were
white women aged 27–80 years diagnosed with endometrial cancer. Clinical
and information of endometrial cancer patients was recorded during interview
at the time of diagnosis and from pathology reports. All medical records were
reviewed for trained abstractors and pathology reports compatible with pri-
mary, invasive, epithelial endometrial adenocarcinoma of all stages (I–IV) and
all grades were consulted. A control group of healthy female blood donors was
recruited with the aid of the Red Cross Blood Service in the University Hos-
pital. Participants completed a detailed questionnaire providing epidemiologi-
cal information, including age, weight, height and self-reported Belgian
(Flemish) ethnicity for three generations.

National Study of Endometrial Cancer Genetics. NSECG, National Study of
Endometrial Cancer Genetics. Cases were identified from collaborating cli-
nicians throughout the UK from 2008 to present, taking care not to recruit from
centers involved in SEARCH. Inclusion criteria were adenocarcinomas of the
uterus presenting at <70 years of age. Almost all cases were incident and
sampled within 6 months of diagnosis. Peripheral blood was collected from
each participant and DNA extracted using standard methods. Tumor histology
was confirmed from routine hospital reports and further details of histopatho-
logy and other tumor pathology characteristic was abstracted from these clin-
cal pathology reports. Controls (45% males and 55% females) were drawn from
the ColoRectal tumour Gene Identification study (16) and were unaf-
fected by cancer. All cases and controls were of white UK ethnic origin.

The Polish Endometrial Cancer Study. The Polish Endometrial Cancer Study
(PECS) is a population-based case–control study carried out in two cities in
Poland (Warsaw and Łódź) during 2001–2003 (17). The cases were women aged
20–74 years, newly diagnosed with pathologically confirmed endo-
metrial cancer and identified through participating hospitals and local cancer
registries. Controls without a history of breast or endometrial cancer and with
an intact uterus at time of enrollment were randomly selected from a database
of all residents and frequency matched to cases (1:2 case:control ratio) by study
site (Warsaw and Łódź) and age in 5 years categories. In-person interviews,
including information on demographic characteristics and known or suspected
endometrial cancer risk factors, were obtained from 551 cases (79% of the 695
eligible cases) and 1925 controls (68% of the 2843 eligible controls). Trained
interviewers collected venous blood from 88% of participating cases and 94% of
participating controls. To approximate a 1:1 case–control ratio for genotyp-
ing, cases and randomly selected 5 years age categories and study site fre-
quency-matched controls who had donated blood were selected. The study
protocol was reviewed and approved by local Polish and US National Cancer
Institution institutional review boards. All participants provided written informed
consent.

Singapore and Sweden Breast/Endometrial Cancer Study. Details of the pop-
ulation-based selection process for the Singapore and Sweden Breast/Endometri-

cancer study (SASBAC) have been published previously (18). Briefly, this
population-based case–control study was conducted among Swedish women
aged 50–74 years, who were residing in Sweden between 1 January 1994 and
31 December 1995. Endometrial cancer cases were identified through the
nationwide cancer registries in Sweden. Controls, frequency matched for age
and residence were randomly selected from the Total Population. The study
was restricted to postmenopausal women with an intact uterus and with no
previous diagnosis of endometrial cancer. All participants provided detailed
questionnaire information. For endometrial cancer, histological specimens
were reviewed and reclassified by the study pathologist. Genomic analyses
were conducted by the Singapore node of the study.

The Studies of Epidemiology and Risk factors in Cancer Heredity. The SEARCH is an ongoing UK population-based study with cases ascertained through the Eastern cancer Registration and Information Centre (http://www.
ercr.org.uk). All women diagnosed with endometrial cancer between the ages of
18–69 years (average age diagnosis 58 years) from 31 July 2001 to 1 January 2007 were eligible for inclusion. Approximately 54% of eligible
patients have enrolled in the study. Women taking part in the study were asked
to provide a 20 ml blood sample for DNA analysis and to complete a compre-
hensive epidemiological questionnaire. Controls were matched to cases in
geographical profile and age and were drawn from two sources: (i) SEARCH
participants (http://www.srl.cam.ac.uk/search/Homepage.htm), who were female
with no prior history of cancer at the time of recruitment. Approximately 35%
of eligible SEARCH controls enrolled in the study and (ii) European Prospective
Investigation of Cancer-Norfolk, a population-based study of diet and cancer
(19). There were 1127 endometrial cases and 6824 controls available for geno-
typing analysis at the time of this study.

The Women’s Insight and Shared Experiences Study. The Women’s Insight
and Shared Experiences Study (WISE) is a population-based case–control
study conducted from among residents from a contiguous nine county region
around Philadelphia and has been described previously (20). Eligible cases,
identified by active surveillance at 61 hospitals, were African-American or
Caucasian women aged 50–79 years, who were newly diagnosed with endo-
metrial cancer between 1 July 1999 and 30 June 2002. Pathological reports
and medical records were reviewed by trained abstractors and case status was
validated by a pathology report that was compatible with primary, invasive,
epithelial endometrial adenocarcinoma of all stages (I–IV) and all grades.
Frequency-matched control subjects were selected by random digit dialing and
restricted to women with no history of endometrial cancer or hysterectomy.
Telephone interviews and complete detailed questionnaires were conducted for
all participants.

Genotyping
For three studies (ANECS/AOCs, LES, SASBAC), genotyping was performed
using matrix-assisted laser desorption/ionization time of flight mass spectrom-
etry for the determination of allele-specific primer extension products using
Sequenom’s MassARRAY system and iPLEX technology (Sequenom San
Diego, CA). Oligonucleotides were designed using MassARRAY Assay
Design software (version 3.1; Sequenom) and results analyzed using TYPER
software (version 3.4; Sequenom).

SEARCH genotyping was carried out by nulease assay (Taqman; Applied
Biosystems, Foster City, CA). Taqman genotyping reagents were design by
Applied Biosystems (http://www.appliedbiosystems.com/) as Assays-by-
Design. Genotyping was performed using the ABI Prism 7900HT Sequence
Detection Systems according the manufacturer’s instructions.

PECS genotyping was completed at the Core Genotyping Facility of the National
Cancer Institute’s Division of Cancer Epidemiology and Genetics using the Illumina
iSelect Custom BeadChip for all the SNPs presented except for two SNPs: rs3857481 and rs4777792 were genotyped using Taqman as
described above. NSECG cases were genotyped using Sequenom iplex methodology, as de-
scribed above. NSECG control genotype data were extracted from existing
Illumina 550k genome-wide scan data (16) or genotyped using the Kaspar
method if the SNP was not present on the Illumina 550K platform.

WISE samples were genotyped using the SNPShot method (Applied Bio-
systems) and analyzed on an ABI 3130 capillary sequencer according to man-
ufacturer’s instructions.

All studies complied with quality control standards by including ≥2 nega-
tive (no DNA) polymerase chain reaction controls per 384-well assay plate
and at least 2% of samples in duplicate. A genotyping call rate >95% and at least
98% concordance between duplicated samples for each SNP assay was re-
quired. Additionally, the genotype distributions in the control samples of each
study were required to conform to Hardy–Weinberg equilibrium (HWE) at
P > 0.005. Three subsets were excluded from the meta-analyses on this basis:
SASBAC: SNPs rs13281615, P = 1 × 10⁻¹³ and rs1045485, P = 0.0002; LES:
SNP rs3020314, P = 0.002.

Impatation
Rs3857481 was the only SNP that had not been genotyped in the ANECs
study. We were able to obtain imputed genotype dosages for this SNP for
599 ANECs cases with endometrial histology genotyped as part of a GWAS
of endometrial the using an Illumina Infinium OPA-3 array for 5190
UK control subjects who had been genotyped using an Illumina Infinum 1.2M
array as part of the Wellcome Trust Case Control Consortium (21). Non-
genotyped SNPs were imputed using the HapMap Phase 3 data as a reference
panel (22). Imputed genotype dosages were compared between cases and
controls, adjusting for the first three principal components of the genomic

1863

Breast cancer SNPs and endometrial cancer risk

Downloaded from https://academic.oup.com/carcin/article-abstract/32/12/1862/2463599 on 26 February 2018

by guest
kinship matrix to take into account any differences in population structure between cases and controls. This part of the analysis was performed using GenABEL (23), ProbABEL (24) and MACH (25).

Statistical methods

For each SNP, deviation of genotype frequencies in controls from Hardy–Weinberg equilibrium was assessed by a \(\chi^2 \) test with one degree of freedom. Genotype risks were estimated as ORs with 95% CIs, and significance levels were calculated using logistic regression. Meta-analysis was carried out and Forest plots generated using the Metan command within Stata™ (http://www.stata.com).

Results and discussion

A total of nine breast cancer-associated SNPs were genotyped in up to six different endometrial cancer case/control studies of European ancestry from Sweden, UK, Belgium, Poland, Australia and the USA. Genotype counts and ORs (95% CIs) for individual studies and overall minor allele frequencies and risk estimates are shown in Supplementary Table 1, available at Carcinogenesis Online. Per allele ORs (95% CIs) for each SNP are shown as Forest plots in Figure 1 with the original reported breast cancer per allele risk estimates also shown for

<table>
<thead>
<tr>
<th>Study</th>
<th>OR (95% CI)</th>
<th>P = 0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECs</td>
<td>1.05 (0.85, 1.29)</td>
<td></td>
</tr>
<tr>
<td>NSEGC</td>
<td>1.07 (0.94, 1.22)</td>
<td></td>
</tr>
<tr>
<td>ANECS</td>
<td>1.13 (1.00, 1.27)</td>
<td></td>
</tr>
<tr>
<td>SEARCH</td>
<td>0.98 (0.87, 1.08)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>1.03 (0.98, 1.09)</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer (11)</td>
<td>1.05 (1.02, 1.09)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>OR (95% CI)</th>
<th>P = 0.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECs</td>
<td>1.13 (0.92, 1.38)</td>
<td></td>
</tr>
<tr>
<td>NSEGC</td>
<td>1.09 (0.95, 1.26)</td>
<td></td>
</tr>
<tr>
<td>ANECS</td>
<td>1.15 (1.01, 1.22)</td>
<td></td>
</tr>
<tr>
<td>SEARCH</td>
<td>0.88 (0.77, 1.01)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>1.03 (0.99, 1.07)</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer (7)</td>
<td>1.00 (0.98, 1.04)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>OR (95% CI)</th>
<th>P = 0.28</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECs</td>
<td>0.91 (0.75, 1.12)</td>
<td></td>
</tr>
<tr>
<td>WISE</td>
<td>0.98 (0.80, 1.13)</td>
<td></td>
</tr>
<tr>
<td>SASBAC</td>
<td>1.08 (0.94, 1.24)</td>
<td></td>
</tr>
<tr>
<td>SEARCH</td>
<td>0.92 (0.82, 1.02)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>0.98 (0.89, 1.07)</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer (7)</td>
<td>1.26 (1.23, 1.30)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>OR (95% CI)</th>
<th>P = 0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECs</td>
<td>0.99 (0.80, 1.28)</td>
<td></td>
</tr>
<tr>
<td>WISE</td>
<td>0.98 (0.75, 1.26)</td>
<td></td>
</tr>
<tr>
<td>SASBAC</td>
<td>1.05 (0.82, 1.33)</td>
<td></td>
</tr>
<tr>
<td>SEARCH</td>
<td>0.97 (0.82, 1.18)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>0.99 (0.89, 1.09)</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer (7)</td>
<td>1.13 (1.10, 1.16)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>OR (95% CI)</th>
<th>P = 0.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PECs</td>
<td>1.10 (0.82, 1.28)</td>
<td></td>
</tr>
<tr>
<td>WISE</td>
<td>1.12 (0.82, 1.37)</td>
<td></td>
</tr>
<tr>
<td>SASBAC</td>
<td>1.02 (0.89, 1.17)</td>
<td></td>
</tr>
<tr>
<td>SEARCH</td>
<td>1.07 (0.95, 1.21)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>1.02 (0.93, 1.12)</td>
<td></td>
</tr>
<tr>
<td>Breast Cancer (8)</td>
<td>1.04 (0.98, 1.11)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Forest plots showing per allele OR and 95% CIs for each SNP (risk allele) by study. The size of the black box is proportional to the study size. The diamond represents the OR and 95% CIs for the meta-analysis of each SNP. Per allele ORs and 95% CIs for breast cancer (reference in brackets) are shown for comparison at the bottom of each Forest plot. Results for ANECS rs3857481 were imputed using a subset of the ANECS cases (n = 599) (5) matched to an alternative control group (1958 Birth Cohort controls n = 2694 and National Blood Donor controls n = 2496) (21).
Breast cancer SNPs and endometrial cancer risk

SASBAC is supported by the Agency for Science, Technology and Research of Singapore (A*STAR).

WISE was supported by a Public Health Service Grant (P01-CA77596).

Acknowledgements

The authors would like to thank the many individuals who participated in this study and the numerous institutions and their staff who have supported recruitment.

In particular, ANECS would like to thank Felicity Lose, Jyotsna Batra, Xiaoping Chen and Jonathan Beesley from The Molecular Cancer Epidemiology and Cancer Genetic laboratories at QIMR for technical assistance. We also thank the Australian Red Cross Blood Services (ARCBS) donors who participated as healthy controls in this study. We are grateful to the staff at ARCBS for their assistance with the collection of risk factor information and blood samples, and Mary-Anne Kedda and members of the Molecular Cancer Epidemiology Laboratory for their assistance with collection and processing of blood samples.

ANECS would also like to gratefully acknowledge the co-operation of the following institutions: NSW: John Hunter Hospital, Liverpool Hospital, Mater Misericordiae Hospital (Sydney), Mater Misericordiae Hospital (Newcastle), Newcastle Private Hospital, North Shore Private Hospital, Royal Hospital for Women, Royal Prince Alfred Hospital, Royal North Shore Hospital, Royal Prince Alfred Hospital, St George Hospital; Westmead Hospital, Westmead Private Hospital; Queensland: Brisbane Private Hospital, Greenslopes Hospital; Mater Misericordiae Hospitals, Royal Brisbane and Women's Hospital, Wesley Hospital, Queensland Cancer Registry; South Australia: Adelaide Pathology Partners, Burnside Hospital, Calvary Hospital, Finders Medical Centre, Queen Elizabeth Hospital, Royal Adelaide Hospital, South Australian Cancer Registry; Tasmania: Launceston Hospital, North West Regional Hospitals, Royal Hobart Hospital; Victoria: Freemasons Hospital, Melbourne Pathology Services, Mercy Hospital for Women, Royal Women's Hospital, Victorian Cancer Registry; WA: King Edward Memorial Hospital, St John of God Hospitals Subiaco and Murdoch, Western Australian Cancer Registry.

Full membership of the Australian Ovarian Cancer Study Group is listed at http://www.aoscstudy.org/.

LES gratefully acknowledges the contribution of Drs Evelyn Despierre, Thomas Van Brussel and Gilian Peuteman.

PECs would like to thank Neolina Szeszenia-Dabrowska of the Nofer Institute of Occupational Medicine (Lodz), and Witold Zatonski of the Maria Sklodowska-Curie Institute of Oncology and Cancer Center (Warsaw, Poland) for their contribution to the PECs; Pei Chao and Michael Stagner (IMS, Silver

comparison. There were no significant heterogeneities between studies for any SNP (P > 0.05) apart from rs3857481 (P = 0.041).

The SNPs in CASP8 (rs1045485), ESR1 (rs3020314) and in the GWAS-identified 8q24 region (rs13281615) were not significant, but their point estimates lie within the 95% CIs for the corresponding breast cancer risk estimates (Figure 1). Further collaboration may clarify the effects of these SNPs on endometrial cancer risk.

The other six GWAS-identified breast cancer SNPs: rs3857481 (6q14), rs2981582 (FGFR2), rs3803662 (TOX3), rs883932 (MAP3K1), rs3817198 (LSP1) and rs13387042 (2q35) had no apparent association with risk of endometrial cancer in these studies (Supplementary Table 1 is available at Carcinogenesis Online, Figure 1). The CIs for the overall endometrial cancer risk do not overlap with the point estimates for breast cancer risk, indicating that these SNP alleles cannot have similar effects on breast and endometrial cancer risk. We have >90% power to detect associations of the same magnitude as those observed for breast cancer for FGFR2, TOX3, 2q35 and MAP3K1, but the equivalent power is considerably lower for SNPs with more modest effects on breast cancer risk, e.g. 45% for LSP1 and 28% for ESR1.

A smaller study of 692 endometrial cancer cases and 1723 controls by McGrath et al. (26) also assessed endometrial cancer risk associated with the six GWAS-identified breast cancer SNPs examined in this study. These authors similarly report no statistically significant associations with endometrial cancer risk that are of similar magnitude and/or direction to that reported for breast cancer, although two of the three risk estimates for endometrial cancer (rs2981582, rs13281615) might be interpreted to be consistent with the direction of effect we observed for endometrial cancer in this study. Given their known associations with breast cancer risk, the SNPs examined here might be considered to have a higher prior probability of association with endometrial cancer than randomly chosen SNPs.

The point estimates of the effect sizes of three of these alleles in endometrial cancer were comparable with those in breast cancer but did not reach statistical significance, whereas for breast cancer, they are highly significant due to the large numbers (currently ~80 000) contributing to the Breast Cancer Association Consortium (BCAC). This emphasizes the need for further collaboration between studies in order to provide the sufficiently large sample sizes needed for confirmation of common low-penetrant associations at appropriate levels of significance.

Supplementary material

Supplementary Table 1 can be found at http://carcin.oxfordjournals.org/.

Funding

The genotyping and analysis of this study, and the conduct of the SEARCH study, was funded by Cancer Research UK grants (C490/A11021, C8197/A10123, C1287/A7497, C1287/A10118), BCC grant (2007NovPR17) and EU FP7 COGS (HEALTH–F2–2009–223175). A.M.D. was supported by Cancer Research UK grant (C8197/A10865) and The Joseph Mitchell Trust.

ANECS was supported by a project grant from the National Health and Medical Research Council (NHMRC) of Australia (ID #339435), The Cancer Council Queensland (ID #4196615) and Cancer Council Tasmania (ID #403031 and ID #457636). A.B.S. is supported by an NHMRC Senior Research Fellowship. T.M. is supported by an Australian Postgraduate Award, an Institute of Health and Biomedical Innovation PhD Top-Up and a Smart State PhD Award.

LES was supported by the Verelst Foundation for Endometrial Cancer.

NSEC was supported by funding from Cancer Research UK and the Oxford Comprehensive Biomedical Research Centre.

PECs was funded by the intramural research program at the US National Cancer Institute, Division of Cancer Epidemiology and Genetics in the Hormonal and Reproductive Epidemiology Branch.

MARY ANNE KEDDA AND MEMBERS OF THE MOLECULAR CANCER EPIDEMIOLOGY LABORATORY FOR THEIR ASSISTANCE WITH COLLECTION AND PROCESSING OF BLOOD SAMPLES.

MARY-ANNE KEDDA AND MEMBERS OF THE MOLECULAR CANCER EPIDEMIOLOGY LABORATORY FOR THEIR ASSISTANCE WITH COLLECTION AND PROCESSING OF BLOOD SAMPLES.

The Cancer Council Queensland (ID #403031 and ID #457636). A.B.S. is supported by an Australian Postgraduate Award, an Institute of Health and Biomedical Innovation PhD Top-Up and a Smart State PhD Award.
References

Received April 26, 2011; revised September 12, 2011; accepted September 19, 2011.