Sulindac inhibits pancreatic carcinogenesis in \( \text{LSL-Kras}^{G12D}\text{-LSL-Trp53}^{R172H}\text{-Pdx-1-Cre} \) mice via suppressing aldo-keto reductase family IB10 (AKR1B10)

Haonian Li\(^1\), Allison L.Yang\(^1\), Yeon Tae Chung, Wanying Zhang, Jie Liao and Guang-Yu Yang\(^*\)

Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 6-118, Chicago, IL 60611

\(^*\)To whom correspondence should be addressed. Tel: +312 503 0645; Fax: +312 503 0647; Email: g-yang@northwestern.edu

Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesylgeranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old \( \text{LSL-Kras}^{G12D}\text{-LSL-Trp53}^{R172H}\text{-Pdx-1-Cre} \) mice (Pan\(^{LSL-K10}\) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (\( n = 20/\text{group} \)). Kaplan–Meier survival analysis showed that average animal survival in Pan\(^{LSL-K10}\) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (\( P < 0.005 \)). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (\( P < 0.01 \)) and only one mouse had lymph node metastasis. Immunohistochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In vitro experiments with PDAC cells from Pan\(^{LSL-K10}\) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA (siRNA) silencing of AKR1B10.

Introduction

Sulindac is one of the most effective non-steroidal anti-inflammatory drugs (NSAIDs) for cancer chemoprevention (1–5). It is a prodrug that undergoes two major biotransformations of its sulfoxide moiety: oxidation of the inactive sulfone and reduction to the pharmacologically active sulfide. The active sulfide metabolite of sulindac is responsible for cyclooxygenase (COX) inhibition with an \( IC_{50} \) of 0.02 \( \mu \text{M} \) although it only accounts for <6% of total sulindac and its metabolites. The recirculation of the parent sulindac and its sulfone metabolites are much more extensive than the circulating active sulfide metabolites. All of the metabolites of sulindac exhibit anticancer activities through the induction of apoptosis and suppression of tumor cell growth, angiogenesis and metastasis, mainly via COX-independent mechanisms (6,7). The precise molecular mechanisms governing these effects are not well known.

Recent studies have shown that sulindac is a potent competitive inhibitor of aldo-keto reductase family member 1B10 (AKR1B10) with an \( IC_{50} \) of 0.35 \( \mu \text{M} \). AKR1B10 is well known to be overexpressed in human pancreatic cancer (9), hepatocellular carcinoma (10,11) and smoking-related carcinomas such as lung cancer (12–15). It exhibits more restrictive substrate specificity than most human AKRs as only farnesal, geranylgeranyl, retinal and carboxyls are its specific substrates (8,19–22). The metabolism of these substrates is thought to promote carcinogenesis in several ways. First, AKR1B10 reduces farnesal and geranylgeranyl to farnesyl and geranylgeranyl, which are further phosphorylated to farnesyl and geranylgeranyl pyrophosphates. These intermediates of cholesterol synthesis are highly involved in protein prenylation; this is significant because >95% of human pancreatic cancers carry the Kras gene mutation (8), which requires prenylation to become active (23). Second, the active carbonyl radicals induce cell apoptosis. AKR1B10 converts highly reactive aldehydic and ketonic groups into hydroxyl groups in neoplastic cells, thus preventing these neoplasmic cells from undergoing carbonyl-induced apoptosis. Third, AKR1B10 is an efficient retinal reductase (19,22,24,25); it facilitates the conversion of retinal to retinol, and suppresses its conversion to retinoic acid, a major active antineoplastic metabolite. In light of the significant role of AKR1B10 in carcinogenesis, the anticancer effects of inhibiting AKR1B10 with sulindac warrant further investigation.

There has been tremendous progress in engineering mouse models of pancreatic adenocarcinomas (26,27) to not only display similar genetic alterations to those seen in humans but also identical pancreatic ductal adenocarcinomas. Using lox-pCre technology, the Lox-STOP-Lox(LSL) construct is inserted into the mouse genomic Kras or p53 locus, which is already engineered to have a G-A transition at codon 12 for Kras and an arg-to-his substitution at amino acid 172 for p53 (28–30). To mimic pancreatic carcinogenesis with multiple genetic alterations, triple transgenic K-ras\(^{G12D}\) p53\(^{R172H}\) Pdx-1-Cre mice (Pan\(^{LSL-K10}\) mice) are produced by crossing-breeding Pdx-1-Cre mice with LSL-Kras\(^{G12D}\) mice and LSL-Trp53\(^{R172H}\) mice (30). These triple transgenic Pan\(^{LSL-K10}\) mice show concurrent activation of transgenic mutant K-ras\(^{G12D}\) and p53\(^{R172H}\) genes in the Pdx-1+ pancreatic epithelial cells recombinated by Pdx-1-cre, develop pancreatic ductal adenocarcinomas (PDAC) and have an average survival of 5–6 months (30). This unique genetically engineered mouse model of pancreatic cancer most closely mimics the genetic alterations seen in humans and also has PDACs most identical to those seen in humans with features of moderate–poorly differentiated PDAC and metastasis to the liver and lymph nodes (31).

In the present studies, the inhibitory effects and mechanism of sulindac on pancreatic carcinogenesis were systematically investigated in Pan\(^{LSL-K10}\) mice. Animal survival and the development of PDAC and its metastasis were used as the endpoint markers to evaluate chemopreventive effects. Immunohistochemistry was used to analyze cell proliferation and Kras-activated phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2 signals, as well as the expression levels of AKR1B10 and COX2. The specific effects of sulindac on AKR1B10 enzyme activity and expression as well as AKR1B10-modulated protein prenylation, particularly in inhibiting Kras and nuclear HDJ2 protein prenylation and Kras downstream signals, were determined in a mouse PDAC cell line P03 derived from Pan\(^{LSL-K10}\) mice and compared with a P03 cell line with small interfering RNA (siRNA) silencing of AKR1B10.

Abbreviations: AKR1B10, aldo-keto reductase 1B10; COX, cyclooxygenase; c-Raf, RAF proto-oncogene serine/threonine-protein kinase; DMEM, Dulbecco’s modified Eagle’s medium; ERK1/2, extracellular signal-regulated kinases 1 and 2; HDJ, human DNA-J homolog; MEK1/2, mitogen-activated protein kinase kinase 1 and 2; NSAID, non-steroidal anti-inflammatory drugs; PDAC, pancreatic ductal adenocarcinoma; siRNA, small interfering RNA.

*These authors contributed equally to this work.
Materials and methods

Animals
Pdx-1-Cre mice were kindly provided by Dr Lowy (University of Cincinnati). LSL-KrasG12D and LSL-Trp53R172H mice were obtained from Mouse Models of Human Cancers Consortium, National Cancer Institute/National Institutes of Health (Bethesda, MD). Pdx-1-Cre (called Pancreas6 (6)) mice were purchased from The Jackson Laboratory. Animals were genotyped in our laboratory following the protocols provided by the investigators (30). To produce triple transgenic KrasG12D, Trp53R172H, and LSL-Pdx-1-Cre mice, two-step cross-mating was performed. The offspring were genotyped and automatically expressed as mean value ± SD.

Animal experiments
Five-week-old Pancreas6 mice were fed an AIN93M diet or an AIN93M diet supplemented with 200 p.p.m. sulindac throughout the experiment period (n = 20 mice per group, both genders, 10 mice per gender per group). The selection of 200 p.p.m. sulindac is based on the more appropriate conversion of drug doses from animal studies to humans (31). Sulindac was purchased from Sigma (St Louis, MO). The AIN93M diet was purchased from Research Diets (New Brunswick, NJ).

Tissue preparation and histopathology
The mice were killed by CO2 asphyxiation. Pancreas and other organs including liver, spleen, adrenals, kidney and lung were collected. The number and sizes of tumors were recorded, and three perpendicular diameter measurements were obtained for each tumor using calipers. Tumor volume was determined by the equation V = 4/3πr3, where r was the average tumor radius obtained from the three diameter measurements. The organs were fixed in 10% formalin for 24 h, routinely processed and embedded in paraffin. Serial paraffin sections (5 μm) were stained and stained with hematoxylin and eosin for histopathological examination. Additional tissue sections were obtained on poly-l-lysine-coated slides for immunohistochemical analyses. Immunohistochemistry

Pancreatic tumors were analyzed histopathologically according to the established criteria (33). The tumors were classified as PDAC with well, moderate, to poorly differentiated morphology. Chronic pancreatitis and precancerous lesions were also analyzed based on previously published criteria (31,33,34).

Cell culture, proliferation/colony formation assay
Cell lines were allowed to grow in a monolayer in Dulbecco’s modified Eagle’s medium (DMEM) culture medium with 10% fetal bovine serum. Cell proliferation and tumorigenicity were determined using the colony formation assay. The assays were used to find cell anchorage-independent growth or proliferation. Cells were mixed with sulindac or solvent (water) in 3 ml of culture medium and seeded into 6 well culture plates (each dose of agent in triplicate) with 200 cells per well. Cell proliferation was measured using a colony formation assay after 14 days. The percentage of inhibition of cell colony formation (only colonies with >50 cells were counted) was calculated as compared with the control.

AKR1B10 enzyme activity assay
Cells were lysed on ice in buffer containing 50 mM Tris-HCl (pH 7.0), 1% protease inhibitor (Sigma–Aldrich, St Louis, MO), 1% β-mercaptoethanol (Sigma–Aldrich), 10% RIPA buffer (Santa Cruz Biotechnology, Santa Cruz, CA) by vortexing briefly every 5 min over a 30 min period, followed by centrifugation at 10 000 r.p.m. at 4°C for 10 min. Soluble proteins in the supernatant (50 μg) were used for AKR1B10 activity assays in a reaction buffer containing 125 mM sodium phosphate (pH 7.0), 50 mM KCl and 20 mM DL-glyceraldehyde in a 35°C water bath for 10 min. The reaction is carried out using 0.3 mM reduced nicotinamide adenine dinucleotide phosphate as a substrate for AKR1B10 enzymatic activity. The change/decrease in optical density at 340 nm is monitored every minute for 10 min at room temperature in a SmartSpec Plus spectrophotometer (Bio-Rad, Hercules, CA), and the difference in absorbance from the start to the end of the assay (10 min period) was used to determine AKR1B10 activity.

Cell fractionation and western blot analysis
Whole cells were lysed in complete lysis buffers (Santa Cruz Biotechnology), containing a cocktail of phosphatase, protease and proteosome inhibitors followed by centrifugation at 900g at 4°C for 20 min. The supernatants were further centrifuged at 105 000g for 45 min. The cytosolic fractions (supernatants) were collected and kept at −80°C for further analysis. The pellets were washed and the membrane fractions were recovered by centrifugation at 105 000g for 90 min. The membrane pellets were resuspended in 0.25M sucrose solution with a cocktail of inhibitors and stored at −80°C. The protein concentrations were determined using a bicinchoninic acid protein assay kit (Pierce, Rockford, IL). Heat-denatured membrane and cytosolic fractions underwent sodium dodecyl sulfate–polyacrylamide gel (4–12% gradient) electrophoresis. The resolved proteins were transferred onto polyvinylidene fluoride membrane and probed with the primary antibody in blocking buffer at 4°C overnight. After washing with tris-buffer three times, the membrane was incubated with secondary antibody and visualized by enhanced chemiluminescence (Amersham Kit, Arlington Heights, IL). Specific protein band intensity was quantitated using Image-Pro Plus.

Active Kras pull-down assay
PO3 cells were cultured in DMEM medium supplemented with 10% fetal bovine serum for 18 h, treated with sulindac at doses of 0.1, 0.4 and 0.8 mM for 24 h in DMEM 10% fetal bovine serum. Active form of Kras level was determined by an active Ras pull-down assay kit (Pierce), according to the manufacturer’s instructions. Cell lysates (1 mg of total cell protein in each sample) were incubated with 10 μg Raf-1-RBD for 45 min at 4°C and centrifuged for 15 s at 14 000 g to pellet the agarose beads. After discarding the supernatant, agarose beads were washed three times with 500 μl of lysis buffer, and the pellets were resuspended in 2x Laemmli sample buffer containing dithiothreitol, boiled for 5 min and centrifuged at 14 000 g. The supernatant was collected and cellular proteins resolved by 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and analyzed by western blotting using a Kras-specific antibody.

Silencing AKR1B10 expression using a small interfering RNA approach
Sense (5′-AGAGGAUAUGUGAUUGUCAATT-3′) and anti-sense (5′-AGUACAAUACACAUUCCGUUG-3′) oligonucleotides were purchased from Tri-Gen (Austin, TX). AKR1B10 RNA oligonucleotides were annealed following the manufacturer’s protocol to generate the double-stranded siRNAs at the final concentration of 20 μM. Cells (2 × 104) were cultured in six well plastic plates in 1 ml of DMEM without serum and transfected at ~40% of confluence by adding 4 μl of oligofectamine (Invitrogen) and 10 μl of 20 μM stock siRNAs. Cells were incubated at 37°C for 4 h in a CO2 incubator, followed by the addition of growth medium containing 3× the normal concentration of serum. Cells were maintained in culture for an additional 32 h before western blot or enzyme activity analysis.

Statistical analysis
The data were expressed as mean ± SE. Statistical significance was tested using SigmaStat Version 1.01 software (Jandel Scientific, San Rafael, CA). Kaplan–Meier survival analysis with log-rank Test was performed. Tumor incidence was analyzed using the chi-square test. Normally distributed data were analyzed using Student’s t-test, and non-parametric data, such as tumor multiplicity, were analyzed using the Mann–Whitney rank sum test.
Results

Sulindac increases Pankras53 mice survival
Survival of Pankras53 mice was used as the endpoint marker to evaluate the chemopreventive effect of sulindac. Mice were fed either a standard AIN93M diet or an AIN93M diet with 200 p.p.m. sulindac supplementation (treatment group). At day 160, sixteen of 21 Pankras53 mice died of pancreatic carcinoma [survival rate: 23.8% (5 of 21 mice)]. In contrast, only 6 of 19 Pankras53 mice treated with sulindac died of pancreatic carcinoma [survival rate: 68.4% (13 of 19 mice)]. At this time point, the entire experiment was terminated. Figure 1A shows the Kaplan–Meier survival analysis with log-rank test: Pankras53 mice treated with 200 p.p.m. sulindac exhibited a significant increase in survival animal as compared with mice not given sulindac (P = 0.0005). Average survival in the group given the regular AIN93M diet was 143.7 ± 8.8 days (mean ± SE, 95% lower 126.4 days and 95% upper 160.9 days) and average survival in the AIN93 plus 200 p.p.m. sulindac group was appreciably increased to 168.1 ± 8.8 days (mean ± SE, 95% lower 150.8 days and 95% upper 183.5 days).

Body weight, food and water consumption were monitored throughout the duration of the experiment; there was no difference in food or water consumption between the mice in the AIN93M group and the mice in the AIN93M plus 200 p.p.m. sulindac group. Weekly body weight measurements showed no statistical difference between the average body weights of the mice in either group (Supplementary Figure 1s, available at Carcinogenesis Online). All key organs from the mice were collected, weighed and examined grossly. Figure 1B–D shows the distribution of organ weights for the pancreas, liver and spleen. Of 20 mice fed the normal AIN93M diet, four had increased pancreas and liver weights and three had significant increases in spleen weight. In the sulindac-treated Pankras53 mice, only two exhibited an increase in pancreas weight, whereas the weights of the liver and spleen were below average.

Histopathological analysis was performed for all of the key organs including gastrointestinal tract, kidney, spleen, liver, lung and heart. There was no pathologic alteration or toxicity identified in these organs, particularly no ulcers, erosions or fibrosis (the representative morphological characterization of gastrointestinal tract toxicity was shown in the Supplementary Figure 2s, available at Carcinogenesis Online).

Sulindac inhibits pancreatic carcinogenesis in Pankras53 mice
The analysis of tumor development in the pancreas and metastasis to other organs was performed per our established protocols (31). For each mouse, the entire pancreas and surrounding small bowel were processed for a paraffin slide with hematoxylin and eosin stain (Figure 2A–C). No pancreatic tumors were identified in the wild-type mice (Figure 2A). An enlarged pancreas was observed in Pankras53 mice with extensive pancreatitis (Figure 2B) or large pancreatic tumor (Figure 2C), and massive pancreatic tumors were identified in all four Pankras53 mice in the AIN93M group with increased pancreas weights and two sulindac-treated Pankras53 mice with increased pancreas weights. Using established criteria in the literature (33), histopathological analysis was performed and showed that the pancreatic tumors were PDAC with either well, moderately (Figure 2D), or poorly differentiated patterns (Figure 2E). Ninety percent (18 of 20) of Pankras53 mice fed the regular AIN93M diet developed PDACs, whereas only 56% (9 of 16) of sulindac-treated Pankras53 mice developed PDACs (Figure 2G; X² = 5.4, P < 0.05). In the AIN93M group, of the tumor-bearing Pankras53 mice, 17% (3 of 18) of the PDACs were well to moderately differentiated and 83% were aggressive, poorly differentiated carcinomas. In contrast, in the sulindac-treated mice, 56% (5 of 9) of the PDACs were well to moderately well-differentiated and only 44% (4 of 9) were poorly differentiated (X² = 4.21, P < 0.05).

Metastasis of the PDACs was most commonly identified in the liver (Figure 2F) and occasionally in the lymph nodes. Metastatic PDAC was found in the liver in all four Pankras53 mice with increased liver weights. One of the Pankras53 mice with liver metastasis also showed metastasis to the lymph node. In the sulindac-treated group, only one Pankras53 mouse had lymph node metastasis and no liver metastasis was seen. Due to the limited number of mice with metastases, the difference in metastasis between Pankras53 mice and Pankras53 mice treated with sulindac did not reach statistical significance (Figure 2H, X² = 0.96, P > 0.05). Of note, high-grade lymphomas in the spleen (graded according to established criteria (31) were observed in the three Pankras53 mice with increased spleen weights, whereas no lymphomas were observed in the sulindac-treated mice.

Sulindac inhibits Ki-67-labeled cell proliferation in Pankras53 mice but does not affect the expression levels of AKR1B10 and COX2
Ki-67-labeled cell proliferation was determined immunohistochemically. In Pankras53 mice fed the regular AIN93M diet, morphologically normal pancreatic acini showed occasional Ki-67 nuclear staining of proliferative cells (Figure 3A) and increased Ki-67 labeling was seen in acinar–ductual metaplasia in pancreatitis (Figure 3A), pancreatic intraepithelial neoplasia (PanIN lesions, Figure 3B) and PDAC (Figure 3C). In contrast, these lesions in sulindac-treated Pankras53 mice showed a marked decrease in cell proliferation (Figure 3D–F). In the Pankras53 mice without sulindac treatment, the proliferation index (percentage of Ki-67-positive cells in the total cells counted) was 56 ± 7.8% in PDACs, 30 ± 5.1% in PanIN lesions and 15 ± 3.3% in acinar–ductual metaplasia. A statistically significant reduction in Ki-67-labeled proliferation index was observed in these lesions in the sulindac-treatment mice (Figure 3G), and the proliferation index was 33 ± 7.2% in PDACs, 12 ± 2.3% in PanINs and 10 ± 2.3% in acinar–ductual metaplasia (Student’s t-test, P < 0.01).

Because COX2 and AKR1B10 are the major targets of sulindac (a competitive inhibitor of these two enzymes), the expression status of COX2 and AKR1B10 were analyzed immunohistochemically in the pancreas of Pankras53 mice with or without sulindac administration. As seen in Figure 3H, the expression of COX2 was markedly increased in pancreatitis-PanINs lesion and PDAC compared with morphologically normal pancreatic parenchyma in Pankras53 mice without sulindac treatment. Similar expression levels of COX2 in pancreatitis-PanINs lesion and PDAC were observed in Pankras53 mice treated with sulindac as compared with the Pankras53 mice (Figure 3H) not given sulindac. Similar to COX2, the expression of AKR1B10 was markedly increased in pancreatitis-PanINs lesion and PDAC compared with morphologically normal pancreatic parenchyma in Pankras53 mice (Figure 3I) and a similar expression level of AKR1B10 in pancreatitis-PanINs lesion and PDAC was observed in Pankras53 mice treated with sulindac (Figure 3J). Histogram analysis in Photoshop further demonstrated that the immunostaining intensity of both COX2 (Figure 3I) and AKR1B10 (Figure 3K) were no significantly different in pancreatic lesions in Pankras53 mice treated with or without sulindac (Student’s t-test, P > 0.05).

AKR1B10 activity and expression in mouse pancreatic carcinoma cells treated with sulindac in vitro
The P03 mouse pancreatic carcinoma cell line was derived from pancreatic PDACs in Pankras53 mice (C57B/6J background). P03 cells have been cultured in vitro for >2 years and >50 passages and have demonstrated their neoplastic features and epithelial origins with active mutant KrasG12D and p53R172 genes (Supplementary Figure 3s, available at Carcinogenesis Online). Colony formation assays showed a dose-dependent inhibition of anchorage-independent growth or proliferation with IC₅₀ 0.37 mM by sulindac.

To determine the effect of sulindac on AKR1B10 activity, oxidized reduced nicotinamide adenine dinucleotide phosphate was used as a monitor at 340 nm to measure AKR1B10 enzymatic activity in P03 pancreatic adenocarcinoma cell lysates treated with sulindac at doses of 0, 0.4, 0.8 and 1.6 μM (9). A significant inhibition of AKR1B10 enzymatic activity was observed at IC₅₀ 0.7 μM (Figure 4A). Further, western blot assay revealed that the expression of AKR1B10 showed no change in P03 cells treated with sulindac compared with non-treated cells after normalization by β-actin (the protein loading control) (Figure 4B and C).

Downloaded from https://academic.oup.com/carcin/article-abstract/34/9/2090/2463398 by guest on 10 February 2019
Sulindac and pancreatic carcinogenesis

Kras is an oncogenic protein that requires prenylation for its membrane localization and activity. Like other small guanosine triphosphatases, Kras regulates molecular events by cycling between an inactive guanosine diphosphate-bound form and an active guanosine triphosphate-bound form. The basis of its active state (guanosine triphosphate-bound) is a membrane-bound Kras protein or the prenylated form of the Kras protein. Detection of activated Kras protein and cell membrane-bound Kras serves as the best biomarker for determining protein prenylation status (31). Kras pull-down assay showed that the active form of Kras protein was significantly decreased in mouse P03 pancreatic carcinoma.

Inhibition of protein prenylation (Kras and human DNA-J homolog nuclear chaperone proteins) and Kras downstream signals in pancreatic carcinomas treated with sulindac in vitro and in vivo

Kras pull-down assay showed that the active form of Kras protein was significantly decreased in mouse P03 pancreatic carcinoma treated with sulindac in vitro and in vivo.
cells treated with 0.4–1.6 mM sulindac as compared with total Kras protein (Figure 4B). In addition, membrane-bound Kras proteins were quantitatively analyzed using the western blot approach. Flotillin-2 membrane protein was used as a membrane protein loading control; for the extracted membrane proteins, western blotting showed a marked decrease in membrane-bound Kras protein in P03 cells treated with sulindac (Figure 4B). Human DNA-J homolog (HDJ2) protein, a co-chaperone containing a cysteine-rich zinc finger domain and a mitochondrial protein, is a heat-induced and farnesylated protein that is involved in mitochondrial protein import in mammals. HDJ2 is commonly used as another biomarker for the evaluation of protein prenylation (31). Sulindac-treated P03 cells showed a markedly increased level of non-farnesylated HDJ2 protein (Figure 4B). A quantitative densitometer analysis demonstrated that with 0.4–1.6 sulindac treatment, the active-form and membrane-bound prenylated Kras protein was significantly decreased and the non-farnesylated HDJ2 protein was significantly increased (histogram in Figure 4C; \( P < 0.01 \)).

The effect of sulindac on the inhibition of Kras-mediated downstream signals, including phosphorylated c-raf, MEK1/2 and ERK1/2 proteins, was determined using the western blot approach with \( \beta \)-actin as a protein loading control. There was a marked decrease in all of these signals (Figure 4D). Quantitative densitometer analysis showed that with 0.4–1.6 sulindac treatment, Kras downstream-phosphorylated c-raf, MEK1/2 and ERK1/2 proteins were significantly reduced in P03 cells (histogram in Figure 4E, \( P < 0.01 \)).
To further determine the effect of AKR1B10 inhibition on modulating Kras-mediated downstream signals including c-Raf, MEK1/2 and Erk1/2, particularly phosphorylated ERK1/2 as a key mutant Kras-activated signal, immunohistochemical analysis for these signals was performed for the pancreas of Pan\textsuperscript{Kras/p53} mice treated with or without sulindac. Figure 5A shows the intense positive staining of phosphorylated ERK1/2 in acinar-ductal metaplasia in pancreatitis, PanINs and PDAC in Pan\textsuperscript{Kras/p53} mice receiving only the regular AIN93M diet. In sulindac-treated Pan\textsuperscript{Kras/p53} mice, only low-intensity staining of phosphorylated ERK1/2 was seen in these types of lesions (Figure 5B). Immunohistochemical staining intensity of phosphorylated ERK1/2 was quantitatively analyzed for at least 10 snapped images (under ×20 objective lens) of each lesion per pancreas (n = 3 mice/group). Histogram analysis in Photoshop showed that phosphorylated ERK1/2 was significantly decreased in pancreatic lesions in sulindac-treated Pan\textsuperscript{Kras/p53} mice (Figure 5C, Student’s t-test, P < 0.05). Other mutant Kras-activated signals including phosphorylated c-Raf and MEK1/2 were further analyzed immunohistochemically. The results showed intense positive staining of phosphorylated c-Raf (Figure 5D) and phosphorylated MEK1/2 (Figure 5F) in PanINs and PDAC in Pan\textsuperscript{Kras/p53} mice receiving only the regular AIN93M diet. In sulindac-treated Pan\textsuperscript{Kras/p53} mice, only low-intensity staining of phosphorylated c-Raf (Figure 5D) and phosphorylated MEK1/2 (Figure 5F) was seen in these types of lesions. Histogram analysis in Photoshop further demonstrated that the immunostaining intensity of both phosphorylated c-Raf and MEK1/2 was significantly reduced, and phosphorylated-ERK1/2 proteins were significantly lower in P03 cells with siRNAAKR1B10 expression was significantly lower as compared with the scrambled siRNA control P03 cell line with β-actin as a protein loading control (Figure 6B, upper graph).

P03 cells with siRNA silencing of AKR1B10 expression showed a significant decrease in active form Kras protein as detected using Kras pull-down assay (Figure 6B). Kras downstream signals were also evaluated and showed that the phosphorylation of ERK1/2 and MEK1/2 was markedly downregulated in P03 cells with AKR1B10 silencing (Figure 6B). To determine whether AKR1B10 is involved in the process of protein prenylation, farnesylated and non-farnesylated HDJ2 proteins were analyzed using a western blot approach and showed that an increased level of non-farnesylated HDJ2 protein was observed in siRNA AKR1B10 silenced cells as compared with scrambled siRNA control cells (Figure 6B, upper band). Quantitative densitometer analysis demonstrated that AKR1B10, the active form of Kras and Kras downstream phosphorylated-MEK1/2 and ERK1/2 proteins were significantly reduced, and non-farnesylated HDJ2 protein was significantly increased in P03 cells with siRNA-silencing AKR1B10 (histogram in Figure 6C, P < 0.05).

Discussion

Pancreatic cancer is one of the most lethal malignancies, and chronic pancreatitis is a well-known risk factor for the development of pancreatic carcinomas. Multiple genetic alterations including kras and p53 gene mutations have been identified in pancreatic carcinogenesis (36). The reproducibility of pancreatic carcinogenesis in Pan\textsuperscript{Kras/p53} mice allows us to explore the chemopreventive effect of sulindac on the development of pancreatic cancer and other molecular targets (31). NSAIDs such as sulindac are the most commonly used drugs for inflammation and pain worldwide and intriguingly, studies have also shown that NSAIDs and coxibs are the most promising...
agents in development today for the cancer chemoprevention (5,37).

We are the first to report on the significant chemopreventive effects of sulindac on pancreatic carcinogenesis in Pan\textsuperscript{Kras/p53} mice and to show that the use of sulindac led to significant increases in animal survival from pancreatic carcinoma development and decreases in pancreatic cancer incidence and metastasis.

To rule out the effects of sulindac on Pdx-cre, the activation of transgenic mutant \textit{Kras}\textsuperscript{G12D} and \textit{p53}\textsuperscript{R172H} genes by Pdx-1-cre recombination was analyzed in pancreatic tumors using specific PCR and p53 immunohistochemistry approaches. There were no differences in the recombinant \textit{Kras}\textsuperscript{G12D} and \textit{p53}\textsuperscript{R172H} genes in pancreatic tumors, and p53 immunostaining revealed an accumulation of mutant p53...
protein in early acinar-ductal metaplasia. PanNs and PDAC in Pan\(^{\text{Kras/p53}}\) mice fed either AIN93M diet or diet containing 200 p.p.m. sulindac (Supplementary Figure 4s, available at Carcinogenesis Online).

One crucial question in our experiments was whether the 200 p.p.m. dose of sulindac could be comparable with the human dosage. In general, animal doses cannot be extrapolated to a human equivalent dose by simple conversion based on body weight due to significant differences in multiple aspects, including metabolic rates (26). The most appropriate conversion tool for comparison of drug doses from animal studies (specifically rodents) to humans is the bovine serum albumin normalisation method, as recommended by the Food and Drug Administration (32). To find the human equivalent dose, the formula human equivalent dose (mg/kg) = animal dose (mg/kg) × animal Km/hum Km (the animal Km is 3 in mice and the human Km is 37) is used. In humans, the safe long-term dose of sulindac as an analgesic and anti-inflammatory is 400 mg daily (200 mg, twice per day). In a hypothetical 75 kg patient, a 400 mg/day dose works out to be 5.3 mg/kg. Using that per kilogram dose, the equivalent animal dose would be 65.8 mg/kg per mouse per day with a daily total dose of 1.65 mg in an average 25 g mouse. Further translating this dose into an actual diet concentration: the average mouse consumes 2 g (0.002 kg) of food per day, and the concentration of the sulindac in the diet should be 1.65 mg/0.002 kg food. This would be equal to 823 mg sulindac/kg food, which is equal to 823 p.p.m. of sulindac in the mouse diet. Our mice were only receiving sulindac doses of 200 p.p.m., four times below the 823 p.p.m. ‘maximum’ dose of sulindac based on human clinical dosage guidelines.

Sulindac is a NSAID of the indene acetic acid class. The absorption of sulindac is rapid when given orally. Based on Food and Drug Administration pharmacokinetic data, sulindac and its sulfone and sulfide metabolites are predominantly bound to plasma albumin after absorption. Plasma protein binding measured over a concentration range was constant (0.5–2.0 µg/ml). Biochemical and pharmacological evidence indicates that the activity of sulindac resides in its sulfide metabolite for COX2 inhibition. But, the active sulfide metabolite only accounts for <6% of the total intestinal exposure to sulindac and its metabolites. Recirculation of the parent drug sulindac and its sulfone metabolite have anticancer activity beyond COX2 inhibition. Obviously, the next question would be whether targeting Kras protein prenylation by sulindac affects Kras activity in mutant Kras-initiated pancreatic carcinogenesis in Pan\(^{\text{Kras/p53}}\) mice. In sulindac-treated Pan\(^{\text{Kras/p53}}\) mice, we demonstrated that Ki-67-labeled cell proliferation and phosphorylated ERK1/2 (downstream of Kras gene) were both significantly decreased in PanIN lesions and pancreatic carcinomas. We further identified that murine pancreatic carcinoma cells P03 either treated with sulindac or with AKR1B10 silenced by siRNA showed significant reductions in the Kras downstream phosphorylated c-ras, MEK1/2 and ERK1/2 proteins. These results indicate that the inhibition or knockdown of AKR1B10 resulted in the suppression of Kras protein prenylation and Kras downstream signaling activities, leading to the inhibition of pancreatic carcinogenesis.

In addition to metabolizing lipids/isoprenoids, AKR1B10 is involved in metabolizing active carbonyls and in regulating retinal homeostasis. For carbonyl metabolism in AKR1B10-overexpressed neoplastic cells, the conversion of highly reactive aldehyde and ketone groups into hydroxy groups by AKR1B10 prevents the cell from undergoing carbonyl-induced apoptosis. There are numerous reports indicating that the sulindac is a strong apoptosis inducer probably by inhibiting AKR1B10. AKR1B10 is also an efficient retinal reductase; the conversion of retinal to retinol by AKR1B10 results in the suppression of retinal to retinoic acid conversion, which is important because retinoic acid is a major active antineoplastic metabolite. Additional study is needed to further address the role of these metabolic fates in carcinogenesis.

In summary, we have demonstrated that sulindac is a strong agent for inhibiting pancreatic carcinogenesis in Pan\(^{\text{Kras/p53}}\) mice. Mechanistically, the inhibition of AKR1B10 by sulindac is paralleled with siRNA silencing of AKR1B10 expression, showing a significant decrease in Kras and HDJ2 protein prenylation, and inhibition of KRAS downstream effectors. Taken together, these findings strongly suggest that sulindac has extremely high potential as a chemopreventive agent for pancreatic cancer and targeting of AKR1B10 by sulindac appears to be one of the key mechanisms for the inhibition of protein prenylation and carcinogenesis.

**Supplementary material**

Supplementary Figures 1–4 can be found at http://carcin.oxfordjournals.org/

**Funding**

National Institutes of Health R01 grant (CA164041).

Conflict of Interest Statement: None declared.

**References**


Downloaded from https://academic.oup.com/carcin/article-abstract/34/9/2090/2463398 by guest on 10 February 2019
metabolizing enzymes in human colon cancer cells. Ciolino, H.P.
Cancer Cell 11, 185–195.
10. Chung, Y.T. et al. (2012) Overexpression and oncogenic function of aldo-
keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod.
Pathol., 25, 758–766.
aldo-ketoreductase1-B10 gene in primary malignant liver tumours. J.
Hepatol., 52, 220–227.
12. Cao, D. et al. (2011) Role of human aldo-keto-reductase1-B10 in the
promotes a Th2 bias and reverses paralysis in central nervous system auto-
aldo reductase are efficient retinal reductases: consequences for retinoid
16. Grippo, P.J. et al. (2005) Modeling pancreatic cancer in animals to address
bbling! Cancer Cell, 5, 7–11.
18. Jackson, E.L. et al. (2001) Analysis of lung tumor initiation and progress-
ion using conditional expression of oncogenic K-ras. Genes Dev., 15,
3243–3248.
promote chromosomal instability and widely metastatic pancreatic ductal
adenocarcinoma in mice. Cancer Cell, 7, 469–483.
increases survival in LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx1-Cre mice. Mol.
Carcinog., [Epub ahead of print].
22. Reagan-Shaw, S. et al. (2008) Dose translation from animal to human stud-
23. Harbin, R.H. et al. (2006) Pathology of genetically engineered mouse mod-
els of pancreatic exocrine cancer: consensus report and recommendations.
24. Bai, H. et al. (2011) Inhibition of chronic pancreatitis and pancreatic
intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D-Pdx1-Cre mice.
25. Seri, D.L. et al. (2002) Inhibition of chronic ulcerative colitis-associated colo-
rectal adenocarcinoma development in a murine model by N-acetylcysteine.
Carcinogenesis, 23, 993–1001.
smoking and heavy alcohol consumption in pancreatic cancer. Mol.
Carcinog., 51, 40–52.
27. Fischer, S.M. et al. (2011) Coxibs and other nonsteroidal anti-inflammato-
(Phila.), 4, 1728–1735.
28. Endo, S. et al. (2011) Roles of rat and human aldo-keto reductases in
metabolism of farnesol and geranylgeraniol. Chem. Biol. Interact., 191,
261–268.

Received December 10, 2012; revised May 9, 2013; accepted May 13, 2013