A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation

Sardar Faisal Mahmood1,2, Nadège Gruel2,3, Elodie Chapeaublanc2,3, Aurianne Lescure1,4, Thouis Jones2,4, Fabien Reyal1,3,2,4, Anne Vincent-Salomon2,6,7, Virginie Raynal2,4, Gaëlle Pierron2,3, Franck Perez1,2,4, Jacques Camonis4,2,4, Élaine Del Nery1,2, Olivier Delattre4,7, François Radový1,2 and Isabelle Bernard-Pierrot1,2,8

1-CNRS, UMR 144, 2Centre de Recherche, 3Translational Research Department, 4Biophenics Platform, Saint-Louis Hospital, 5Surgery Department, 6Anatomopathology Department and 7INSERM, U830, Institut Curie, 26 rue d’Ulm, 75248 Cedex 05, Paris, France

*To whom correspondence should be addressed. Tel: +33 1 42 34 63 40; Fax: +33 1 42 34 63 49; Email: ibernard@curie.fr

RNA interference has boosted the field of functional genomics, by making it possible to carry out ‘loss-of-function’ screens in cultured cells. Here, we performed a small interfering RNA screening, in three breast cancer cell lines, for 101 candidate driver genes over-expressed in amplified breast tumors and belonging to eight amplicons on chromosomes 8q and 17q, investigating their role in cell survival/proliferation. This screening identified eight driver genes that were amplified, over-expressed and critical for breast tumor cell proliferation or survival. They included the well-described oncogenic driver genes for the 17q12 amplicon, ERBB2 and GRB7. Four of six other candidate driver genes—RAD21 and EIF3H, both on chromosome 8q23, CHRAC1 on chromosome 8q24.3 and TANC2 on chromosome 17q23—were confirmed to be driver genes regulating the proliferation/survival of clonogenic breast cancer cells presenting an amplification of the corresponding region. Indeed, knockdown of the expression of these genes decreased cell viability, through both cell cycle arrest and apoptosis induction, and inhibited the formation of colonies in anchorage-independent conditions, in soft agar. Strategies for inhibiting the expression of these genes or the function of the proteins they encode are therefore of potential value for the treatment of breast cancers presenting amplifications of the corresponding genomic region.

Introduction

Identification of oncogene dependence, in which tumor cells become overly dependent on an activated oncogene for their proliferation and survival, could provide new targets for treatment (1). Gene amplification, leading to overexpression, is an important mechanism of oncogene activation in human solid cancers, including breast cancer (2–4). However, many passenger genes are amplified together with the tumor-promoting genes and functional studies are required to identify driver genes. In breast cancer, the major recurrent amplicons include 8p11-12, 8q24 (MYC), 11q13 (CCND1), 17q12 (ERBB2/HER-2) and 20q13 (5). The 17q12 amplicon has been extensively characterized and contains the ERBB2 gene, which provides one of the best examples of oncogene dependence and therapeutic efficacy (6). Two other genes within the 17q12 amplicon, GRB7 and STARD1, have also been shown to play a causal role in tumor development (7). Several recent studies have also identified key driver genes of the 8p11-12 amplicon, including PPAPDC1B and WHSC1L1, which present enzymatic activity and could, therefore, serve as potential therapeutic targets (8–10).

In this study, we aimed to identify new driver genes/potential therapeutic targets within the most frequent recurrent amplicons in human breast cancer, by following the same strategy we used to identify PPAPDC1B and WHSC1L1 as driver genes of the 8p11-12 amplicon, but applied at a larger scale (8). This approach involved the identification of amplified and overexpressed genes within recurrent regions of amplification, together with a high-throughput (HT) small interfering RNA (siRNA) screen for identifying genes for which silencing results in a decrease in cell viability. We focused on two chromosomes presenting regions frequently amplified in breast cancer: chromosomes 8 and 17. We defined eight recurrent minimal regions of amplification encompassing 101 genes over-expressed with respect to non-amplified tumors or normal samples. We then screened these regions, with a cell-based functional assay, in three breast cancer cell lines. We identified eight driver genes within five amplicons as critical for breast tumor cell proliferation or survival when amplified and over-expressed. We studied six of these genes in more detail (the other two being the well-known drivers of the 17q12 amplicon, ERBB2 and GRB7). We showed that one gene was a false-positive driver gene coming out from the screen and one gene was an essential gene required for cell survival independently of its expression level. We demonstrated that four genes induced cell apoptosis and/or cell cycle arrest following the knockdown of their expression in a cell line in which they were amplified and over-expressed. Finally, we demonstrated that these genes were also critical for cell transformation, by assessing cell-attachment-independent growth.

Materials and methods

Breast tumor samples and cell lines

We used frozen samples of 185 primary T1T2 infiltrating ductal breast carcinomas and 11 normal breast tissue samples. Normal breast samples were obtained during reduction mammoplasty. Samples of tumor or normal breast tissues were flash frozen after surgery and stored at –80°C. All tumor samples contained >50% cancer cells and the normal samples contained >50% breast epithelial cells, as evaluated by anatomopathological examination. This study was approved by the institutional review board of Institut Curie. In total, 23 cell lines derived from sporadic ductal breast carcinomas were obtained from the American Type Culture Collection (184B5, BT474, BT549, CAMA1, HCC1937, H5787, MCF 10A, MCF7, MDA-MB-134VI, MDA-MB-175VI, MDA-MB-231, MDA-MB-361, MDA-MB-415, MDA-MB-435S, MDA-MB-436, MDA-MB-453, MDA-MB-468, SKBR3, T47D, ZR-75-1, ZR-75-30, SUM149 and HCC1500).

DNA and RNA extraction from breast tumor samples and cell lines

DNA and RNA were extracted from frozen samples of breast carcinomas and normal breast by the cesium chloride method (11,12). RNA was isolated from cell lines with RNeasy mini kits (Qiagen, Courtaboeuf, France), whereas DNA was extracted with a conventional phenol-chloroform procedure.

Comparative genomic hybridization array

The 3.4K CIT (Carte d’Identité des Tumeurs program of the Ligue Nationale Contre le Cancer) BAC array and the experimental procedures for spotting, hybridization and washing were as described previously (13).

Data analysis was based on the normalized ratios of Cy5/Cy3 signals observed for each BAC clone that previously passed the flag assessment procedure. For autosomal chromosomes, the loss of a given locus was defined by a ratio ≤0.8, a gain was defined by a ratio ≥1.2 and <2.0 and an amplicon was defined by a ratio ≥2.0. Whenever a statistical hypothesis concerning the levels of the ratios was tested, the hypothesis was considered to be rejected for P values ≤0.05. Whenever P values were adjusted for multiple hypothesis
testing, the false discovery rate using the Benjamini–Hochberg procedure was applied (R-Multitest package) (14). For analysis of amplicons, the identification criteria were BAC loci consisting of at least one clone with a ratio ≥2.0 in one tumor. The minimal region of amplification was then determined. The comparative genomic hybridization (CGH) data for chromosomes 8 and 17 and tumor expression datasets used in this study are available upon demand.

For MCF7, SKBR3 and HCC1937, 20 000 siRNA-transfected cells in Dulbecco’s modified Eagle’s medium or RPMI 1640 supplemented with 10% fetal calf serum and 0.3% agar were added to triplicate wells containing medium and 0.8% agar, in 12-well plates. The plates were incubated for 14–21 days and colonies with diameters >50 μm under a phase-contrast microscope equipped with a measuring grid were scored as positive.

Flow cytometry analysis of the cell cycle and apoptosis

MCF7 and HCC1937 cells were transfected with 20 nmol/l siRNA against target genes in six-well plates. The medium from each well was transferred to a cold tube 72 h after transfection. Cells were released from the wells by trypsin digestion and added to the corresponding collection tubes. Cells were fixed in 70% cold ethanol, treated with RNase A and stained with propidium iodide (PI), by incubation with a 200 μl Hanks’ balanced salt solution/PI suspension [final concentration of PI: 20 μg/ml; RNase A (Cl: 10 μg/ml) (Roche® already present)]. DNA content was analyzed in a FACS Calibur system. Data were collected and processed with Modfit (cell cycle) and FlowJo (apoptosis) software.

Statistical analysis

For each gene in the commonly amplified regions, the RNA levels of the amplified samples, as determined with Affymetrix arrays, were compared with those of tumor samples with no change in DNA copy number for the region considered and with those of normal samples, using the Wilcoxon rank sum tests.

All functional experiments were carried out in triplicate and repeated two or three times. Data are expressed as means ± SD. The data were subjected to statistical analysis by Student’s t-test. The control siRNA group was used as the reference. *P* values <0.05 were considered significant.

Results

Identification of candidate driver genes on chromosomes 8 and 17 in human breast cancer

Regions of recurrent amplification in human breast tumors were identified by assessing copy number alterations by CGH on DNA arrays (array-CGH hybridization) in 185 ductal breast carcinomas and 23 breast tumor-derived cell lines. Amplified regions were defined as regions with an array-CGH log2 signal ≥2.0 (more than four copies). We focused on two frequently altered chromosome arms, chromosomes 8q and 17q that were amplified in, respectively, 11% (21/185) and 14% (26/185) of breast tumors in our data set. For each chromosome arm, we defined the minimal recurrent regions of amplification and determined the genes included in these regions, according to the Build NCBI 136 Human (Hg18) Reference Sequence from NCBI (March 2006), as illustrated in Figure 1A for amplicon A5 on chromosome 17 (17q25). In total, 10 recurrent amplicons were identified: five on chromosome 8q and five on chromosome 17q, corresponding to 143 amplified genes (Table I). For two amplicons, none of the 23 cell lines analyzed by CGH displayed amplification, so no further cell-based functional studies of these amplified regions was possible. We, therefore, studied eight amplicons (four on chromosome 8q and four on chromosome 17q) containing, in total, 117 amplified genes (Table I).
Fig. 1. Strategy for candidate driver gene identification in breast carcinomas. Example of the recurrent 17q23 amplicon. (A) Genetic aberrations on chromosome 17q23 in breast cancers. CGH array of chromosome 17q23 in breast cancer samples (upper panel) and cell lines (lower panel). Cell lines are ordered as follow: MDA-MB-436, MDA-MB-134, MDA-MB-415, 184B5, BT549, CAMA1, MDA-MB-468, T47D, MDA-MB-175, BT474, Hs578T, MDA-MB-435, HCC1500, MDA-MB-231, MCF10A, ZR75.3, HCC1937, MDA-MB-453, SKBR3, SUM149, ZR-75-1, MDA-MB-361 and MCF7. Each column represents a clone on the array. Clones are ordered according to genome position, based on the NCBI human genome reference sequence 36, May 2006 from centromere (left) to telomere.
amplification. Based on this hypothesis, we derived a short list of candidate driver genes from the list of amplified genes, by comparing levels of gene expression in tumors with and without amplification and in normal breast tissue, as illustrated for ampiclon A5 on chromosome 17q23 (Figure 1B). RNA levels were analyzed with Affymetrix DNA microarrays in 167 of the 185 breast carcinomas and in 11 normal breast samples (Supplementary Table 1, available at Carcinogenesis Online). The 97 genes, significantly more strongly expressed in tumors with amplification than in tumors without amplification or normal samples (Wilcoxon rank sum test, P < 0.05), were considered as candidate driver genes for systematic screening in a loss-of-function test (Table I and Figure 1B; Supplementary Table 1, available at Carcinogenesis Online). Genes within the studied amplicons for which no probe set was available on Affymetrix U133 arrays (right). Log2 DNA copy numbers are shown on a color scale. White indicates an absence of data. Amplified regions were defined by an array-CGH log2 signal > 2.0 (more than four copies). A commonly amplified region, which extends from 57.82 to 59.11 Mb, was present in seven of the 185 infiltrating ductal carcinoma (3.8%) and two of the 23 breast cancer cell lines (8.7%) studied. Known genes present in the common region of amplification, based on array-CGH data, are shown in Figure 1B (Affymetrix signals of <4 could be considered to correspond to noise). Effects, particularly if the hit gene was expressed at a very low level (Affymetrix signals of <4 could be considered to correspond to noise).

HT siRNA screening of the identified candidate driver genes

For the identification of driver genes inducing oncogene dependence when amplified in breast tumors, from the 101 candidates, we carried out loss-of-function screening with a HT siRNA platform. We selected three cell lines—SKBR3, HCC1937 and MCF7—for studies of the role of genes in at least one amplified and one non-amplified cell line per amplicon (Table I). Robust HT siRNA assays were developed in which cells of the three cell lines were very efficiently transfected with siRNAs using lipid transfection reagents, in 96-well plates (see Materials and methods). Each gene was targeted by four independent siRNAs, resulting in a library of 404 (101 × 4) siRNAs. Positive (KIF11 siRNA) and negative (GL2 siRNA) controls were also added. The effect of silencing on cell growth and cell viability was addressed by high-content immuno-fluorescence imaging, after staining with a specific antibody against Ki67 (for cell growth) and DAPI (for cell viability) (Figure 2A). We performed three independent HT RNAi screens for each cell line, to obtain biological replicates. Data were normalized by Z-score analysis (see Materials and methods), and the functional effects of each siRNA were considered significant if the median Z-score was <-2 or >2 (corresponding to Z-score > 2 in at least two of the three experiments) (Figure 2B). Genes were identified as ‘oncogenic hits’ if at least two of the four siRNAs targeting them decreased significantly cell viability and/or cell proliferation. Five hits were identified in HCC1937, 29 in MCF7 and 11 in SKBR3. In total, 33 different ‘oncogenic hits’ were identified. Most were identified in only one cell line (25 of 33), four were common to two cell lines and four were common to all three cell lines (Table II). As expected, hits included several already well-known oncogenes/driver genes in breast carcinoma: ERBB2, GRB7 and MYC, confirming the efficacy of the screening procedure (Table II). Surprisingly, some genes (four in SKBR3 cells and 10 in MCF7) increased significantly cell viability or cell growth when silenced (Supplementary Table 2, available at Carcinogenesis Online). As an intermediate step in the validation of oncogenic hits, we determined the copy number of these genes and compared their levels of expression in cell lines in which they were identified as hits with those in normal breast cell lines (Figure 2C; Supplementary Table 3, available at Carcinogenesis Online). Indeed, if a hit was not overexpressed, the observed effect of its knockdown on cell growth or proliferation was considered to indicate a possible role of a gene essential for the survival of all cells, rather than that of an oncogenic driver gene. Alternatively, this effect might be due to off-target effects, particularly if the hit gene was expressed at a very low level (Affymetrix signals of <4 could be considered to correspond to noise).

Hits were, therefore, validated as oncogenic driver genes if they were more strongly expressed in the breast tumor cell lines in which they are hits than in normal breast cell lines and if this overexpression was linked to DNA amplification. In total, five hits in SKBR3, one hit in HCC1937 and three hits in MCF7 cells were validated on the basis of expression data analysis (Figure 2C and Table II). Finally, as RAD21 was a prevalidated hit in two cell lines, all these criteria resulted in the validation of eight different genes within five different recurrent amplified regions, the overexpression of which led to oncogene dependence in breast carcinomas (Table II). ERBB2 and GRB7 have already been identified as driver genes of the chromosome 17q12 amplicon (7), so no further validation of these hits was necessary. We then carried out a functional validation of the role of the six other previously validated amplicon genes and compared their levels of expression data analysis (Figure 2C and Table II). For each gene, we carried out reverse transcription–quantitative PCR to check that its expression levels were consistent with the DNA copy number in these cell lines. This was found to be the case for all genes except C8orf83, which was expressed very weakly in HCC1937 cell lines (4-fold less) than in MCF7 cells, despite the similarity of the log2(DNA copy number) values for these two cell lines (0.85 versus 1) (Figure 3A). We validated these five driver gene hits further, by resynthesizing two siRNAs/gene and confirming, by reverse transcription–quantitative PCR, that transfection with each specific siRNA markedly decreased messenger RNA (mRNA) levels (75–85% inhibition; Supplementary Figure 1, available at Carcinogenesis Online). The silencing of a single gene had no significant effect on the expression levels of the other four genes (data not shown). Then, using different readouts from those used for the HT screening (cell counts and cell cycle analysis by fluorescence-activated cell sorting after PI incorporation here, versus DAPI and Ki67 labeling for the screen), we demonstrated that the specific knockdown of CHRA1 expression with two different siRNAs yielded significantly fewer viable HCC1937 cells than were obtained with the control siRNA (50–60%) (Figure 3B), whereas this knockdown had a very limited effect on MCF7 cells, in which this gene was not amplified and no more strongly expressed than in normal cells (Supplementary Table 3, available at Carcinogenesis Online). These results suggest that the effects observed following transfection with a specific siRNA resulted from specific gene silencing rather than an off-target effect and that CHRA1 is not an essential gene. The same conclusion could be drawn for TANC2 knockdown, which induced a significant decrease in cell viability (50–60%) in MCF7 cells, in which it was amplified and overexpressed, whereas it had only a limited effect on HCC1937 cells (Figure 3B), in which it was not amplified or overexpressed (Supplementary Table 3, available at Carcinogenesis Online). Knockdown of the expression of EIF3H and RAD21 decreased viability in both cell lines (50–70%) (Figure 3B), consistent with the level of expression and DNA amplification/gain for these genes in these cell lines (Figure 3A; Supplementary Table 3, available at Carcinogenesis Online). EIF3H and RAD21 belong to the same amplicon, 8q23-q24, but no additional or synergistic effect.
Table I. Candidate driver genes within the minimal recurrent regions of amplification on chromosomes 8q and 17q in breast ductal carcinomas for screening in a HT cell-based functional assay

<table>
<thead>
<tr>
<th>Minimal region of amplification</th>
<th>Amplicon</th>
<th>start_pos (Mb)</th>
<th>end_pos (Mb)</th>
<th>Amplified tumors (%)</th>
<th>Amplified cell lines (%)</th>
<th>Genes in amplicon</th>
<th>No. of genes</th>
<th>Candidate driver genes</th>
<th>No. of genes screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 8q</td>
<td>A1/8q21</td>
<td>91.06</td>
<td>95.49</td>
<td>6/185 (3.2%)</td>
<td>1/23 (4.3%)</td>
<td>SKBR3 C8orf83, CALB1, CDH17, DECR1, EFCBP1, FAM92A1, GEM, LRRC69, NBN, NECAB1, OSGIN2, PPM2C, RAD54B, RBM12B, RUNX1T1, SLC26A7, TMEM55A, TMEM64, TMEM67</td>
<td>19</td>
<td>C8orf83, CALB1, CDH17, DECR1, EFCBP1, GEM, NBN, NECAB1, OSGIN2, TMEM55A, TMEM64</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>A2/8q22</td>
<td>97.06</td>
<td>99.73</td>
<td>7/185 (3.8%)</td>
<td>0</td>
<td>C8orf47, GDF6, HRSP12, KCNS2, LAPTMA4B, MATN2, MTDH, MTERF2D1, NPA2, PGCP, POP1, PTDSS1, RPL30, SDC2, STK3, TSPYL5, UQCRB C8orf85, COLEC10, EIF3H, EXT1, MED39, RAD21, SAMD12, SLC30A8, TNFRSF11B, TRPS1, UTP23</td>
<td>17</td>
<td>No amplified cell line for screening</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A3/8q23-q24</td>
<td>116.49</td>
<td>120.23</td>
<td>7/185 (3.8%)</td>
<td>2/23 (8.7%)</td>
<td>SKBR3, HCC1937 C8orf85, COLEC10, EIF3H, EXT1, MED39, RAD21, SAMD12, SLC30A8, TNFRSF11B, TRPS1, UTP23</td>
<td>11</td>
<td>UTP23, COLEC10, EIF3H, EXT1, RAD21, SAMD12, TRAPPC9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>A4/8q24.21</td>
<td>127.79</td>
<td>128.80</td>
<td>8/185 (4.3%)</td>
<td>2/23 (8.7%)</td>
<td>SKBR3, HCC1937 MYC, POU5F1</td>
<td>2</td>
<td>MYC, POU5F1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A5/8q24.23, 8q24.3</td>
<td>138.57</td>
<td>142.46</td>
<td>9/185 (4.9%)</td>
<td>1/23 (4.3%)</td>
<td>HCC1937 C8ORF17, C8orf60, C8ORFK32, CHRA1, COL22A1, DENND3, EIF2C2, NIBP, GRF20, KCNK9, LOC286109, PTK2, SLC45A4, TRAPPC9</td>
<td>14</td>
<td>C8ORF17, CHRA1, COL22A1, DENND3, EIF2C2, KCNK9, NIBP, PTK2, SLC45A4, TRAPPC9</td>
<td>12</td>
</tr>
</tbody>
</table>
Table I. Continued

Minimal region of amplification

<table>
<thead>
<tr>
<th>Amplicon</th>
<th>start_pos (Mb)</th>
<th>end_pos (Mb)</th>
<th>Amplified tumors (%)</th>
<th>Amplified cell lines (%)</th>
<th>Genes in amplicon</th>
<th>No. of genes</th>
<th>Candidate driver genes</th>
<th>No. of genes screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 17q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2/17q12</td>
<td>34.43</td>
<td>35.24</td>
<td>17/185 (9.2%)</td>
<td>4/23 (17.4%)</td>
<td>MDA-MB-361, MDA-MB-453, BT474, SKBR3, ARL5C, C17orf37, CACNB1, CDK12, ERBB2, FBXL20, GRB7, IKZF3, NEUROD2, PERLD1, PLXDC1, PNMT, PPARBP, PPP1R9B, PPP1R9B9, RP1L9, STAC2, STARD3, TCAP</td>
<td>19</td>
<td>ARL5C, C17orf37, CACNB1, CRKRS, ERBB2, FBXL20, GRB7, IKZF3, NEUROD2, PERLD1, PNMT, PPARBP, PPP1R9B, PPP1R9B9, RP1L9, STAC2, STARD3, TCAP, FBXL20, DLX3, DLX4, FLJ45513, ITGA3, MYST2, PDK2, PPP1R9B, SAMD14, TAC4</td>
<td>18</td>
</tr>
<tr>
<td>A3/17q21</td>
<td>45.15</td>
<td>45.56</td>
<td>6/185 (3.2%)</td>
<td>2/23 (8.7%)</td>
<td>MDA-MB-361, BT474, DLX3, DLX4, FAM117A, ITGA3, MYST2, PDK2, PPP1R9B, SAMD14, TAC4</td>
<td>10</td>
<td>DLX3, DLX4, FAM117A, FLJ45513, ITGA3, MYST2, PDK2, PPP1R9B, SAMD14, TAC4</td>
<td>9</td>
</tr>
<tr>
<td>A4/17q23-q23</td>
<td>51.36</td>
<td>53.67</td>
<td>4/185 (2.2%)</td>
<td>0</td>
<td>ACE, CYB561, EFCAB3, KCNH6, MAP3K3, MARCH10, METTL2A, MRC2, TACO1, TANC2, TLK2, WDR68, CDC44</td>
<td>9</td>
<td>ACE, CCDC44, CYB561, EFCAB3, KCNH6, MAP3K3, METTL2A, MRC2, TANC2, TLK2, WDR68, CDC44</td>
<td>11</td>
</tr>
<tr>
<td>A5/17q23</td>
<td>57.82</td>
<td>59.11</td>
<td>7/185 (3.8%)</td>
<td>2/23 (8.69%)</td>
<td>MCF7, MDA-MB-361, ACE, CYB561, EFCAB3, KCNH6, MAP3K3, MARCH10, METTL2A, MRC2, TACO1, TANC2, TLK2, WDR68, CDC44</td>
<td>13</td>
<td>ACE, CCDC44, CYB561, EFCAB3, KCNH6, MAP3K3, METTL2A, MRC2, TANC2, TLK2, WDR68, CDC44</td>
<td>11</td>
</tr>
<tr>
<td>A6/17q25</td>
<td>73.84</td>
<td>76.32</td>
<td>3/185 (1.6%)</td>
<td>1/23 (4.34%)</td>
<td>SKBR3, C17orf27, C1QTNF1, CANT1, CARD14, CBX2, CBX4, CBX8, CCDC40, CYTH1, DNAH17, EIF4A3, ENPP7, FLJ21865, FLJ55220, KIAA1303, KIAA1618, LOC146713, LOC284120, NPTX1, PG51, SDHA, GAA, SGSH, SOCS3, TBC1D16, TIMP2, USP36, SLC26A11, LGALS3BP</td>
<td>29</td>
<td>C17orf27, C1QTNF1, CANT1, CARD14, CBX2, CBX4, CBX8, CCDC40, CYTH1, DNAH17, EIF4A3, ENPP7, FLJ21865, FLJ55220, KIAA1303, KIAA1618, LOC146713, LOC284120, NPTX1, PG51, SDHA, PSCD1, SOCS3, TBC1D16, LGALS3BP</td>
<td>25</td>
</tr>
</tbody>
</table>

Total 143 101

Genes within the minimal region of amplification and overexpressed in amplified tumors with respect to non-amplified tumors or normal samples were considered for screening (Supplementary Table 1, available at Carcinogenesis Online).
was observed when the expression of both genes was knocked down simultaneously (Figure 3C). For each gene, both siRNAs had the same effect on cell proliferation; we, therefore, assumed that this was a specific, rather than an off-target effect (Figure 3B). However, as we did not test any non-amplified cell lines, we were unable to exclude the possibility of these genes being essential genes. A similar conclusion was raised for C8orf83 for which expression knockdown resulted in a decrease in cell viability in both cell lines (60–90%) in which it had been gained or amplified (Figure 3B). Surprisingly, however, the strongest effect was observed in the HCC1937 cell line, in which

Fig. 2. HT siRNA screening of candidate driver genes in breast cancer cell lines. (A) Schematic representation of the screen. HT siRNA screen based on immunofluorescence imaging. Identification of driver genes, the silencing of which causes cell cycle arrest and/or a decrease in cell viability. (B) Dot plot of the screens. Each screen was repeated three times to obtain biological replicates. Results are represented as median Z-scores for each siRNA. siRNAs with median Z-scores > 2 or < -2 were considered significant hits, and genes with at least two hits for four siRNAs were considered to be hits genes (Table II). Genes for which knockdown induced an increase in cell proliferation/cell survival were not considered as oncogenic hits. (C) Intermediate validation step for oncogenic hits based on mRNA levels and DNA copy number. Hit genes were considered to be overexpressed when the fold difference with respect to mean expression in three normal breast cell lines (MCF10, MCF12 and HMEC) was > 1.5 (Log2(FC) > 0.6); FC, fold change. Hit genes were considered to be gained/amplified if the CGH log2 ratio was > 0.6 [gained from 0.6 to 1 (three to four copies) and amplified when > 1 (more than four copies)]. Thresholds are indicated by dashed lines. Hits were prevalidated if amplified and/or overexpressed. The names of the prevalidated hits are indicated on the graphs.
Table II. List of the 33 genes identified by cell-based HT screening as oncogenic hits, for which siRNA-mediated knockdown induces cell cycle arrest or a decrease in cell viability in breast cancer cell lines

<table>
<thead>
<tr>
<th>Hit gene</th>
<th>Amplicon</th>
<th>Screening readout</th>
<th>HCC1937</th>
<th>MCF7</th>
<th>SKBR3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cell count index</td>
<td>G<sub>0</sub> arrest</td>
<td>Overexpression as compared with normal cell lines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>siRNA Z-score < 2</td>
<td>2/4</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>median Z-score 1</td>
<td>2/4</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>median Z-score 2</td>
<td>2/4</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>median Z-score 3</td>
<td>2/4</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>median Z-score 4</td>
<td>2/4</td>
<td>Yes</td>
</tr>
<tr>
<td>KIF11</td>
<td>10q24</td>
<td>−8.1−8.0</td>
<td>7.2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>C8orf938</td>
<td>8q21</td>
<td></td>
<td>2.4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RBM12B</td>
<td></td>
<td></td>
<td>4.70</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>TME667</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>CALB1</td>
<td>8q22</td>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EF36</td>
<td>8q23</td>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RAD21</td>
<td>q24</td>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MYC</td>
<td>8q24.21</td>
<td>4/4</td>
<td>4.2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CHRAC1</td>
<td>8q24.3</td>
<td>2/4</td>
<td>2.8</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>COI22A1</td>
<td></td>
<td></td>
<td>2.4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PTK2</td>
<td></td>
<td></td>
<td>2.4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TRAPPC9</td>
<td></td>
<td></td>
<td>2.4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ARL5C</td>
<td>17q12</td>
<td></td>
<td>3/4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CDK12</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ERBB2</td>
<td></td>
<td></td>
<td>2/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GRB7</td>
<td></td>
<td></td>
<td>2/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PPP1R1B</td>
<td></td>
<td></td>
<td>2/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RPL19</td>
<td></td>
<td></td>
<td>2/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STAC2</td>
<td></td>
<td></td>
<td>2/4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>FAM177A</td>
<td>17q21</td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FLJ45513</td>
<td></td>
<td></td>
<td>3.9</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MYST2</td>
<td></td>
<td></td>
<td>3.2</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>TAC4</td>
<td></td>
<td></td>
<td>3.0</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ACE</td>
<td>17q23</td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EF5CAR1</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KCN2</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MARCH10</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MRC2</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TAN2C</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CHN5TF1</td>
<td>17q25</td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CARD14</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FLJ135220</td>
<td></td>
<td></td>
<td>3.8</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SOCS3</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>USP36</td>
<td></td>
<td></td>
<td>2/4</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

siRNAs were considered as hits if median Z-scores were <−2 or >2. Genes were considered as oncogenic hits if at least two of the four siRNAs were siRNA hits. Number of siRNA hits/gene and Z-scores for the best two siRNA hits/gene are indicated. For each gene, in each screened cell line, we indicate hit status, gene DNA copy number status, as determined from publicly available SNP6 array data (Broad-Novartis CCLE website) genes were considered amplified if the normalized SNP array ratio was >1 (more than four copies) and were considered gained if this ratio was between 0.6 and 1 (from three to four copies) and overexpression status with respect to normal cell lines, determined with U133plus2.0 DNA array data [genes were considered overexpressed if the fold difference with respect to mean expression in normal breast cell lines (MCF10, MCF12 and HMEC) was >1.5 (log2FC > 0.6); FC = fold change]. Data for mRNA levels and DNA copy number data are listed in Supplementary Table 3, available at Carcinogenesis Online. NA, not available.
Fig. 3. Specific knockdown of the expression of RAD21, EIF3H, CHRAC1 and TANC2 decreases cell viability via the induction of cell apoptosis and/or cycle arrest and colony formation in anchorage-independent growth conditions in breast cancer cell lines in which these genes are amplified and overexpressed. (A) Prevalidated hit gene expression in MCF7 and HCC1937 cells. We assessed mRNA levels by reverse transcription–PCR. (B–E) Effect of prevalidated gene knockdown on cell viability, cell cycle progression and cell apoptosis. The effect of single gene silencing on cell viability was assessed by cell counting 72h after
Chor83 was much less strongly expressed than in MCF7 cells, or even normal cells (Supplementary Table 3, available at Carcinogenesis Online), strongly suggesting that Chor83 is an essential/housekeeping gene required for the survival or all breast cells. These decreases in the number of viable cells could be attributed to both a significant increase in the apoptosis rate (Figure 3D) and a significant inhibition of cell cycle progression via arrest in G0/G1 phase, with a corresponding decrease in the number of cells in S phase (Figure 3E) in HCC1937 cells. In MCF7 cells, except for Chor83, cell cycle arrest was observed, but no apoptosis induction (Figure 3D and E) was observed. One TANC2 siRNA that did not significantly alter H1937 cell viability was associated with a very small, but significant increase in the rate of apoptosis in this cell line. STAC2 was identified as a hit only in the SKBR3 cell line, in which it was amplified and overexpressed, so validation studies were performed in this cell line. Despite efficient mRNA knockdown (75%), we observed no significant decrease in the number of SKBR3 cells with two different STAC2 siRNAs. This suggests that the effect observed during the initial HT screening was an off-target effect and that STAC2 is a false-positive hit (data not shown). Thus, four of the six genes tested—EIF3H, RAD21, CHRAC1 and TANC2—regulate cell viability in breast carcinomas through their amplification and overexpression and can, therefore, be considered to be driver genes in breast carcinomas.

CHRAC1, RAD21, EIF3H and TANC2 are driver genes involved in clonogenic cell growth

We then explored the role of these four genes in cloning efficiency. As for cell viability, RAD21 and EIF3H knockdown significantly decreased the ability of cells to form colonies in anchorage-independent conditions, in soft agar (Figure 3F), for both HCC1937 and MCF7 cells, in which these genes have been gained or amplified. The silencing of TANC2 and CHRAC1 also significantly inhibited the growth on soft agar of cell lines in which these genes were amplified and overexpressed (MCF7 and HCC1937 cells, respectively) but had no effect on cells in which these genes were neither amplified nor overexpressed with respect to normal breast cell lines (HCC1937 and MCF7 cells, respectively; Figure 3F).

RAD21 and EIF3H are prognostic markers in breast cancer

As RAD21, EIF3H, CHRAC1 and TANC2 were identified as driver genes for which amplification/overexpression regulated cell proliferation, cell survival and cell transformation, we investigated the potential value of these genes as prognostic markers in breast ductal carcinomas. Using the Kmart website (Kmart.com) (23), we found a significant association between the level of gene expression and relapse-free survival at 10 years in 1866 breast cancer patients, for RAD21 (log rank test, \(P = 2.7E-15 \)) and EIF3H (log rank test, \(P = 0.002 \)), whereas this association was not significant for TANC2 (\(P = 0.24 \); Supplementary Figure 2, available at Carcinogenesis Online). No data were available for CHRAC1.

Discussion

Now that transcriptomic and genomic alteration data are simultaneously available for many tumor types, it is relatively easy to identify a particular class of candidate oncogenes: those that are overexpressed when amplified. By applying this approach, we identified 101 candidate driver oncogenes for breast cancer, located in eight different amplicons, on chromosomes 8q and 17q. Using a HT screening platform and a siRNA approach (four siRNAs per gene) in three breast tumor-derived cell lines, HCC1937, MCF7, SKBR3, we identified 33 ‘oncogenic hits’: genes for which downregulation was associated with a cell growth arrest (with at least two of the four siRNAs used in at least two replicates of the three screening replicates). These hits included eight genes (Chor83, CHRAC1, EIF3H, ERBB2, GRB7, RAD21, STAC2 and TANC2) that were amplified and overexpressed in the cell lines in which they were identified as hits. We tested six of these eight genes individually (Chor83, CHRAC1, EIF3H, RAD21, STAC2 and TANC2), using a set of two siRNAs per gene. The other two hits, ERBB2 and GRB7, are well-known drivers of the 17q12 amplicon and, therefore, required no further validation. Involvement in cell growth, when amplified and overexpressed, was confirmed for four of these six genes (CHRAC1, EIF3H, RAD21 and TANC2). We also found that these genes were involved in cell attachment-independent growth. Consistent with their role in breast tumor cell proliferation/survival, the levels of expression of two of these genes, RAD21 and EIF3H, were associated with relapse-free survival. STAC2 was demonstrated to be a false-positive hit, the knockdown of which did not alter cell viability in the cell line in which it was amplified and overexpressed. Chor83 was demonstrated to be an essential gene, the knockdown of which induced cell apoptosis whatever its level of expression in the cells concerned. A flowchart of the study is provided in Figure 4.

EIF3H and RAD21 have both previously been described as overexpressed and contributing to breast tumorigenesis (24,25), but no link to the chromosome 8q23-q24 amplicon was established. We show here that in cell lines with either an amplicon (MCF7) or a gained region (HCC1937) containing both genes, these two genes contribute to tumorigenesis in a non-additive manner. We also show here, for the first time, that CHRAC1 and TANC2 may play a role in carcinogenesis. The functions of TANC2 are unknown and its name is based on the structure of the protein (tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2). CHRAC1 is involved in chromatin assembly (26) and, like RAD21, in DNA repair (27,28). RAD21 overexpression may confer resistance to radiotherapy and chemotherapy (29,30). The overexpression/amplification of CHRAC1 and RAD21 were not exclusive events. It would be interesting to compare resistance to various treatments as a function of the expression of these two genes. The initial concept that an amplicon in a given tumor contains only one driver gene has been shown to be incorrect in several cases (ERBB2, GRB7 and STARD13 in the 17q12 amplicon being the first example, followed by the 8p11-12 amplicon and more recently by the 9p24 amplicon) (7,9,10,31). We provide here an additional example of an amplicon containing more than one driver gene: the 8q23-q24 amplicon, with EIF3H and RAD21.

HT platforms are increasingly being used for the functional validation of candidate oncogenes. We used three different cell lines for this screening: HCC1937, SKBR3 and MCF7. The numbers of hits (‘oncogenic’ hits for which inactivation inhibited cell viability and ‘non-oncogenic’ hit for which inactivation enhanced cell viability) identified differed considerably between the three cell lines: five in HCC1937, 15 in SKBR3 and 37 in MCF7 (four hits being common to two cell lines and four to three cell lines). The number of hits may depend on transfection efficiency, growth and proliferation rates and the number of false-positive and false-negative results, which may also depend on the cell line.

We identified 33 different hits leading to cell growth arrest (oncogenic hits). However, we also, unexpectedly, identified 14 hits for which proliferation rates were higher than for cells transfected with random siRNA. There are two possible reasons for this paradoxical

transfection with siRNA (B). Effect on cell viability of simultaneous knockdown of RAD21 and EIF3H compared with individual knockdown was assessed by cell counting 72 h post siRNA transfection (C). The effect of gene silencing on apoptosis (Sub-G1, Fraction) (D) and cell cycle progression (E) and was assessed by fluorescence-activated cell sorting analysis following PI incorporation. (F) Effect of candidate driver gene knockdown on colony formation in anchorage-independent conditions in soft agar. (B–F) Results are the means ± SD of two or three independent experiments carried out in triplicate. Negative control siRNA had no significant effect with respect to transfection reagent alone or control cells, in any of the experiments (data not shown). Student’s t-test was used to compare the effect of specific siRNAs with that of the control siRNA. **p < 0.05; *p < 0.001; ****p < 0.0001.**
Fig. 4. Flowchart of the study.

S.F. Mahmood et al.

185 breast tumors, 23 breast cell lines, 11 normal breast samples

CGH data for chr.8q, 17q
Affymetrix U133 data

8 amplicons

101 genes over-expressed as consequence of DNA amplification in tumors

Cell based RNAi screen

MCF7
SKBR3
HCC1937

29
11
5

Genes that inhibited cell viability/proliferation when silenced

Expression and DNA copy number analysis in cell lines

MCF7
SKBR3
HCC1937

5
7
2

Oncogenic Hit over-expressed as compared to normal cell lines

3
5
1

Oncogenic driver Hit amplified and over-expressed as compared to normal cell lines

6 new driver gene hits
2 well known driver of 17q12 amplicon: ERBB2 and GRB7

Analysis of consequences of knockdown on: cell viability/ cell cycle/ apoptosis/ colony formation on agar

STAC2: false positive hit on chr.17q12
C8orf83: essential gene on chr.8q21
RAD21 and EIF3H: driver genes on chr.8q23
CHRAC1: driver gene on chr.8q24.3
TANC2: driver gene on chr.17q23
Driver genes of chromosome 8 and 17 amplicons in breast cancer

result: tumor cells are not optimally fit for in vitro growth, and many of these unexpected hits are false positives or the observed effect actually highlights the both tumor suppressor genes and proto-oncogenes within the amplicon concerned. This suggests that the cellular effect of proto-oncogenes may be affected by amplicon size and, thus, by the presence or absence of tumor suppressor gene within the region of amplification. However, it should be noted that 10 of these 14 hits were found in MCF7 cells, the cell line with the highest total number of hits. This suggests that most of these 14 hits are probably false-positive hits.

Several oncogenes had already been identified in the amplicons studied here (EIF3H, ERBB2, GRB7, MYC, RAD21). Interestingly, all these genes were identified as hits in our screening, suggesting that the number of false negatives was low. Among the 33 oncogenic hits, we focused here on six genes, each of which was amplified and overexpressed in one of the three cell lines used (HCC1937, MCF7 and SKBR3). For future studies, it would also be interesting to investigate the two gained and overexpressed hits: TRAPPC9 on chromosome 8q24.3 and FAM117A on chromosome 17q21. The case of MYC, which was identified as a hit but not found to be overexpressed as a result of DNA amplification, strongly suggests that there may also be other true driver oncogenes among the hits that were amplified but not overexpressed in these three cell lines. This intermediate step in hit validation based on DNA copy number and mRNA level was aimed to short list the number of hit genes to further study individually but it could have excluded real driver genes indeed. Hence, we determined, for a given gene, overexpression with respect to ‘normal’ cell lines. In fact, these cell lines are not completely ‘normal’ according to other criteria (genomic alteration, unlimited growth), and they may overexpress some important genes for growth or immortality by mechanisms other than genomic amplification. Furthermore, these genes were overexpressed in tumors due to DNA amplification. It would, therefore, be worthwhile to carry out further validation for all these amplified oncogenic hits (TMEM67 and CALB1 on chromosome 8q21; KCNH6, MARCH10, EFCAB3 and MRC2 on chromosome 17q23; CARD14 on chromosome 17q25) and gained oncogenic hits (COL22A1 and PTK2 on chromosome 8q23.4) (Table II) to determine whether they are false positives, essential genes or real oncogenic driver genes inducing cell proliferation/transformation when amplified. Most of these genes have not yet been shown to display oncogenic activity. However, MRC2 (Endo180) has been shown to be overexpressed in basal breast tumors and amplified in a subset of these tumors and to favor cell migration and tumor growth in vitro (32). PTK2 (FAK) has also been shown to be overexpressed and amplified in a subset of breast tumors and to promote breast cancer initiation and progression in vitro and in vivo (for review, see ref. 33). It, therefore, seems likely that MRC2 and PTK2 have, like MYC, been falsely excluded as hits and that they may, therefore, be driver genes of the 17q23 and 8q23.4 amplicons, respectively, in breast cancer.

Our initial goal was to identify oncogenes that might serve as potential treatment targets, but none of the genes we identified as new driver genes (RAD21, EIF3H, CHRAC1, TANC2) are enzymes or have an extracellular domain, proteins with these characteristics constituting the two most obvious classes of treatment targets, as they can be targeted by small molecules and monoclonal antibodies, respectively. However, additional studies on these oncogenes and, in particular, the pathways in which they are involved, could lead to the identification of future treatment targets.

Supplementary material

Supplementary Tables 1–3 and Figures 1 and 2 can be found at http://carcin.oxfordjournals.org/

Funding

Higher Education Commission (HEC) of Pakistan; Association pour la Recherche sur le Cancer (ARC) France for PhD research (to S.F.M.).

Acknowledgements

We thank Caroline Spraggon, Andrew Cassidy, Alexander Graham and Paul Elvin for the tumor microarray experiments, which were performed by AstraZeneca (Cancer and Infection Research Area, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK). We thank the staff of Charles Decaene for cell line microarray experiments (Translational Research Department, Institut Curie, Paris, France).

Conflict of Interest Statement: None declared.

References

Received April 22, 2013; revised September 25, 2013; accepted October 14, 2013