The where and when of intracellular Ca2+ signalling

Holly Smith (University of Cambridge, UK)

Ca2+ is essential for cellular functions. The ability of this ion to act as an intracellular signal, common to almost all eukaryotic cells, allows it to orchestrate an enormous repertoire of cellular activities, from initiating egg development after fertilization to synaptic transmission between neurons.

The first indication that Ca2+ has a role as a dynamic physiological signal, beyond its role as a structural component of teeth and bones, was in an experiment performed by British cardiovascular physiologist Sydney Ringer in 1883, just 14 years after Dmitri Mendeleev proposed his periodic table of the elements. In the absence of Ca2+ salts in a circulating saline solution, Ringer found that contractions of isolated frog hearts progressively weakened and then ceased. The contractions resumed when Ca2+ was restored. We know now that these serendipitous observations reflect the need, during each cycle of contraction and relaxation, for Ca2+ release and re-uptake from intracellular stores. The need for extracellular Ca2+ arises because the ryanodine receptors (RyR), through which the Ca2+ is released, open when they bind Ca2+. This trigger Ca2+ is provided via the opening of voltage-gated Ca2+ channels in the plasma membrane (PM).

Nearly 150 years later, the role of Ca2+ as an intracellular messenger is established in processes as diverse as muscle contraction, neurotransmitter secretion, gene transcription, cell division and apoptosis. Ca2+ is unusual among intracellular messengers in that it is an ion, rather than a more complex component that might be made or degraded, and so changes in the free cytosolic Ca2+ concentration (abbreviated to [Ca2+]\text{c}) can only occur by moving Ca2+ across membranes. Ion channels allow Ca2+ to move quickly down its electrochemical gradient, while ATP-dependent pumps or exchange proteins can move Ca2+ against its electrochemical gradient to extrude it from the cell or return it to stores. The complex sequence of conformational changes associated with active Ca2+ transport means that Ca2+ pumps typically transport Ca2+ thousands of times more slowly than ion channels. Hence, most acute increases in [Ca2+]\text{c} are brought about by the regulated opening of Ca2+-permeable channels. One of the most widely expressed of these channels is the inositol 1,4,5-trisphosphate receptor (IP\textsubscript{3}R), a cousin of RyR. Similar to RyRs, IP\textsubscript{3}Rs are stimulated to open by Ca2+, but for IP\textsubscript{3}Rs this only occurs after they have bound IP\textsubscript{3}.

The ER is the major intracellular Ca2+ store, and since most IP\textsubscript{3}Rs are expressed within ER membranes, IP\textsubscript{3}Rs allow Ca2+ to be redistributed from the ER to the cytosol. The link with extracellular signals, like hormones or growth factors, is provided by receptors in the PM that can stimulate phospholipase C (PLC). The IP\textsubscript{3} produced by PLC binds to IP\textsubscript{3}Rs causing them to open and release Ca2+ from the ER, with several important consequences (Figure 1). This action increases [Ca2+]\text{c}, which can

![Figure 1. The path from extracellular stimulus to intracellular Ca2+ release. Many extracellular stimuli activate receptors that signal through phospholipase C (PLC). PLC generates inositol 1,4,5-trisphosphate (IP\textsubscript{3}), a diffusible intracellular messenger molecule that opens IP\textsubscript{3} receptors (IP\textsubscript{3}R), which are Ca2+-permeable channels in the endoplasmic reticulum (ER) membrane. IP\textsubscript{3}R are the signalling hubs that control the redistribution of Ca2+ from internal stores to the cytosol, other organelles and the flow of Ca2+ across the plasma membrane through store-operated Ca2+ entry.](http://portlandpress.com/biochemist/article-pdf/41/4/28/856230/bio041040028.pdf)
then regulate cellular activities often through the ubiquitous Ca\(^{2+}\)-binding protein, calmodulin. As IP\(_3\)Rs are stimulated by Ca\(^{2+}\) once they have bound IP\(_3\), they can propagate cytosolic Ca\(^{2+}\) signals regeneratively. IP\(_3\)Rs held close to other organelles, mitochondria for example, can deliver Ca\(^{2+}\) to them and regulate their activities. Finally, loss of Ca\(^{2+}\) from the ER lumen stimulates store-operated Ca\(^{2+}\) entry (SOCE) across the PM. SOCE occurs when the luminal Ca\(^{2+}\)-binding site of another ER protein, STIM1, senses the loss of Ca\(^{2+}\), causing it to unfold the cytosolic domain through which it binds to a Ca\(^{2+}\) channel in the PM, Orai1. This direct interaction between STIM1 and Orai1 opens the Ca\(^{2+}\) channel allowing Ca\(^{2+}\) to flow into the cell across the PM. Hence, it is clear that IP\(_3\)Rs serve as hubs that control the redistribution of Ca\(^{2+}\) from the ER to the cytosol or other organelles, and ultimately the flow of Ca\(^{2+}\) across the PM.

Cells are bombarded with extracellular stimuli that control every cellular activity, and much of this communication passes through Ca\(^{2+}\) signals; so how is specificity maintained? The answer seems to lie largely with the spatial and temporal organization of Ca\(^{2+}\) signals. Where and when Ca\(^{2+}\) signals are generated is just as important as how they are generated.

Location, location, location

Cytosolic Ca\(^{2+}\) buffers are so abundant that only one of every 100 Ca\(^{2+}\) ions to flow into the cytosol remains unbound. This buffering slows Ca\(^{2+}\) diffusion and allows local Ca\(^{2+}\) signals to persist around the mouths of open Ca\(^{2+}\) channels. These microdomains of increased [Ca\(^{2+}\)]\(_c\) can selectively regulate Ca\(^{2+}\)-binding proteins situated within them. Many of these Ca\(^{2+}\)-binding proteins can ignore small changes in [Ca\(^{2+}\)]\(_c\) and tune-in to the much larger changes within a microdomain where they have a relatively low affinity for Ca\(^{2+}\). Within neurons, for example, such microdomains allow Ca\(^{2+}\) signals to selectively regulate neurotransmitter release or gene transcription, and in many cells they allow the Ca\(^{2+}\) signals evoked by SOCE or IP\(_3\)Rs to control different events. A now classic example of the importance of spatial organization is provided by the smooth muscle of blood vessels, where global increases in [Ca\(^{2+}\)]\(_c\) trigger contraction by activating, via calmodulin, myosin light-chain kinase. But local Ca\(^{2+}\) signals provided by RyRs beneath the PM deliver their Ca\(^{2+}\) to Ca\(^{2+}\)-activated K\(^+\) channels, causing them to open and allow K\(^+\)to leave the cell. The resulting hyperpolarization of the PM prevents activation of voltage-gated Ca\(^{2+}\) channels, and by attenuating global increases in [Ca\(^{2+}\)]\(_c\), causes relaxation. Hence, Ca\(^{2+}\) signals can, according to their location, cause relaxation or contraction.

![Figure 2. Local Ca\(^{2+}\) signals are the building blocks of global Ca\(^{2+}\) signals. IP\(_3\)Rs require the binding of both IP\(_3\) and Ca\(^{2+}\) to open. This Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) is the basis for a hierarchical model of how local Ca\(^{2+}\) release events, such as blips (the result of a single IP\(_3\)R opening) and puffs (the concerted opening of IP\(_3\)R clusters), contribute to global signals, such as waves and spikes in response to increasing IP\(_3\) concentration.](http://portlandpress.com/biochemist/article-pdf/41/4/28/856230/bio041040028.pdf)

![Figure 3. Intimate contact between organelles. Organelles form membrane contact sites that are held together by scaffolding proteins (blue). Ca\(^{2+}\)-uptake systems in mitochondria and lysosomes (red and orange) have low affinity for Ca\(^{2+}\). The high-affinity uptake system of the ER, the sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA, purple), actively accumulates Ca\(^{2+}\) within the ER lumen. IP\(_3\)Rs (green) sat next to membrane contact sites can then selectively deliver high concentrations of Ca\(^{2+}\) directly to organelles, allowing Ca\(^{2+}\) to mediate organelle-specific functions such as ATP synthesis by oxidative phosphorylation in mitochondria. Created with BioRender.com](http://portlandpress.com/biochemist/article-pdf/41/4/28/856230/bio041040028.pdf)
one organelle to another, notably between the ER and mitochondria. Ca\(^{2+}\) uptake into mitochondria occurs via a channel, the mitochondrial uniporter (MCU), that only opens when it is exposed to much higher \([\text{Ca}^{2+}]_c\) than typically prevails in a healthy cell. Hence, mitochondria accumulate Ca\(^{2+}\) only when it is delivered to them by closely apposed Ca\(^{2+}\) channels—for example, IP\(_3\)Rs in the ER (Figure 3). The link with IP\(_3\)Rs is apt because IP\(_3\)-evoked cytosolic Ca\(^{2+}\) signals will trigger cellular activity, for example smooth muscle contraction, while local delivery of Ca\(^{2+}\) to the outer mitochondrial membrane both parks mitochondria in regions where \([\text{Ca}^{2+}]_c\) is elevated and by driving Ca\(^{2+}\) uptake through MCU, it stimulates oxidative phosphorylation. IP\(_3\)-evoked release of Ca\(^{2+}\) from the ER thereby both stimulates cellular activity and ensures delivery of the ATP required to sustain it.

Frequency codes

There is, however, a problem with the toxicity of Ca\(^{2+}\); sustained or excessive increase in \([\text{Ca}^{2+}]_c\) kill cells. However, natural selection has provided defences: most Ca\(^{2+}\) channels are inhibited by increases in \([\text{Ca}^{2+}]_c\), constraining their ability to poison the cell; and many Ca\(^{2+}\) extrusion mechanisms are stimulated by increased \([\text{Ca}^{2+}]_c\). So how can Ca\(^{2+}\) evoke sustained responses when powerful homeostatic mechanisms are engaged to prevent sustained increases in \([\text{Ca}^{2+}]_c\)? Ca\(^{2+}\) oscillations or spikes provide an answer and, by encoding stimulus intensity in the frequency of Ca\(^{2+}\) spikes—just as nerves encode activity in the frequency of action potentials—they provide a robust means of communication. It is easier to distinguish a doubling of signal frequency than it is to distinguish a doubling of its amplitude, as the switch from AM (amplitude-modulated) to digital FM (frequency-modulated) radio attests.

To make the most of these digital Ca\(^{2+}\) signals, cells must decode them into graded and sustained responses. Ca\(^{2+}\)-calmodulin-dependent protein kinase II (CaMKII) provides a classic example of how a digital frequency-modulated signal can be transduced into an amplitude-modulated signal. CaMKII forms a complex structure with 12 subunits arranged around the spokes of 2 wheels with a shared axle. Binding of Ca\(^{2+}\)-calmodulin to a subunit activates its protein kinase activity, but it also primes phosphorylation of the subunit. Phosphorylation is important because it prolongs the kinase activity beyond the duration of the Ca\(^{2+}\) signal (it creates a memory of a preceding Ca\(^{2+}\) signal), but phosphorylation only occurs when two adjacent subunits have both bound Ca\(^{2+}\)-calmodulin: one subunit to provide the enzyme, and the other the substrate. Hence, appreciable autophosphorylation occurs only when several of the 12 subunits are occupied. This tunes the initiation of the molecular memory to large Ca\(^{2+}\) signals, such as occur at the peak of Ca\(^{2+}\) spikes. The greater the frequency of the Ca\(^{2+}\) spikes, the less opportunity there is to reverse the phosphorylation between spikes and the greater the amplitude of the sustained CaMKII activity. Hence, CaMKII reads the frequency of Ca\(^{2+}\) spikes—indeed different forms of CaMKII are tuned to read different frequencies—and transduces them into graded increases in kinase activity.

However, as with any biological system that relies on relatively small numbers of molecules, there is an element of stochasticity to Ca\(^{2+}\) spikes. The interval between one spike and the next can vary randomly, and spiking frequencies show heterogeneity even between cells within the same population. So how can frequency reliably encode changes in stimulus intensity, given this randomness? In response to Ca\(^{2+}\)-mobilizing agonists, cells with variable spiking frequencies show a consistent fold change in the average interspike interval that scales with increasing stimulus strength. Drawing a musical analogy, although there are variations in ‘pitch’ (the absolute frequency of spikes), the change from one ‘note’ to another (the fold-change in frequency) is conserved. In this way, information about the initial stimulus intensity can be encoded in the temporal profile of Ca\(^{2+}\) transients.

Concluding remarks

Unlike most intracellular messengers, which can be made or degraded, Ca\(^{2+}\) is an element, and can only be redistributed from one cellular compartment to another. IP\(_3\)Rs are often responsible for this redistribution, delivering Ca\(^{2+}\) from the ER to the cytosol or other organelles, and initiating the events that stimulate Ca\(^{2+}\) entry across the PM. Hence, IP\(_3\)Rs are the hubs that coordinate the spatially and temporally organized Ca\(^{2+}\) signals that regulate so many cellular activities.
Further reading

- Thurley, K., Tovey, S.C., Moenke, G. et al. (2014) Reliable encoding of stimulus intensities within random sequences of intracellular Ca^{2+} spikes. Sci. Signal. 7, ra59

Holly Smith is a PhD student in the Department of Pharmacology at the University of Cambridge. After completing her BSc in Biomedical Science at the University of Sheffield, Holly’s interest in Ca^{2+} signalling led her to Professor Colin Taylor’s lab, where she is currently using high-resolution optical microscopy to investigate the generation and termination of local Ca^{2+} signals evoked by IP_3s. Her work is supported by the Wellcome Trust and a BBSRC CASE Studentship with Cairn Research. As well as her research, Holly has an interest in science communication and scientific writing for a wider audience. Email: has54@cam.ac.uk