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Abstract
Motivation: An automatic sequence searching method
(ProtEST) is described which constructs multiple pro-
tein sequence alignments from protein sequences and
translated expressed sequence tags (ESTs). ProtEST is
more effective than a simple TBLASTN search of the
query against the EST database, as the sequences are
automatically clustered, assembled, made non-redundant,
checked for sequence errors, translated into protein and
then aligned and displayed.
Results: A ProtEST search found a non-redundant,
translated, error- and length-corrected EST sequence
for >58% of sequences when single sequences from
1407 Pfam-A seed alignments were used as the probe.
The average family size of the resulting alignments of
translated EST sequences contained >10 sequences.
In a cross-validated test of protein secondary structure
prediction, alignments from the new procedure led to an
improvement of 3.4% average Q3 prediction accuracy
over single sequences.
Availability: The ProtEST method is available as an
Internet World Wide Web service at http://barton.ebi.ac.
uk/servers/protest.html The Wise2 package for protein
and genomic comparisons and the ProtESTWise script can
be found at: http://www.sanger.ac.uk/Software/Wise2
Contact: geoff@ebi.ac.uk

Introduction
The prediction of functional residues (Casari et al.,
1995; Livingstone and Barton, 1996), secondary structure
(Barton, 1995; Cuff and Barton, 1999) and the detection
of weak sequence similarity by profile methods (Barton,

∗To whom correspondence should be addressed.
†

Present address: The Sanger Centre, Wellcome Trust Genome Campus,
Hinxton, Cambridge CB10 1SD, UK

1990; Gribskov et al., 1990; Eddy, 1996) rely on the
analysis of multiple protein sequence alignments for
optimal results. In general, greater reliability in function
and structure prediction is obtained by increasing the
number of sequences in the multiple sequence alignment
(Rost and Sander, 1993). However, while the protein
sequence databases such as SWISS-PROT (Bairoch and
Apweiler, 1998) will often contain homologues to the
sequence of interest, >65% of all sequences deposited
to the EMBL/GenBank/DDBJ Nucleotide Sequence
Database (version 58) (Stoesser et al., 1999) are ex-
pressed sequence tags (ESTs). ESTs present a valuable
resource to aid protein sequence analysis, but a major
drawback is that they are determined by only single or
double gel reads and so are error prone. Errors in the DNA
sequence, particularly frame-shift errors, make it difficult
to align ESTs reliably with full-length protein sequences.
In addition, ESTs tend to code for fragments of full-length
proteins and so may provide inconsistent information
along the sequence. The nature of the sequencing process
also makes EST sequence databases very redundant.

Recent developments in dynamic programming tech-
niques offset the problem of errors in ESTs by allowing
a protein sequence to be compared directly with DNA,
while also considering frame-shifts and in-frame stop
codons (Birney and Durbin, 1997; Pearson et al., 1997;
Zhang et al., 1997). ESTWISE (Birney, 1998) takes this
a stage further by comparing a protein sequence with a
DNA sequence by a probabilistic model of both protein
evolution and potential sequencing error. A maximum
likelihood path through the model then provides an
alignment that can account both for protein evolution and
sequencing error when matching the two sequences.

In this paper, we describe a procedure for building
protein multiple sequence alignments that exploits the
additional information available from EST sequences.
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Fig. 1. An outline of the ProtEST method as implemented in the Internet World Wide Web server. The submission form allows a single
sequence to be inserted, and selection of any options. Options include a choice of assembling the sequences, or filtering on the basis of
percentage identity. Both length-dependent filters and unknown residue filters can also be bypassed, along with the p-value cutoff to use for
the TBLASTN step. (The slower, more accurate TFASTX algorithm may also be optionally selected at this stage.) The protein-searching
stage may be bypassed if required. Automatic searching of UniGene EST clusters may also be bypassed if required. Output takes the form
of both HTML pages, and a Java viewer to render the resulting multiple sequence alignment. If assembly is selected, the original EST
fragments that make up the contigs can be retrieved, as can the raw data from the initial BLASTP and TBLASTN/TFASTX searches. The
server generates a complete report of each step, which can be examined.

EST searching and clustering by ProtEST is carried
out interactively for each query sequence, and so the
effectiveness of the ProtEST method will scale with
the increasing EST database. The software has been
constructed to be as flexible as possible while still
maintaining efficiency. The procedure combines the new
techniques for DNA to protein sequence comparison
(Birney, 1998) together with conventional techniques for
DNA sequence database searching (Altschul et al., 1990)
and assembly (Green, 1996; Gordon et al., 1998). A Web
server has also been constructed (Figure 1).

We also show that on a benchmark for protein secondary
structure prediction (Cuff and Barton, 1999), the inclusion
of EST sequences consistently improves prediction accu-
racy.

Method
The stages of the ProtEST method are shown in Figure 2.
Firstly, the TBLASTN (version 2) sequence comparison
algorithm (Altschul et al., 1990) is used to search the
query sequence against the EMBL-EST (Stoesser et al.,
1999) database (step 1, Figure 2).

An alternative to using TBLASTN for the initial search
would be to use TFASTX (Pearson et al., 1997). TFASTX
produces an optimal Smith–Waterman alignment of the
query and translated-library sequence while also calculat-
ing similarity scores that allow for frame-shifts. However
when comparing TFASTX against TBLASTN on 4 SGI
R10K processors, run time was 04:35 min for TBLASTN
as opposed to 17:10 min for TFASTX.

The ProtEST Web server has an option to run the
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Fig. 2. The ProtEST method. See ‘Method’ for a full description of
each step.

slower TFASTX method, but in this work we applied the
TBLASTN method.

Sequence identifiers from matches down to a TBLASTN
p-value of 10−4 are taken from this search and used to
retrieve the corresponding full-length sequence from
the EMBL-EST database. The sequences found by
TBLASTN are first clustered on the basis of their organ-
ism classification, then each of the sequence clusters are
assembled by the PHRAP (Green, 1996; Gordon et al.,
1998) sequence assembly algorithm (step 2, Figure 2).
Assembling sequence based on organism classification
is likely not to assemble all the available sequence. Any
sequences within the cluster that cannot be assembled will
be ejected as singletons. If the singletons turn out to be
too short, they are removed by the length filters applied
later in the process.

The contigs and any singletons from the assembly pro-
cess replace the sequences found by the initial TBLASTN
search as organism-specific and non-redundant EST se-
quences. Application of the assembly program means that
if the query protein sequence matches two separate EST
fragments that overlap, it is possible to assemble the two
overlapping EST fragments into a single longer contig.

A simple alternative to assembling the sequences is to
remove EST redundancy by excluding sequences that are
>95% identical to the query sequence. However, with
this simple approach there is no opportunity to combine
the short EST fragments into a single, longer contiguous
sequence.

The non-redundant sequences from PHRAP are then
compared with the query, using ProtESTWise (step 3,
Figure 2). ProtESTWise, developed with the PERL
API (Birney, 1998) of the Wise2 sequence comparison
package, provides an interface to the EST comparison
algorithm ESTWISE (Birney, 1998). ESTWISE gives a
maximum likelihood position for frame-shift errors due
to sequencing error. A ‘corrected’ protein sequence is
then generated with ‘X’ marking potential sequencing
errors and in-frame stop codons. ESTWISE was used in
the alignment phase as (in our tests) it places the insertion
or deletion due to sequencing error more accurately than
TFASTX. However, ESTWISE is not practical for the
database searching phase as it does a complete dynamic
programming pass of each EST, making it computation-
ally expensive. The combination of either TFASTX or
TBLASTN, which provide good sensitivity for finding the
ESTs, and ESTWISE, which provides accurate alignment
considering frame-shifts, is a good compromise.

In order to prune overhangs, the translated sequences are
then filtered by applying a length cutoff of 3/2 (step 4,
Figure 2). For example, if the query sequence is N
residues long, the sequence length would have to range
between 2N/3 and 3N/2 residues to be included. If
sequences exceed the length criterion, they are truncated
by removing residues from each end until the length of the
sequence satisfies the cutoff value. Sequences falling short
of the lower length limit are discarded. The value of 3/2
for the length cutoff was reached by visual inspection of
a number of multiple sequence alignments, produced with
different cutoff values. This filter removes short sequences
but does allow sequences that are longer than the query,
and are related, to be included after truncation. A filter
was also applied to remove those sequences that had over
3% of residue marked as ‘X’. This situation would occur,
for example, if there were a large number of potential
sequencing errors and in-frame stop codons located by
ESTWISE in the assembled EST sequence.

Protein searching
A BLASTP (version 2) (Altschul et al., 1990) search of
the SWISS-PROT non-redundant SPTR database (Bairoch
and Apweiler, 1998) is also performed for the query se-
quence (step 5, Figure 2). The BLAST (Altschul et al.,
1990) output is then screened by SCANPS (Barton, 1993),
an implementation of the Smith–Waterman dynamic pro-
gramming algorithm (Smith and Waterman, 1981), with
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Table 1. Data for sequences found from the EST and protein-searching portions of ProtEST

PDB ProtEST PDB UniGene PDB Prot. Pfam ProtEST Pfam Prot.

Size of dataset 513 513 513 1407 1407
(sequences)
Coverage (%) 257 (50.0%) 225 (43.8%) 513 (100%) 827 (58.7%) 1407 (100%)
Total number of 2442 2951 14 880 8479 88 988
sequences
Average number 9.5 (4.0) 13.1 (4.0) 29.0 (16.0) 10.6 (6.2) 63.5 (35.0)
of sequences per
family (median)
Total number of 286 099 401 844 2 294 040 2 233 212 27 026 091
residues
Number of 970 231 316 6828 5407
residues marked
as ‘X’
Average 117 136 154 127 303
sequence length
(residues)

‘PDB’ refers to the 513 protein test set for secondary structure prediction (Cuff and Barton, 1999). ‘Pfam’ refers to the 1407 set of single sequences from the
Pfam-A seed alignments (Bateman et al., 1999). ‘ProtEST’ refers to sequences that were derived from the assembled, non-redundant translated and
error-checked ESTs obtained from the ProtEST method (Figure 2, steps 1–4). ‘Prot.’ refers to the protein searching portion of ProtEST (Figure 2, steps 5–7).
‘UniGene’ refers to the sequences found by searching the UniGene database with TBLASTN. The number of ‘X’ residues corresponds to positions where
there are either unknown residues, or there are positions marked as unknown by the dynamic programming algorithm used to translate the DNA to protein.

length-dependent statistics. Sequences are rejected if their
SCANPS probability score is > 10−4. Sequences are also
rejected if they do not fit the length cutoff of 3/2 (step 6,
Figure 2). The sequences from the EST search and the
protein search are then combined. All pairs of sequences
are compared by the AMPS package (Barton, 1990). The
sequences are clustered on the basis of percentage iden-
tity by following complete linkage clustering (step 7, Fig-
ure 2). Finally, a 90% sequence identity cutoff is used to
select clusters to give a non-redundant set of sequences
which are then aligned by CLUSTALW (Thompson et al.,
1994) with default parameters (step 8, Figure 2).

Evaluation of ProtEST
The quality of cross-validated protein secondary structure
predictions derived from the ProtEST alignments was
examined. This test exploited the non-redundant test
set of 513 proteins recently developed by Cuff and
Barton (1999). This test provides a direct measure of the
usefulness of ProtEST alignments in analysis of protein
secondary structure prediction. However, since the 513
proteins are all from proteins of known three-dimensional
structure, they may not give a fair representation of how
many additional sequences can be found by ProtEST for a
typical protein query.

Ideally one would like to take each sequence in SWISS-
PROT, generate ProtEST alignments, then assess how
many additional sequences are found over a simple
protein database search. However, this would require

over 270 000 searches, and is currently computationally
unrealistic. The Pfam 3.4 alignment database (Bateman
et al., 1999) gives >50% coverage of SWISS-PROT and
so was taken to be representative of the database as a
whole. The first sequence from each of the 1407 Pfam-A
seed alignments was taken to measure the number non-
redundant, error-checked EST sequences that the ProtEST
method returned. The protein matches from the BLASTP
section of ProtEST were also compared to the number of
EST sequences found.

Results and discussion
The results are shown in Table 1. Of the 513 proteins
of known three-dimensional structure that were used to
test the method, 257 sequences (50%) matched at least
one translated, non-redundant, error-checked EST contig
sequence. Of the 257 sequences, 2442 contigs matched
in all, giving an average of 9.5 extra translated EST
sequences per sequence family. In contrast, the protein
sequence database searching stage of ProtEST returned
14 880 sequences in total, which corresponds to an average
of 29 sequences per family.

When the 1407 primary sequences from the seed align-
ments of Pfam version 3.4 were used to test the ProtEST
method, there were 827 sequences that matched at least
one non-redundant, error-checked, translated EST contig
sequence. The success rate using the Pfam sequences
was 58.7%, which is 8.7% higher than obtained using
sequences of known three-dimensional structure. This
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Fig. 3. Comparison of PHD (Rost and Sander, 1993), predictions for single sequences and EST sequences from ProtEST, for 1thx
(Thioredoxin Electron Transport Protein) against the DSSP (Kabsch and Sander, 1983) secondary structure definition.

Table 2. Comparison of Q3 prediction accuracy for cross-validated PHD
predictions for 257 sequences

Data used for alignments Q3 accuracy (%)

Protein and ESTs alignments (ProtEST) 72.1
Protein alignments 72.0
ESTs from ProtEST 69.0
Single sequences 65.6

The table compares single sequences, and multiple sequence alignments
created from ESTs alone (steps 1–4, Figure 2), protein alone (steps 5–7,
Figure 2), and ProtEST sequences (all steps, Figure 2).

result is not surprising, given the redundancy levels in the
EST database, and the sequence/organism bias within the
known structure database [PDB (Bernstein et al., 1977)].
For the Pfam sequences there was a total of 8749 EST
sequences found, which is an average of 10.6 sequences
per family. In comparison, the protein search yielded
88 988 sequences for each of the 1407, which corresponds
to an average of 63.5 sequences per family.

The protein and the translated, error-checked EST
sequences for the 257 successful EST searches for se-
quences of known structure were combined, and used to
predict the corresponding secondary structure by the PHD
(Rost and Sander, 1993) algorithm. PHD was chosen
since it has been found to be the best single secondary
prediction method available that uses multiple sequence
alignments for prediction (Cuff and Barton, 1999). Table 2
shows that the resulting average Q3 accuracy [prediction
accuracy over three states (Schulz and Schirmer, 1979)]
for the EST plus protein alignments (from ProtEST)
was slightly higher, (0.1%) than the average Q3 for the
alignments generated only from the protein sequences.
Although this is not a significant improvement, the addi-
tion of the EST sequences does not make the predictions
any less accurate. Given that the neural networks that
PHD has were not trained on alignments extended by EST
sequences, without retraining, one would not expect a
significant improvement in accuracy. We are currently in-

vestigating training a neural network prediction algorithm
with EST-derived protein sequence alignments.

The EST contig sequences found by the first stage
of the ProtEST search (Figure 2, step 1–4) were then
aligned separately. PHD predictions were carried out for
each of these EST alignments as before. The final Q3
accuracy was 3.4% better than predicting from just single
sequences, and 3% less accurate than predicting from
protein sequence alignments (Table 2). Figure 3 shows an
example PHD prediction for 108 residues of the electron
transport protein, Thioredoxin (1thx). The average family
size for the protein sequences (29) is on average over
three times larger than the corresponding EST sequence
family (9.5). It is this feature that most likely leads to the
difference in secondary structure prediction accuracy.

UniGene (Schuler, 1997) gene clusters of human,
mouse and rat sequences were combined to search for
contigs. The total number of contig sequences found in
the UniGene search was 2951 as opposed to 2442 for
ProtEST. UniGene contains longer contigs than can be
generated with the organism cluster/PHRAP assembly
method of ProtEST. During the length-checking stage,
where the translated contigs are compared with the orig-
inal target protein, 1761 sequences were removed from
UniGene contigs; however, 2049 were removed for the
ProtEST-generated contigs. This result reflects the very
real problem of short contigs, which is apparent in both
the UniGene sequences and the automatically generated
sequences from ProtEST. For example, the average se-
quence length of the protein sequences applied in this test
was 154 residues, but the ProtEST and UniGene average
sequence lengths were 117 and 136, respectively.

When compared with the automatic method of ProtEST,
the coverage of UniGene sequences for the PDB test
was 43.8%. If the sequences found by both ProtEST and
UniGene were combined, the coverage was boosted to
54%. UniGene includes GenBank mRNA and GenBank
Genomic sequence as well as the EST database to build
its contigs. Although these sections form only a small
proportion of the EST sequence (1.5%), including them
still adds to the database size and scope. The ProtEST
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World Wide Web server (Figure 1) provides an option
also to search the UniGene database and combine any
results with contigs generated from the ProtEST organism
cluster/PHRAP assembly method.

UniGene is updated monthly, while ProtEST dynam-
ically translates the sequences to form protein multiple
alignments. The advantages of both approaches are avail-
able through the ProtEST server.

This study shows that the quality of the EST sequences
and their resulting alignments can significantly improve
secondary structure prediction accuracy. This work shows
the benefits of using EST sequences in one application of
protein multiple sequence alignments. However, it is likely
that the addition of EST sequences generated by ProtEST
will be beneficial in the future prediction of functional
residues and the development of more sensitive profile
searching methods.
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