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ABSTRACT
Motivation: Consensus structure prediction methods
(meta-predictors) have higher accuracy than individual
structure prediction algorithms (their components). The
goal for the development of the 3D-Jury system is to
create a simple but powerful procedure for generating
meta-predictions using variable sets of models obtained
from diverse sources. The resulting protocol should help
to improve the quality of structural annotations of novel
proteins.
Results: The 3D-Jury system generates meta-predictions
from sets of models created using variable methods. It is
not necessary to know prior characteristics of the methods.
The system is able to utilize immediately new components
(additional prediction providers). The accuracy of the
system is comparable with other well-tuned prediction
servers. The algorithm resembles methods of selecting
models generated using ab initio folding simulations. It
is simple and offers a portable solution to improve the
accuracy of other protein structure prediction protocols.
Availability: The 3D-Jury system is available via the
Structure Prediction Meta Server (http://BioInfo.PL/Meta/)
to the academic community.
Contact: leszek@bioinfo.pl
Supplementary information: 3D-Jury is coupled to the
continuous online server evaluation program, LiveBench
(http://BioInfo.PL/LiveBench/).

INTRODUCTION
The knowledge of the 3D structure of a protein is an
extremely useful prerequisite for the understanding of
the function and for the rational modification of proteins.
Due to the increasing gap between the number of known
protein sequences and the number of structural annota-
tions, the problem of predicting the tertiary structure of a
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protein from its amino acid sequence remains an impor-
tant field of research in molecular biology (Baker and
Sali , 2001). Objective and community-wide assessment
of the accuracy of available methods such as CASP
(Moult et al., 2001) or CAFASP (Fischer et al., 2001)
have made a significant contribution to the progress in
this area and have lead to an increased interest in the
development of new prediction algorithms. As a result,
the number of prediction services available on the internet
that participated in last year’s CASP-5 and CAFASP-3
experiments has almost doubled compared to the numbers
from the previous experiments, conducted three years
ago. New servers diversify the set of available prediction
approaches and provide added value to the community
of automated structure annotation methods. Due to the
increased number of available predictions, the chances of
obtaining a correct model increases. However, from the
user point of view, it is not easy to benefit from the large
selection and it is sometimes even more difficult to select
the best model.

SYSTEM AND METHODS
First attempts to benefit from the variety of available
services were made by the semi-automated CAFASP-
Consensus groups (Fischer et al., 2001). The success
of the semi-automated approach in CASP-4 lead to the
development of a series of fully automated services, which
are based on a similar principle of using the results of
independent prediction methods, but differ in the way the
information is processed.

First benchmarks within the LiveBench-2 (Bujnicki et
al., 2001) and LiveBench-4 experiments have indicated
that fully automated meta-predictors are more accurate
than any individual server used for building the consensus.
Initial results were obtained with the Pcons (Lundstrom
et al., 2001) method, which currently has several variants
that differ in the set of components and in the final pro-
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cessing of the models (with Modeller; Sali and Blundell,
1993). Pcons ranks models generated by a set of servers
by employing a scoring function, which takes into account
the confidence of the model reported by the server and
the similarity of the model to all other models. A neural
network is used to translate the original confidence
scores into standard scores to facilitate the comparison of
different servers. This procedure requires an initial tuning
of the neural network before a new server can be added to
the set of servers used for consensus building.

The 3D-SHOTGUN meta-predictors (Fischer , 2002)
are reminiscent of the so-called ‘cooperative algorithms’
known in the Computer Vision sub-area of Artificial
Intelligence (Marr, 1982) The program also takes as input
the models with their confidence scores. The result is a
hybrid model, which is spliced from fragments of the input
models and has the potential of covering more parts of
the native protein than any template structure alone. Thus,
3D-SHOTGUN entails the first fold-recognition meta-
predictor attempt to go beyond the simple selection of
one of the input models. The 3D-SHOTGUN methods
have demonstrated their capabilities since the LiveBench-
4 experiment.

The 3D-Jury system, like other meta-predictors, incor-
porates the comparison of models as the main processing
step. It follows an approach similar to that employed in
the field of ab initio fold recognition. Recent advances
in the development in this area can be accredited to the
application of non-energetic constrains such as prefer-
ences for high contact order or the detection of clusters
of abundant conformations (Bonneau et al., 2002). The
experience with ab initio prediction methods lead to the
conclusion that averages of low-energy conformations
obtained most frequently by folding simulations are closer
to the native structure than the conformation with lowest
energy. The direct translation of this finding into the field
of fold recognition by threading methods would mean
that most abundant high-scoring models are closer to the
native structure than the model with highest score. This is
the main rationale behind the 3D-Jury approach.

ALGORITHM
3D-Jury, takes as input groups of models generated by a
set of servers, however, neglecting the assigned confidence
scores. All models are compared with each other and a
similarity score is assigned to each pair, which equals
to the number of Calpha atom pairs that are within 3.5
Å after optimal superposition. The MaxSub tool (Siew
et al., 2000) is used to calculate the similarity of two
models, but any other similar programs can be used as
well. If this number is below 40, the pair of models is
annotated as not similar and the score is set to Zero. The
cutoff value of 40 was taken from previous benchmarking

results (unpublished) and indicates a roughly 90% chance
for both models to belong to the same fold class. The
final 3D-Jury score of a model is the sum of all similarity
scores of considered model pairs divided by the number
of considered pairs plus one. The 3D-Jury system can
operate in two modes, which differ by the allowed set of
considered model pairs. The best-model-mode (3D-Jury-
single) allows only one model from each server to be
used in the sum, while the all-models-mode (3D-Jury-all)
allows the consideration of all models of the servers:

3D − Jury − all(Ma,b)

=
∑N

i
∑Ni

j,a �=i OR b �= j
sim(Ma,b, Mi, j )

1 + ∑N
i Ni

3D − Jury − single(Ma,b)

=
∑N

i maxNi

j,a �=i OR b �= j

(
sim(Ma,b, Mi, j )

)

1 + N
sim(Ma,b, Mi, j ) : similarity score between model

Ma,b and model Mi, j

3D − Jury − all : 3D - Jury score in the all

- models - mode

3D − Jury − single : 3D - Jury score in the best

- model - mode

Ma,b : model number b from the server a

Mi, j : model number j from the server i

N : number of servers

Ni : Number of top ranking models from the server

i (maximum 10)

The 3D-Jury system neglects the confidence scores as-
signed to the models by the servers. This does not nec-
essary mean that the information about the original scores
is lost. It can be expected that highly reliable models pro-
duced by fold recognition methods have less ambiguities
in the alignments to their template structures, which would
result in higher similarity between models generated on
templates with the same fold and consequently in higher
3D-Jury scores.

IMPLEMENTATION
The 3D-Jury system was evaluated in the latest
LiveBench-6 program. The results presented in Ta-
ble 1 demonstrate that the 3D-Jury system shows very
high sensitivity on the difficult targets while some well
tuned sequence alignment methods generate higher qual-
ity models for the easy targets. Nevertheless, the number
of correct predictions is the highest for some versions of
the 3D-Jury system in both categories. A very important
criterion is, however, the specificity of the reported
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Table 1. The performance of the 3D-Jury system in LiveBench-6

EASY HARD ROC
Name Sum All Name Sum All Name Mean First

3DS5 3003 27 3JCa 2018 26 3JA1 49.0 47
3JCa 3002 27 3JAa 2007 29 PMO3 49.0 43
3JC1 2917 27 3DS5 1945 25 PMOD 46.8 38
3DS3 2864 25 3JA1 1890 28 PMO4 46.1 34
ST02 2827 26 3JC1 1883 24 3JCa 46.0 35
PCO3 2745 27 PMO3 1775 25 3DS5 45.0 24
PMO4 2739 26 PMOD 1756 26 3JC1 44.9 38
RBTA 2731 25 3DS3 1690 24 3JAa 44.9 38
PMO3 2717 27 PMO4 1670 24 PCO3 44.6 27
3JA1 2702 26 SHGU 1649 22 PCO2 44.6 34
SHGU 2686 25 PCO2 1608 24 3DS3 43.2 33
PCO4 2683 26 PCO3 1593 21 SHGU 42.9 35
FFA3 2648 26 PCO4 1454 22 ORFs 42.8 38
FUG3 2647 25 RBTA 1439 20 ST02 40.4 37
ORFs 2629 27 ORFs 1413 20 PCO4 38.3 27
3JAa 2626 26 ST02 1366 19 FFA3 37.3 19
SFPP 2553 24 INBG 1343 21 INBG 36.8 23
FUG2 2543 24 FFA3 1213 18 FUG2 35.6 13
PMOD 2521 25 3DPS 1157 16 FUG3 35.3 11
INBG 2514 24 FUG2 1134 19 RAPT 34.9 28
3DPS 2513 24 FUG3 1111 17 SFPP 34.6 17
MGTH 2420 24 SFPP 1087 16 MGTH 34.0 22
ORFb 2404 22 MGTH 1081 16 SFAM 32.7 11
RAPT 2392 25 SFAM 1030 16 ORFb 32.5 8

The table shows the sensitivity of several structure prediction servers on 32 easy (EASY) and 64 difficult (HARD) targets and the specificity score (ROC;
Swets et al., 2000) computed on all 96 targets. For each of the three evaluations only the top 25 servers are shown. The evaluated servers are indicated in the
NAME column using a fourletter abbreviation code (please view the original LiveBench pages for more information about the servers). The four 3D-Jury
versions are marked with shaded background. 3JA1 and 3JAa use a set of eight threading servers for consensus building while 3JC1 and 3JCa use all
prediction servers, including other meta-predictors. 3JA1 and 3JC1 use the best-model-scoring mode (only one model per server is used for consensus
building) while 3JAa and 3JCa use the all-models-scoring mode (all models from the servers are used for consensus building). Other meta-predictors or
servers that produce models from spliced fragments of several structural templates are shown in bold (PMO[X] and PCO[X] belong to the Pcons series;
SHGU and 3DS[X] belong to the 3D-SHOTGUN series; RBTA indicates Robetta). The ALL column reports the number of correct models generated for easy
or difficult targets by each server. A correct model is defined as a model where at least 40 C-alpha atoms (correct atoms) can be superimposed on the native
structure within 3.0 Å. The SUM column sums the number of correct atoms over all correct models for each server. The sensitivity ranking is based on the
SUM column. The FIRST column reports the number of correct predictions with higher confidence score than the first wrong prediction (less than 31 correct
atoms). ‘Borderline’ predictions, between 31 and 39 correct atoms, are ignored. The MEAN column shows the average number of correct predictions
obtained with a higher confidence score than the first 1–10 false predictions. The specificity ranking is based on the MEAN column. The exact ranking of all
servers is subject to frequent changes and many differences cannot be regarded as significant.

confidence score. The best results are obtained with the
3D-Jury system operating in the best-model-mode on a
set of eight servers (ORFeus Pas et al., 2003; SamT02,
Karplus et al., 2001; FFAS03, Rychlewski et al., 2000;
mGenTHREADER, Jones, 1999; INBGU, Fischer, 2000;
RAPTOR, Xu et al., 2003; FUGUE-2, Shi et al., 2001;
3D-PSSM, Kelley et al., 2000). The score obtained with
this setting is reported as default on the Meta Server pages
(http://BioInfo.PL/Meta/), which is the current interface
to the 3D-Jury system. The significance cutoff of 50 has
been chosen, which results in a prediction accuracy of
above 90%. As the main difference to other consensus
methods, the interface enables the selection of servers

used for consensus building and the selection between the
two score summing modes by the user.

DISCUSSION
The 3D-Jury system follows a simple protocol that can
be easily reproduced and incorporated into other fold
recognition programs. This addition is likely to boost the
quality of the predictions. However the system does not
guarantee that the correct model will be selected from a set
of preliminary models, especially if the correct solution is
an outlier and is provided by only a single server.

In contrast to some meta-predictors (i.e. 3D-
SHOTGUNS, Pmodeller or ROBETTA; Simons et al.,
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1997) the 3D-Jury system is not capable of improving the
model (template) structures. It can only change the final
ranking of the reported models. Nevertheless, because of
its versatility, it can be easily placed on top of methods that
modify the template structures as an additional jury mod-
ule. This is currently possible via the Meta Server inter-
face, where some fragment splicing methods are available.
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