
Vol. 22 no. 14 2006, pages e117–e123

doi:10.1093/bioinformatics/btl260BIOINFORMATICS

Dense subgraph computation via stochastic search:

application to detect transcriptional modules
Logan Everett1, Li-San Wang2 and Sridhar Hannenhalli�
1Penn Center for Bioinformatics and 2Department of Biology, University of Pennsylvania,
Philadelphia, PA, USA 19104

ABSTRACT

Motivation: In a tri-partite biological network of transcription factors,

their putative target genes, and the tissues in which the target genes

are differentially expressed, a tightly inter-connected (dense) subgraph

may reveal knowledge about tissue specific transcription regulation

mediated by a specific set of transcription factors—a tissue-specific

transcriptional module. This is just one context in which an efficient

computation of dense subgraphs in a multi-partite graph is needed.

Result: Here we report a generic stochastic search based method

to compute dense subgraphs in a graph with an arbitrary number of

partitions and an arbitrary connectivity among the partitions. We then

use the tool to explore tissue-specific transcriptional regulation in the

human genome. We validate our findings in Skeletal muscle based

on literature. We could accurately deduce biological processes for

transcription factors via the tri-partite clusters of transcription factors,

genes, and the functional annotation of genes. Additionally, we propose

a fewpreviously unknownTF-pathway associations and tissue-specific

roles for certain pathways. Finally, our combined analysis of Cardiac,

Skeletal, and Smooth muscle data recapitulates the evolutionary

relationship among the three tissues.

Contact: sridharh@pcbi.upenn.edu

1 INTRODUCTION

Eukaryotic protein coding genes are transcribed by RNA

Polymerase-II. To accomplish this, Pol-II is critically aided by

several other transcription factors (TF) (Kadonaga, 2004). These
TFs bind to specific DNA elements in the relative vicinity of the

gene, and through cooperative interaction guide Pol-II to the tran-

scription start site (TSS). An important long-term goal is the knowl-

edge of groups of functionally interacting factors—transcriptional
module (Bolouri et al., 2002; Thompson et al., 2004). Transcription
modules provide an efficient mechanism to co-regulate a group

of functionally related genes, for instance, specific to a tissue

(Wasserman et al., 1998) or involved in immunity (Senger et al.,
2004).

A combinatorial approach to transcriptional module detection

uses a graph-theoretical abstraction: in a bi-partite graph of

TFs and genes, where a TF is connected to its target genes, a

large bi-partite clique represents a potential transcriptional module

(Hannenhalli et al., 2003). This is precisely the problem of clique
enumeration in bi-partite graphs (Alexe et al., 2000). One can

attach weights to the TF-gene pairs indicating the likelihood that

the TF regulates the gene. In this case a more desirable optimiza-

tion is to detect heavy sub-graphs (Tanay et al., 2004). These

combinatorial, enumerative approaches although effective in

several biological problems (Hannenhalli et al., 2003), are

inherently inefficient, thus limiting their application. Also, a

practical extension of this abstraction should include additional

types of nodes in the graph, for instance functional classes or tissues.

A maximal clique in a tri-partite graph with Tissue as the additional

partition would reveal tissue specific transcriptional modules. One

can imagine the utility of having additional partitions representing

other kinds of functional information.

Efficient algebraic approaches based on spectral graph theory

have been proposed to co-cluster the two dimensional gene-

expression (Ernst et al., 2002), and word-document (Dhillon,

2001) datasets; dense blocks in the permuted matrix represent

co-clusters. The main limitation with this approach is that the

co-clusters are non-overlapping and it is difficult to assess their

significance. Dense sub-graph computation in general graphs

has been studied in the context of identifying web communities

(Flake et al., 2000) using network flow techniques. However,

these methods focus on detecting a single most dense subgraph

and are not adaptable to our specific problem domain, as will

become clear later. There are approaches to detect overlapping

clusters, although only in 2-dimensional, gene-expression data

(Ihmels et al., 2002).
Another desirable feature that is lacking in current approaches

is that they do not distinguish a ubiquitously connected vertex

from a vertex that is highly connected to a specific subset of vertices.

In our application, we would like to avoid such ubiquitously con-

nected vertices without having to filter them out in a pre-processing

step. For instance a TF like Sp1 is not interesting, unless it is

more tightly connected to our genes of interest than to other genes.

Here we propose a stochastic search based approach to detect

dense subgraphs while addressing the concerns discussed above.

We assess the significance of our solutions based on graph random-

ization. Our current implementation exploits the tri-partite graph

structure with an arbitrary connectivity between partitions. We have

applied the tool on human whole genome TF-Gene graphs for tissue

specific genes to discover tissue specific transcriptional modules.

We have validated the clusters detected in Skeletal muscle based�To whom correspondence should be addressed.
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on the literature evidence. When applied to TF-Gene-GO graph

without the TF-GO edges, our approach can successfully deduce

TF-GO relations, i.e. functional assignment of TFs. Similar applica-

tion to TF-Gene-Pathway reveals novel TF-Pathway relations.

Application to Tissue-Gene-Pathway graph using the combined

datasets for Cardiac, Skeletal, and Smooth muscle recapitulates

the evolutionary relationship among the three tissues and reveals

novel Tissue-Pathway relations. Thus, our work presents a novel

efficient approach for dense subgraphs and its application to a

variety of genome wide tri-partite graphs.

2 RESULTS

2.1 Computing dense sub-graphs by Random

Search—method overview

The goal of our approach is to find ‘all’ distinct dense sub-graphs.

Because our input involves thousands of nodes and edges, our

method has to be time-efficient. We adopt a stochastic hill-climbing
approach that attempts to strike a balance between speed and pre-

mature stopping at local optima. In summary, consider a Markov

chain where each state represents a potential solution (represented

by an indicator variable for each node where a value of 1 indicates

that the vertex belongs to the cluster). We connect each state to

another state if they differ in exactly one vertex, and define the

transition probability to capture the fitness of the solution. Starting

from some starting state we stochastically traverse the neighbor-

hood of this state in the state space until an optimal state is reached.

We repeat this process starting from a large set of seed states to

obtain several good solutions.

Although our approach is applicable to a general graph, in order

to highlight the specific application to transcriptional module detec-

tion, here we illustrate the method using a tri-partite graph (Fig. 1).

Let the three parts be G0 (genes), T0 (Tissues) and F0 (Transcription
factors). We will also refer to these parts as GG, GT, and GF respec-

tively. Figure 1 shows the input graphs G0, T0, and F0 and a potential
solution G, T, F. Intuitively, we want a solution such that nodes in

G are connected to a large fraction of nodes in F and a relatively

smaller fraction of nodes in F0 (same holds for all pairs of subsets).

This can be captured using a log-likelihood score.

For a node g and a subset of nodes X in another partition,N(g,X) is
the number of nodes in X connected to g andD(g,X) ¼ N(g,X)/ jX j ,
i.e. the fraction of nodes in X that g is connected to.

The ‘score’ of a solution G, T, F is

SðG‚T‚FÞ ¼
X

u2G[T[F

X
X¼fG‚T‚Fg‚u=2X

Nðu‚XÞ log Dðu‚XÞ
Dðu‚X0Þ

2
4

3
5

In other words, for every node, we compute its log-likelihood

score with respect to each of the other partitions. In a given iteration

of our stochastic search (state transition in the Markov chain), the

solution can grow or shrink. Every node, both, inside and outside the

current solution, is scored. The score of a node outside the current

module, i.e. g =2 G AND g 2 G0, is S(G [ {g}, F, T) � S(G, F, T),
i.e. the relative increase in the cluster score if g is added to the

module. A node inside the module, i.e. g 2 G can be scored analo-

gously as the relative increase in the module score if g is removed.
The scores for all nodes from all partitions are normalized to a

sum of 1 (after initializing the negative scores to 0). A candidate

node is chosen according to this probability distribution. Note that

adding or removing a single node corresponds to a state transition

in our Markov chain. The procedure stops when no significant

gains are achieved for several consecutive iterations.

To seed our stochastic search, we enumerate all maximal com-

pletely connected clusters with a user specified minimum number

of nodes from each partition. For instance a typical value we have

used is 3 genes and 3 transcription factors. We then iterate until

we exhaust all seeds or reach the specified number of clusters;

we choose the largest of the unused seeds and run the stochastic

search algorithm to obtain a dense subgraph X; we then prune all

seeds that highly overlap X to avoid finding similar subgraphs in

subsequent runs. We stop after a pre-specified number of clusters

(100) are identified.

Data preparation. From among the 546 vertebrate TF positional

weight matrices (PWM) in TRANSFAC v8.4 (Wingender et al.,
1996), we have extracted 221 representative PWMs (methods). This

was done to minimize the bias in our clusters caused by highly

similar PWMs connected to the same set of genes. For these

221 PWMs, we obtained the TF-Gene edges for all human genes

using our binding site prediction method based on Phylogenetic
Footprinting (Levy et al., 2002) (methods). We defined Gene-

Tissue edges using an entropy-based measure of tissue-specificity

(Schug et al., 2005) and the Novartis tissue survey data (Su et al.,
2004). Finally Gene-GO and Gene-Pathway edges were defined

using GO (Harris et al., 2004) and KEGG pathway resources

(Kanehisa et al., 2002).

2.2 Tissue-specific transcriptional modules in

Human—Skeletal Muscle as a case study

We identified 477 genes specifically expressed in Skeletal Muscle

based on our threshold for tissue-specificity. We then applied

our tool to the bi-partite graph consisting of 477 genes and 221

representative transcription factors. Figure 2 (‘o’) shows the cluster

score distributions for this graph.

Significance To estimate the significance of the cluster scores, we

randomized the input graph and computed the cluster scores, as

shown in Figure 2 (‘+’). A majority of the identified clusters

have a score greater than the maximum score in the randomized

graph. To obtain a more stringent background, we randomized the

graph 100 times and for each randomized graph we retained only the

maximum cluster score after running our tool until exhaustion

Fig. 1. Illustration of an iteration of the stochastic search.
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(using the same parameters as that for the original graph). As shown

in the figure (‘D’), even though the peak of real scores is to the left of
the peak of max scores in the randomized graphs (this is expected

since we are using max scores for the randomized graphs), there are

several clusters in the input graph which score better than the

maximum for any randomized graph (�700). These 24 clusters

therefore represent highly significant clusters.

Sensitivity Wasserman and Fickett have analyzed six transcription

factors believed to confer muscle specific regulation (Wasserman

et al., 1998), namely, Sp1, AP-1, Myf, SRF, MEF-2, and TEF-1.

Sp1 is included in several of the top 24 clusters, including the top

scoring one. In our initial grouping of positional weight matrices

AP-1 belonged to a group with CREB as the representative and

CREB was included among the top 24 clusters. Myf is an E-box

protein and was grouped along with several other E-box proteins,

with E47 as the representative, and E47 was included among the top

24 clusters. SRF was not included among the top 24 clusters but was

in a cluster ranked 28, whose score is still above 90% of the back-

ground scores. MEF-2 was included in a very low scoring cluster

(ranked 57). TEF-1 has a short 6 base pair binding site with very

little information content, as reported in TRANSFAC and hence

was not part of our input graph. However, TEF-1 is very similar to

Tax/CREB in terms of binding site similarity which is in the same

group as AP-1 mentioned above. Hence most of the factors analyzed

in (Wasserman et al., 1998) are included in the high scoring clusters
that we have identified.

Specificity To evaluate other factors identified by virtue of

belonging to high scoring clusters, we extracted the 13 transcription

factors that were included in greater than 10 of the 20 top-scoring

clusters. These factors are: Sp1, MAZ, MAZR, Muscle_initiator,

ETF, Churchill, EGR-1, AP2, VDR, MTF-1, Zic1, ZF5 and Spz1.

MAZ (consensus: GGGGAGGG), MAZR (consensus:

GGGGGGGGGGCCA), Churchill (consensus: CGGGGG) and

ETF (consensus: GCGGCGG) are very similar to Sp1. ETF is a

close homolog of TEF-1 (mentioned above), whereas MAZ sites are

experimentally known to bind Sp1 (Parks et al., 1996), and MAZ is

expressed in Skeletal Muscle (Song et al., 1998), MAZR binding

site was found to be significantly enriched in 400 bp upstream of

muscle genes in an independent computational analysis (Aerts et al.,
2003). Muscle_initiator was derived by analyzing the promoters of

specific Myc targets in vivo (Grandori et al., 1997). EGR-1 with

SRF and Sp1 regulates muscle contraction (Irrcher et al., 2004). AP-
2 with Sp1 regulates the muscle gene Utrophin (Perkins et al.,
2001). VDR is involved in muscle development (Endo et al.,
2003). MTF-1 is involved in oxidative stress response (Wimmer

et al., 2005), an essential process in muscle. Zic1 is involved in

skeletal development (Aruga et al., 1999). ZF5 is known to repress

c-Myc (a gene involved in myogenesis) and one of the ZF5 isoforms

is specifically expressed in skeletal muscle (Numoto et al., 1997).
Thus, apart from Spz1, there is varying degree of support that all

other transcription factors frequently found in high scoring clusters

are involved in Skeletal muscle processes.

Although we have discussed the results only for Skeletal Muscle,

we have in fact applied the tool to all tissues in the Novartis set.

The score distributions follow a similar pattern relative to random-

ized graphs but specific analysis of the results in these tissues was

not done.

2.3 Functional annotation of TFs via tri-partite

cluster detection

Here we illustrate the utility of extending the above approach to

multi-partite graphs. The largest cluster in the TF-Gene graphs for

Skeletal muscle specific genes includes 36 TFs and 89 genes. We

constructed a tri-partite graph by including the GO biological pro-

cess (GOBP) for the genes as the third partition and connecting

this new partition to the ‘Gene’ partition only. We computed dense

clusters in this graph, with minimum edge density threshold of 0.75.

This resulted in 14 sub-clusters. As in section 2.2, the scores of these

14 clusters are higher than the maximum scores for 100 randomized

graphs (Wilcoxon rank sum test base p-value ¼ 3.8E-04).

Although, the GO annotations in these sub-clusters are largely over-

lapping, the genes and TFs in the sub-clusters are not so. Never-

theless it is difficult to interpret such subtly distinct sub-clusters

based on the current literature. Instead, we assessed whether we can

accurately assign functions to TFs via their sub-cluster membership.

Recall that we did not use any known TF-GO relationships in

identifying the clusters. The 14 sub-clusters involved 21 TFs and

12 GOBPs. Thus a total of 252 TF-GOBP relations are possible. In

this universe of 252 relations, 59 are directly supported by the GO

annotation for the TF protein, and thus represent the positives. To

predict TF-GOBP relationships, we assigned each TF in a sub-

cluster to each BP in that sub-cluster, resulting in 93 predicted

TF-GOBP relations. Of the total of 252 relations, the overlap

between predicted 93 and known 59 relations is 33 (Hypergeometric

p-value ¼ 5.4E-04). In other words 35% of our predictions include

56% of the known relations. To evaluate the validity of the 60

predicted relations with no supporting GO annotation, we took

an indirect approach. For TF x and GOBP p, we estimated the

support for a TF-GOBP relation ‘x$p’, as the number of

x$g$p triplets where the x$g indicates a binding site for x in

g’s promoter, and g$p indicates a GOBP annotation of g as p. We

expect the 60 predicted TF-GOBP relations to have a greater sup-

port than the background. For the background we used the 133 of the

252 relations which were neither predicted, nor known. Also to

Fig. 2. The cluster score distributions for (i) clusters in Skeletal muscle

specific genes and the corresponding TFs, (ii) maximum cluster score, one

per randomized graph for 100 randomizations, (iii) all cluster scores for

one randomized graph.
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avoid circularity, we only used the support from genes which were

not specific to Skeletal muscle and hence were not part of the input

graph. Figure 3 shows that the predicted relations have a signifi-

cantly greater support than the background (Wilcoxon rank sum test

based p-value ¼ 5.7E-15).

2.4 Co-regulation of genes involved in

specific pathway

To detect specific pathways within the skeletal muscle specific

modules, similar to the previous section, we constructed a tri-partite

graph by including the known pathways for the genes as the third

partition (instead of GO) and connecting this new pathway partition

to the gene partition only. We computed 4 tightly connected clusters

in this graph. One of them was intriguing in that the transcription

factor ETF uniquely belonged to this sub-cluster. Recall that ETF

was detected as a frequent member of high scoring clusters and is a

family member of TEF-1 known to be involved in muscle processes

but ETF does not have any direct evidence for involvement in

muscle processes. The other TFs in this sub-cluster are p300,

Sp1, AP-2 and EGR. And the genes in this sub-cluster are Keratin
17, Vitronectin, Integrin-a7, Integrin-b1A, and cytosolic, malic
enzyme 1. Furthermore, the pathway ‘ECM (Extra Cellular Matrix)

receptor’ belongs uniquely to this sub-cluster. Indeed Vitronectin,
Integrin-a7, and Integrin-b1A belong to this pathway. ETF

binding site occurs within 85 bps of a Sp1 site in the 1 kb promoter

region of 4 of the 5 genes and in Vitronectin and Integrin-b1A,
there are 2 distinct binding sites for ETF. Even though there is no

direct experimental evidence supporting the role of ETF in the

ECM-receptor pathway, we believe that the strong circumstantial

evidence makes it a promising candidate to pursue for direct func-

tional validation. Discoveries like this one can be made readily by

an approach like ours that takes into account multiple types of

information in an unbiased way.

2.5 Delineating Tissue-specific transcription factors

and pathways via tri-partite clustering

Next we evaluate whether our approach can reveal subtle differ-

ences between tissues related at a gross level. We combined the TF-

Gene data for genes specific to Heart, Skeletal muscle and Smooth

muscle, resulting in a tri-partite graph consisting of 221 TFs, 1519

genes, and 3 tissues. Among the three tissues, Heart (574 genes),

Skeletal muscle (477 genes), and Smooth muscle (666) genes, there

are 117 genes in common between Heart and Skeletal muscle,

65 genes between Heart and Smooth muscle and 32 between

Smooth and Skeletal muscle. This is consistent with phylogeny

based results in (OOta et al., 1999). Even though cardiac muscle

is evolutionarily closer to skeletal muscle, it is functionally closer to

smooth muscle in that both cardiac and smooth muscle are invol-

untary. We investigated whether this evolutionary relationship is

also reflected in the transcriptional modules. First, among the top

10 clusters, only 1 involved a single tissue and the other 9 involved

exactly 2 tissues. Of these 9 cases, 6 involved Heart and Skeletal

muscle, where 3 involved Heart and Smooth muscle. Thus there

are twice as many clusters associating heart with skeletal muscle

relative to smooth muscle. Second, among the top 10 tri-clusters,

we recorded whether a TF belonged in a cluster with a tissue. For

the three tissues in the specified order (Heart, Skeletal, Smooth), we

assigned 3 binary numbers to each TF. For instance (1,0,1) means

that the TF is associated with Heart and Smooth muscle but never

with Skeletal muscle. The number of TFs belonging to the 7 possible

binary vectors are—001(5), 010(0), 100(0), 110(29), 101(17),

011(0), 111(44). Thus most TFs are associated with all three tissues.

Additionally there are more TFs uniquely associated with Heart

and Skeletal muscle (29) than there are uniquely associated with

Heart and Smooth muscle (17). Thus the transcriptional modules

reflect the greater similarity between Heart and the Skeletal muscle.

However, the statistical significance of this is not clear given the

greater similarity between Heart and Skeletal muscle in terms of

common genes.

Next we computed tri-clusters in the Tissue-Gene-Pathways

graph in order to detect associations between tissues and pathways.

A total of 15 clusters were detected, each with 2 tissues (this is

because we required the seeds to have at least 2 tissues). Heart and

Skeletal muscle co-associate in 8 cases, Heart and Smooth muscle

co-associate in 5 cases and Smooth and Skeletal muscle co-

associate in 2 cases. Furthermore, there are pathways that uniquely

associate with one of the three tissues in our dataset. For instance

there are 9 pathways uniquely associating with Heart and several of

these have to do with immune system, e.g. B cell receptor signaling
pathway, Natural killer cell mediated cytotoxicity, and T cell
receptor signaling pathway. Carbon fixation pathway is uniquely

associated with Skeletal muscle, and there are several pathways that

uniquely associate with Smooth muscle, an overwhelming majority

of which are involved in amino acid metabolism and degradation.

We could not however assess the significance of these findings

based on the current literature.

3 METHODS

Binding site annotation

We extracted the 1 kb regions upstream of the annotated transcripts in the

hg16 release of the human genome from UCSC database (genome.ucsc.edu).

We also extracted the Human-Mouse alignments for these regions. We

searched the 1 kb regions using 546 binding profiles (Positional Weight

Matrix or PWM) for vertebrate transcription factors from TRANSFAC

v8.4 (Wingender et al., 1996). The search was done using the tool

PWMSCAN (Levy et al., 2002). The initial hits were based on a p-value

cutoff of 0.0002, corresponding to an average frequency of 1 hit every

5 kb scanned in the human genomic background. We filtered these initial

Fig. 3. Amount of indirect support for predicted TF-GOBP relations and for

the background.
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hits further using Human-Mouse alignments. For each hit we computed

the fraction c of binding site bases that were identical between human

and mouse. We retained the hits such that either p-value � 0.00002

(1 in 50 kb) or c � 0.8. This procedure is similar to the one reported

previously (Levy et al., 2002).

Clustering transcription factor PWMs

Pair-wise similarity computation Each PWM X is a 4 by k matrix for

k-length binding site, where Xui is the proportion of base u at position i, such

that
P

u Xui ¼ 1 (Stormo, 2000). We compute the dissimilarity or distance

between position i of PWM X and position j of PWM Y using relative entropy

REij ¼
P

u Xui ln ðXui=YujÞ (Durbin et al., 1998). For two identical positions
this value is 0 and the more dissimilar the positions, the higher the RE value.

However, as defined, this is an asymmetric measure and in practice we take

the average of Rij and Rji as the distance between the two positions. Notice

that according to this measure, for two positions at which the base pairs are

distributed according to the background probability (say, equi-probable),

their RE value will be 0, even though individually these positions are not

informative. Let Rir be the RE-value between column i and background

probability distribution of bases. Rjr is defined similarly. We define the

similarity between column i and column j, Sij ¼ Rir þ Rjr �
ððRij þ RjiÞ=2Þ. We first compute the Sij for every pair of columns for all

PWMs in the TRANSFAC database. These values are normally distributed

with mean m and standard deviation s. The sum of k such S-values is also

normally distributed with mean mk¼mk, and standard deviation sk¼sHk.

To compute the similarity between k consecutive columns of two PWMs, we

sum up the k S-values for aligned column pairs and transform this value to a

z-score ¼ (S � mk)/sk, which makes the scores for different values of k

comparable. Next, for every PWM-pair and for every alignment offset with a

minimum of 6 base overlap between the PWMs (i.e., k� 6), we compute the

similarity z-score (‘z-value’). Using the empirical distribution of z-values for

all alignments of all PWM pairs, we convert each individual z-value into a p-

value, i.e., the probability of observing the z-value or higher in the back-

ground distribution; we call this the pz-value. Finally, to compute the simi-

larity between two PWMs X and Ywhile allowing for the possibility that two

related PWMs may be slightly shifted in positions, we slide the PWMs

relative to each other such that at least 6 positions are aligned. For each

such offset we compute the pz-value. Let mpz be the minimum pz-value over

all offsets. Notice that the longer PWM pairs have a greater number of

possible offsets and thus tend to achieve a low mpz-value. To correct for

this effect, we compute the significance of the observed mpz-value as the

random expectation of observing the mpz-value for K trials where K is the

number of offsets. That is,

PðX‚YÞ ¼ 1 � ð1 � mpzðX‚YÞÞK :

Clustering PWMs based on the P-values Given a p-value threshold

(we use 0.005), all PWMs can be represented as a network where PWMs

correspond to the nodes and two nodes are connected if their similarity

p-value is below the threshold. We then compute the so-called bi-connected

component in this graph. A bi-connected component is a connected com-

ponent of the graph that remains connected if any of the nodes are removed.

Each bi-connected component corresponds to a cluster. In other words if

two PWMs belong to same cluster, they must have at least two independent

lines of evidence that they are related (i.e. paths in the graph). Each cluster

thus obtained represents a family of PWMs with similar DNA binding

specificity. We selected the median of each cluster as the cluster represen-

tative. Out of 546 PWMs, 442 were grouped into 117 clusters, and with 104

singletons, this procedure resulted in 221 representative PWMs.

Tissue specific genes

For each gene g and each tissue t, we say g is specific for t if its expression

level in t is considerably higher than in other tissues, using the following

procedure from (Schug et al., 2005). We use the Novartis GeneAtlas

expression dataset (Su et al., 2004): the dataset has 79 different types of

human tissues (two replicates each). The hybridization experiments are

done using the Affymetrix HG-U133A (33689 probesets) and GNF1B

(11391 probesets) platforms. Let w(g,t) be the average expression level

of probeset g in tissue t (not log2-transformed) over the two replicates.

For each probeset, the relative expression level for tissue t is

pðt j gÞ ¼ wðg‚ tÞ/
P

tissue i wðg‚ iÞ. The entropy of gene g is

HðgÞ ¼ �
X

t

pðt j gÞ log2 pðt j gÞ:

The categorical specificity of gene g and tissue t is Qðg j tÞ ¼
HðgÞ � log2 pðt j gÞ. A low Q score implies gene g is highly specific for

tissue t: H(g) is low when the expression level of g is concentrated in a few

tissues, whereas p(t j g) is high when g is highly expressed in t. We

empirically chose a value of 10.5 as the cutoff for Q(g j t), as the density

of the gene-tissue specificity begins a sharp increase at a higher Q. A more

stringent value of 7 was suggested in (Schug et al., 2005). We then remap the

association from Affymetrix probeset IDs to RefSeq IDs.

KEGG and GO annotation data

We built the associations between genes (refseq ID), KEGG pathways, and

GO terms as follows. We downloaded data from the KEGG server that

contained the association data between KEGG pathways and NCBI GI num-

bers. We downloaded the association data between GO terms and NCBI

GENE IDs from the NCBI server. The mappings from GI numbers and

GENE IDs to RefSeq IDs are obtained fromNCBI. Themapping is inclusive:

for example, if KEGG pathway x is associated with GI number y, and y is

mapped to RefSeq IDs a, b, and c, then x is associated with a, b, and c.

Graph randomization

To determine the significance of cluster scores we find clusters by an ident-

ical process on randomized graphs with the node degrees identical to the real

graph. The graph randomization process is performed by swapping edges

with non-edges under a condition that preserves the degrees of all nodes.

Specifically, a quadruple of nodes (w,x,y,z) qualifies for this swapping

condition if it meets the following criteria (Yeger-Lotem et al., 2004):

(i) both w and x reside in the same partition A, and both y and z reside

in another partition B; (ii) there exists an edge between w and y, denoted as

E(w, y) ¼ 1, and also an edge between x and z, denoted as E(x, z) ¼ 1; and 3.

There exists a non-edge between w and z, and a non-edge between x and y,

denoted as E(w,z) ¼ 0 and E(x,y) ¼ 0 respectively. If the quadruple of

nodes meets these criteria, we then swap the edges by setting E(w,y) ¼
E(x,z) ¼ 0 and E(w,z) ¼ E(x,y) ¼ 1.

We sufficiently randomize an edge set between two partitions by selecting

a pair of nodes from each of the two partitions at random and swapping the

edges between these nodes if the above criteria are satisfied. This process is

repeated until the number of successful swaps is twice the total number of

edges. The number of swaps required to sufficiently randomize a graph was

determined by measuring the hamming distance from a representative graph

after each swap operation was performed.

4 DISCUSSION

The problem of efficient computation of tightly connected clusters

in a network has been studied in several biological as well as non-

biological contexts. As we have argued, however, the current

approaches are either (i) computationally inefficient, (ii) detect

one optimal cluster, (iii) find a few disjoint bi-clusters, or (iv) do
not discriminate against ubiquitously connected nodes. The trivial

approach to mask the best solution and repeat the process to find

other solutions leaves us with the problem of finding the best way

to mask current clusters and is not at all obvious. All previous

applications in biology are limited to two partitions, typically
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genes and expression conditions and there remains a need to extend

this to multiple partitions. Our emphasis has been on developing an

adaptable and general approach to finding meaningful clusters in a

collection of interrelated heterogeneous datasets.

The problem of identifying dense subgraphs in a general graph

(not necessarily a multipartite graph) has been studied in other

contexts using combinatorial approaches. These approaches aim

at finding the optimum (densest) subgraph. One can model this

problem in a way that is amenable to a Monte Carlo Markov
Chain (MCMC) technique, like Gibbs sampling. Briefly, we can

model the edges in the graph as being generated by two distinct

probability distributions depending on whether the edge belongs to

the (unknown) dense subgraph or not. The unknown parameters

including the edge probabilities and the cluster membership

can be iteratively estimated. In fact one can also design an

Expectation Maximization (EM) using the above setup. Although

we have modeled the problem as a Markov chain, we have decided

to search for a locally optimal cluster using a stochastic hill-

climbing approach. The main reason for this is the adaptability/

generality of the approach to a graph with arbitrary number of

partitions and arbitrary connectivity. Any given problem domain

entails different types of entities (partitions) with a different level of

connectivity between partitions. It was thus important to design

the method in a configurable fashion and our particular approach

allows that. We have not discussed, due to lack of space, the

various configuration parameters that our current implementation

allows. For instance, in principle, we can have a specific

schedule for selecting edges from different partitions to influence

the detected clusters if we had an a priori knowledge. Our cluster
score can be easily extended to weight edges or weight partitions

and this kind of adaptability is difficult to achieve with a more

standard approach like EM or Gibbs sampling. Our current imple-

mentation is ‘work in progress’ and this work illustrates the utility of

such a tool. A fully configurable tool for finding dense subgraphs

will be published in future work.

Efficient generation of seeds presents the computational bottle-

neck. We have followed a simple enumerative approach, given the

seed size relative to different partitions. For a seed size of k in one of
the partitions, we enumerate all k-vertex sets in that partition and

look for neighboring vertices in other partitions in search of a seed

above a specified size. This can become prohibitive for a partition

with several hundred vertices and k > 4. By carefully choosing the

partition to enumerate over, we have tried to counter this problem to

some extent.

There are very few examples of experimentally determined

transcriptional modules, thus making a large-scale evaluation of

computational methods difficult. However, we have shown using

a variety of validation approaches, that (i) the cluster scores are

highly significant, (ii) we can detect almost all of the established

TFs involved in Skeletal muscle specific expression, (iii) almost all

of the highly frequent TFs have literature evidence for involvement

in Skeletal muscle gene regulation, (iv) using a TF-Gene-GO graph,

we can successfully assign function to TFs, (v) in a combined set

of 3 tissues, the detected transcriptional modules support evolution-

ary relationship between Cardiac, Skeletal and Smooth muscle, and

(vi) novel hypotheses regarding TF-Pathway and Tissue-Pathway

can be generated using our approach.

Besides applying our tool to additional datasets, our future plan

includes (i) Extensive simulation studies and incorporation of other

score functions that account for edge weights, and (ii) extending

the current implementation to a graph with arbitrary number of

partitions.
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