
Vol. 22 no. 14 2006, pages e507–e513

doi:10.1093/bioinformatics/btl214BIOINFORMATICS

Novel Unsupervised Feature Filtering of Biological Data
Roy Varshavsky1,�, Assaf Gottlieb2, Michal Linial3 and David Horn2
1School of Computer Science and Engineering, The Hebrew University of Jerusalem 91904, Israel, 2School of Physics
and Astronomy, Tel Aviv University 69978, Israel and 3Department of Biological Chemistry, Institute of
Life Sciences, The Hebrew University of Jerusalem 91904, Israel

ABSTRACT

Motivation: Many methods have been developed for selecting small

informative feature subsets in large noisy data. However, unsupervised

methods are scarce. Examples are using the variance of data collected

for each feature, or the projection of the feature on the first principal

component.Weproposeanovel unsupervisedcriterion, basedonSVD-

entropy, selecting a feature according to its contribution to the entropy

(CE) calculated on a leave-one-out basis. This can be implemented in

four ways: simple ranking according to CE values (SR); forward selec-

tion by accumulating features according to which set produces highest

entropy (FS1); forward selection by accumulating features through the

choice of the best CE out of the remaining ones (FS2); backward elim-

ination (BE) of features with the lowest CE.

Results:We apply our methods to different benchmarks. In each case

we evaluate the success of clustering the data in the selected feature

spaces, by measuring Jaccard scores with respect to known classifica-

tions.Wedemonstrate that feature filteringaccording toCEoutperforms

the variance method and gene-shaving. There are cases where the

analysis, based on a small set of selected features, outperforms the

best score reportedwhenall informationwasused.Ourmethod calls for

an optimal size of the relevant feature set. This turns out to be just a few

percents of the number of genes in the two Leukemia datasets that we

have analyzed. Moreover, the most favored selected genes turn out to

have significant GO enrichment in relevant cellular processes.

Abbreviations: Singular Value Decomposition (SVD), Principal

Component Analysis (PCA), Quantum Clustering (QC), Gene

Shaving (GS), Variance Selection (VS), Backward Elimination (BE)
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1 INTRODUCTION

Feature selection is an important tool in many biological studies.

Given the large complexity of biological data, e.g. the number of

genes in a microarray experiment, one naturally looks for a small

subset of features (e.g. small number of genes) that may explain the

properties of the data that are being investigated. This type of

motivation fits into the general scheme of feature exploration,

i.e. searching for features because of their direct biological relev-

ance to the problem. An alternative motivation is that of pre-

processing: searching for a small set of features to simplify

computational constraints, to allow for the handling of high

throughput biological experiments, and to separate signal from

noise. Practically, selection of a small set of genes is of ultimate

importance when a small set of informative genes can be the basis

for cancer diagnosis and a basis for development of gene associated

therapy.

Preprocessing often involves some operation on feature-space in

order to reduce the dimensionality of the data. This is referred to as

feature extraction, e.g. restricting oneself to the first r principal

components of a PCA routine. Note that superpositions of features

appear in this example. Alternatively, in feature selection we limit

ourselves to particular features of the original problem. This is the

subject to be studied here. Let us refer to Guyon and Elissef (2003)

for a comprehensive survey.

It is conventional to distinguish between wrapper and filter

modes of the feature selection process. Wrapper methods contain

a well-specified objective function, which should be optimized

through the selection. The algorithmic process usually involves

several iterations until a target or convergence is achieved. Feature

filtering is a process of selecting features without referring back to

the data classification or any other target function. Hence we find

filtering as a more suitable process that may be applied in an

unsupervised manner.

Unsupervised feature selection algorithms belong to the field of

unsupervised learning. These algorithms are quite different from the

major bulk of feature selection studies that are based on supervised

methods (e.g., Guyon and Elissef, 2003, Liu and Wong, 2002), and

compared to the latter are relatively overlooked. Unsupervised stud-

ies, unaided by objective functions, may be more difficult to carry

out, nevertheless they convey several important theoretical advant-

ages: they are unbiased, by neither the experimental expert nor by

the data-analyst, can be preformed well when no prior knowledge is

available, and they reduce the risk of overfitting (in contrast to

supervised feature selection that may be unable to deal with a

new class of data). The downside of the unsupervised approach

is that it relies on some mathematical principle, like the one to

be suggested in this study, and no guarantee is given that this

principle is universally valid for all data. A common practice to

resolve this quandary is to demonstrate the success of the method on

various biological datasets and compare the results obtained by the

method with external knowledge.

Existing methods of unsupervised feature filtering include rank-

ing of features according to range or variance (e.g., Herrero, 2003,

Guyon and Elissef, 2003), selection according to highest rank of the

first principal component (‘Gene shaving’ of Hastie et al. 2000,�To whom correspondence should be addressed.
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Ding 2003) and other statistical criteria. An example of the latter is

Ben-Dor et al., (2001) where all possible partitions of the data are

considered and the corresponding features are labeled. The parti-

tions with statistical significant overabundance are selected.

Another example is of Wolf et al., (2005), who optimize a function

based on the spectral properties of the Laplacian of the features.

Here we present an intuitive, efficient and deterministic principle,

leaning on authentic properties of the data, which serves as a reliable

criterion for feature ranking. We demonstrate that this principle can

be turned into efficient and successful feature selection methods.

They compete favorably with other popular methods.

2 METHODS

2.1 Mathematical framework and notations

Let us consider a dataset of n instances1 A½nXm� ¼ f�AA1‚ �AA2‚ ::::‚
�AAi‚ :::‚

�AAng,
where each instance, or observation, Ai is a vector of m

measurements or features. The objective is to define a subset of

features ~MM , of size mc < m, that, in a sense to be defined below, best

represents the data.

In PCA (or SVD) studies it is conventional to regard the best representa-

tion as the minimal least-square approximation of the original matrix (Wall

et al., 2003). This principle can be followed also in feature extraction but it

has the disadvantage that it may preserve too many properties of the data,

including systematic noise. We will define our ‘best approximation’ using a

principle based on SVD-entropy, and subject it to an a-posteriori test: given

different selection rules of features choose the ones that prove useful as basis

for the best fit to labeled data, e.g., perform clustering within the data-space

spanned by the selected features and compare the results with known clas-

sification. This comparison will be performed using the Jaccard score.

J ¼ n11
n11 þ n01 þ n10

ð1Þ

where n11 is the number of pairs of instances that are classified together,

both in the ‘expert’ classification and in the classification obtained by the

algorithm; n10 is the number of pairs that are classified together in

the ‘expert’ classification, but not in the algorithm’s classification; n01 is

the number of pairs that are classified together in the algorithm’s classifica-

tion, but not in the ‘expert’ classification.

The Jaccard score reflects the ‘intersection over union’ between the algor-

ithm’s clustering assignments and the expected classification. Its values

range from 0 (no match) to 1 (perfect match).

2.2 Ranking by SVD-Entropy

Alter et al., (2000) have defined an SVD-based entropy of the dataset.

Denote by sj the singular values of the matrix A. sj
2 are then the eigenvalues

of the nxn matrix AAt. Let us define the normalized relative values (Wall

et al., 2003): and the resulting

Vj ¼ s2j

. X
k

s2k ð2Þ

dataset entropy (Alter et al., 2000):

E ¼ � 1

log ðNÞ
XN
j¼1

Vj log ðVjÞ ð3Þ

This entropy varies between 0 and 1. E ¼ 0 corresponds to an ultra-

ordered dataset that can be explained by a single eigenvector (problem of

rank 1), and E ¼ 1 stands for a disordered matrix in which the spectrum is

uniformly distributed. Figure 1 demonstrates two examples of 5 eigenvalues,

one with high entropy (left, 0.87) and the other with low entropy (right, 0.14).

As can be seen in Figure 1, when the entropy is very low, one expects a very

non-uniform behavior of eigenvalues. One should not confuse the standard

definition of entropy, based on probabilities (Shannon, 1948), with the one

used here, which is based on the distribution of eigen- (or singular) values.

Although standard entropy considerations appear in feature selection meth-

ods, such as the supervised bottleneck approach (Tishby et al., 2000), the use

of SVD-entropy for feature selection is a novel approach.

We define the contribution of the i-th feature to the entropy (CEi) by a

leave-one-out comparison according to

CEi ¼ EðA½nXm�Þ � EðA½nXðm�1Þ�Þ ð4Þ

where, in the last matrix, the i-th feature was removed.

Thus we can sort features by their relative contribution to the entropy. Let

us define the average of all CE to be c and their standard deviation to be d.

We distinguish then between three groups of features:

(1) CEi > c + d, features with high contribution

(2) c + d > CEi > c-d features with average contribution

(3) CEi < c-d features with low (usually negative) contribution

Features in the first group (high CE) lead to entropy increase; hence they

are assumed to be very relevant to our problem. Retaining these features we

expect the instances to be more evenly spread in the truncated SVD space.

The features of the second group are neutral. Their presence or absence does

not change the entropy of the dataset and hence they can be filtered out

without much information loss. The third group includes features that reduce

the total SVD-entropy (usually c-d <0). Such features may be expected to

contribute uniformly to the different instances, and may just as well be

filtered out from the analysis.

The first feature selection method that we propose is to limit oneself to the

first group of features according to theCE ranking.Awill then be represented

by a new matrix of rank mc, the number of features in group 1. Several other

feature selection methods are suggested in the next section. In all of them we

assume that the same value of mc continues to serve as the right guide for

optimal dimensionality reduction.

2.3 Three Feature Selection Methods

Entropy maximization can be implemented in three different ways, as is also

the case in other feature selection methods.

Fig. 1. A comparison of two eigenvalue distributions; the left has high entropy (0.87) and the right one has low entropy (0.14).

1In this paper A (or A[nXm]) is a matrix and A (or Ai) is a vector.
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(1) Simple ranking (SR): select mc features according to the highest

ranking order of their CE values.

(2) Forward Selection (FS): here we consider two implementations.

(a) FS1: Choose the first feature according to the highest CE. Choose

among all other features the one which, together with the first

feature, produces a 2-feature set with highest entropy. Continue

with iteration over allm-2 features to choose the third according to

maximal entropy, etc, until mc features are selected (Box 1).

(b) FS2: Choose the first feature as before. Recalculate theCE values

of the remaining set of size m-1 and select the second feature

according to the highest CE value. Continue the same way until

mc features are selected (Box 2).

(3) Backward Elimination (BE): Eliminate the feature with the lowest CE

value. Recalculate the CE values and iteratively eliminate the lowest

one until mc features remain (Box 3).

One may view the different methods also as specifying alternative

ranking methods. Whereas SR ranks the features according to their original

CE values, FS1, FS2 and BE introduce other ranking orders through the

algorithms defined above. In the examples studied below we display

rankings for the entire range of 1 to m.

In an appendix we analyze the computational complexity of all these

methods. SR is the fastest one and BE is the most cumbersome one for

large numbers of features. In the examples to be discussed next, we will

compare the different methods with one another. However, because of

complexity, the BE method will be used in only one of the examples.

3 Results

Our four feature filtering methods were compared with each

other and with two known methods: Variance Selection (VS) and

Gene Shaving (GS). The latter is a variation of a method of Hastie

et al. (2000) which removes features iteratively according to their

lowest correlations with the first principal component. For compar-

ison we also look at results of random feature selection on several

benchmarks.

3.1 The viruses dataset of Fauquet, 1988

This is a dataset of 61 rod-shaped viruses affecting various crops

(tobacco, tomato, cucumber and others) originally described by

Fauquet et al. (1988) and analyzed more thoroughly by Ripley

(1996). There are 18 measurements of Amino Acid Compositions

(AAC) for the coat proteins of the virus that serve as 18 features.

The viruses are known to be classified into four classes:

Hordeviruses (3), Tobraviruses (6), Tobamoviruses (39) and

Furoviruses (13).

Figure 2 displays the CE values of all 18 features. Our criterion

sets mc ¼ 3. We test the performance of the system for the entire m
range to see if this choice makes sense. Before doing so, let us

display the ranking orders of all methods in Table 1. By definition,

SR has the same ranking order as CE in Figure 2. In this problem,

BE turns out to lead to the same order as FS1, and all our three

methods agree with each other on the first three features to be

selected. We include in Table 1 also the ranking order of VS (vari-

ance selection) and GS (gene shaving). The two last ones are highly

correlated with each other (Spearman correlation 0.76) but highly

uncorrelated with our three methods (see Supplementary Material

for more details). In particular note that VS chooses ASX and GLX

as its second and third features, whereas for our three methods these

two features are unfavorable (15th to 18th) choices.

Next we evaluate the subset selection using the Jaccard score.

This is done by applying the QC clustering algorithm (Horn and

Gottlieb, 2002) on the 61 viruses described by the selected subset of

features. QC was applied after reduction of each space to normal-

ized 3-space dimensions, using the parameter s ¼ 0.5 (for details

see Varshavsky et al., 2005, and COMPACT2). Results are shown in

Box 1: Pseudo-code of Forward Selection method FS1

Box 2: Pseudo-code of Forward Selection in method FS2

Box 3: Pseudo-code of Backward Elimination method BE

Fig. 2. CE of the 18 Amino Acid Compositions (AAC) of the virus dataset.

ASX stands for ASN and ASP and GLX for GLN and GLU. The dashed line

represents the value of c and the dot-dashed line the value of c+d.

2http://adios.tau.ac.il/compact or http://www.protonet.cs.huji.ac.il/compact
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Figure 3 for three of our four methods. All three do exceedingly well

at the three features level (J > 0.9) whereas the variance method

obtains J¼ 0.4. Note that our methods, with our choice ofmc, lead to

a much better result than J ¼ 0.6, obtained when all 18 features are

taken into account. This exemplifies the importance of keeping

features that maximize the entropy. The feature ranking of FS1

and BE is the only one that keeps performing very well with

more than three selected features. Similar relative successes

of feature selection evaluation (although less favorable

J-scores) were obtained with other clustering methods, such as

K-means. This comparison, as well as other details that could

not be fitted into this paper, can be found in the Supplementary

Material3.

Fauquet et al. (1987) have argued that the AAC of the coat protein

of plant viruses are specific to the structure of the viral particle, to

the mode of transmission and to sub-grouping of viruses to distinct-

ive classes. Our results indicate that choosing only 3–4 features

correctly, not only preserves the classification but allows much

better performance with minimal failure. It is interesting to note

that the 3 highest-ranking amino acids, GLY, THR and LYS are not

dominating the coat proteins. These amino acids account for only

13–21.5% of the coat proteins, a fraction that is similar to the

average percentage in the entire proteins database (18.3%). Further

investigation shows that neither their size nor polarity or electric

charges differentiate these three amino acids from the remaining.

Nevertheless, since GLY, THR, LYS and MET (the fourth ranked

AAC, according to the FS1 method) represent different functional

groups, we conclude that the FS1/BE ranking is consistent

with selecting amino acids that carry different physico-chemical

properties.

3.2 The MLL dataset of Armstrong et al., 2002

The second dataset that we apply our methods to is that of

Armstrong et al., 2002, who have attempted to cluster data of

three Leukemia classes: lymphoblastic Leukemia with MLL trans-

locations and conventional acute lymphoblastic (ALL) and acute

myelogenous Leukemias (AML). In the experiment, 12582 gene

expressions were recorded, using Affymetrix U95A chips on

72 patients, 20 of which diagnosed as MLL, 24 ALL and

28 AML. They showed that these 3 Leukemia types can be divided

according to some gene expression. However, when filtering in an

unsupervised manner (selecting 8700 genes that show some vari-

ability in expression level), the clustering results were unsatisfact-

ory and much inferior to a supervised selection of 500 genes that

best separate between the cancer patients.

Applying our CE criteria we use the method SR, and compare

clustering of these feature-filtered data with VS (Figure 4). Clus-

tering was performed by K-Means, averaging over 100 runs and

using K ¼ 3 with data projected onto a unit sphere in 3D-reduced

space (Varshavsky et al., 2005). The asymptotic Jaccard score is

J ¼ 0.426 for this K-Means method. As can be seen in Figure 4 VS

provides no improved quality, whereas SR leads to J-values

Table 1. Ranking of the 18 Amino Acid Compositions of the virus dataset

according to various feature filtering methods. Colors from white to black

match the numbers that reflect the ranking of each method

Fig. 4. Clustering quality of two feature selection methods. Results are

averages of 100 runs of K-Means clustering.

Fig. 3. Filtering quality of the virus dataset is tested by Jaccard scores of

clustering performed in spaces spanned by them (see text). Best results are

obtained for FS1 (identical with BE in this case) and SR for mc ¼ 3. FS1

continues to perform very well with more features. Feature selection accord-

ing to VS performs worse. For comparison we include also an evaluation

based on a large group of random order rankings.

3http://adios.tau.ac.il/compact/UFF/SUPP
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between 0.7 and 0.8 for filtered gene groups of sizes 250 to 450. The

preferredmc value according to c + d of SR is 254. Better results can

be obtained by using the QC algorithm, but the same trend and

conclusions regarding feature selection hold also there. It is

interesting to note that QC clustering of our unsupervised SR

method, for mc ¼ 254, reaches J ¼ 0.85 (see supplementary).

We display the K-Means analysis in Figure 4, in spite of its poorer

performance compared to QC, in order to emphasize that the quality

of the feature filtering method is independent of the clustering-test

performed on the filtered data.

3.3 The Leukemia dataset of Golub et al., 1999

After demonstrating the effectiveness of our methods on both small

and large datasets, we choose a third dataset (Golub et al., 1999) that
has served as a benchmark for several clustering algorithms (Sharan

and Shamir, 2000, Getz et al., 2000 and more) and feature selection

methods (e.g., Liu B. et al., 2004, Liu H. et al., 2002). The experi-
ment sampled 72 Leukemia patients with two types of Leukemia,

ALL and AML. The ALL set is further divided into T-cell Leukemia

and B-cell Leukemia and the AML set is divided into patients who

have undergone treatment and those who did not. For each patient,

an Affymetrix GeneChip measured the expression of 7129 genes.

The task is clustering into the four correct groups within the 72

patients in a [7129x72] gene-expression matrix. This clustering task

is quite difficult. Using the QC method (in normalized 5 dimensions

with s ¼ 0.54), applied to the data without feature selection, one

obtains J ¼ 0.707, which is the best score for a variety of clustering

algorithms (Varshavsky et al., 2005).
The CE values for the 7129 features of this problem are displayed

in Figure 5. Most of the features have a zero score. There are

about 150 large CE values (see Figure 5) and about the same number

of small CE values. The bright color within the inset indicates the

first 100 features selected by FS1. While their ordering is different

from the SR ranking, most of them belong, as expected, to the class

of large CE values. The overlaps of the first leading features of SR

with those of FS1 and FS2 are shown in the Venn diagrams of

Figure 6.

Next we turn to testing the filtering methods to see how well they

do in the clustering task, i.e. what are the Jaccard scores that are

obtained by applying an identical clustering algorithm to the dif-

ferent spaces spanned by the selected features. The clustering

algorithm is the QC method mentioned above. Figure 7 shows

that good results can be obtained by our filtering methods once

the gene subset is larger than 100 or so. For feature sets of sizes

120 to 200 we find selections (of FS1 and SR) that lead to Jaccard

scores that are better than J ¼ 0.707, the asymptotic limit. Gene

subsets larger than 300 result in Jaccard scores below the asymptotic

limit (for a complete list, see supplementary). Also in this problem

the GS results are inferior to those of the other methods.

3.3.1 Biological interpretations of the Leukemia dataset of Golub
et al., 1999 It is clearly of interest to look at the 100 or so genes

that participate in the sections that lead to the best Jaccard score. In

Figure 6 we saw that there exists a substantial overlap between the

choices of our three different methods. To study the biological

significance of our subset of overlapping 54 genes we have run a

GO enrichment analysis (NetAffx� web tool4) on this subset. As

Fig. 5. CE of the 7129 genes of the Golub dataset (c ¼ 0, dashed lines

represent c ± d). The inset zooms into the highest-ranked 300 genes, with

bright dots signifying the top 100 features according to the FS1 method

Fig. 6. Venn diagram of relations among the first 100 features selected by

different methods.
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4http://www.affymetrix.com/analysis/index.affx
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displayed in Figure 8 (and supplementary), we are able to assign

some prevalent biological processes to the selected genes.

The association of our selected 54 genes with functional annota-

tion related to defense, inflammation and response to pathogen (with

p-value ranging from e-7 to e-22) is intriguing (Figure 8). It may

underlie the difference in AML and ALL in view of the different

susceptibility of the patients to treatment such as chemo and

radiotherapy. Thus the listed protein processes may not only be

considered as ‘subtype cancer markers’ but as an indication of

the biological properties of the cancerous cells. Specifically,

cellular response to pathogen, to stress and to inflammation may

be different for AML and ALL. It may also provide a focused

hypothesis towards the processes and mechanisms that can be

used as a follow up in monitoring the outcome of therapy in

case of Lymphoma.

4 Discussion

We have introduced a novel principle for unsupervised feature

filtering that is based on maximization of SVD-entropy. The fea-

tures can be ranked according to their CE-values. We have proposed

four methods based on this principle and have tested their usefulness

on three different biological benchmarks. Our methods outperform

other conventional unsupervised filtering methods. This is clearly

brought out by the examples that we have analyzed. More details are

provided by our Supplementary Material5. In particular, it is striking

to note howmuchmore successful our methods are compared to VS,

the popular variance ordered method.

The major theoretical difference between the two approaches is

that VS relies on a measurement of one feature at a time. The

entropy-based approach, as implemented by the CE calculation,

takes into account the interplay of all features. In other words,

the contribution of a feature, its CE, depends on the behavior of

all other features in the problem. Thus variance is only one of the

factors that affect the CE value. The CE value depends also on

the correlations (or the absence thereof) of a given feature with

all others. The difference between the ranking of SR and VS

in Table 1 bears evidence to the difference between the two

methods.

We have demonstrated that our selected features have important

biological significance, through a GO enrichment analysis of the

genes in the Golub dataset. A similar analysis of the Armstrong

dataset is presented in the Supplementary Material5. In the virus

dataset, we have shown that the FS1/BE filtering method works

exceedingly well for a large range of numbers of features. The

biological significance of the relevant choices of amino-acids

remains to be uncovered.

The CE ranking leads to an estimate of the optimal mc choice.

This is an important point by itself. In other methods, such as VS, it

is almost impossible to make this choice on the basis of variation of

feature properties. Conventionally one makes therefore an arbitrary

choice, such as selecting 10% or 50% of the features. In the three

datasets discussed in our paper it seems quite clear that our sug-

gested optimal mc, as judged from the CE scores, leads indeed to

optimal results. The improved Jaccard scores indicate that the selec-

ted mc features have biological significance.

Our four methods differ in computational complexity. SR is the

simplest one, since it relies just on sorting the initial CE values. In an

appendix we compare its complexity with that of the other methods.

The relative values depend on the choice of mc (the size of the

subset).

FS1 chooses features that lie high on the original CE-score, hence

its optimal selected set will have a large intersection with that of SR.

Nonetheless, for small numbers of selected features, the order may

be very important. Thus, in the virus problem, FS1 turns out to be

much more successful than SR. In the Leukemia datasets, where

reasonable results were obtained for larger feature sets, FS1 was not

found to be significantly better than SR. Biologically one may

expect the appearance of features that are degenerate with one

another, i.e. have quite identical behavior on all instances. Such

duplicity can be included by the SR method but excluded by the FS1

one.

Our optimal feature-filtered sets in the two Leukemia problems

turn out to include just few percents of all genes. Thus a CE-analysis

indicates that a small subgroup of all genes is the most relevant one

to the data in question. We have seen that this relevance is borne out

by both Jaccard scores and GO enrichment analysis. The pursuit of

small feature sets is often guided by wishful thinking that the

essence of biological importance can be reduced to a small causal

set. Here we find that the small number obtained in our analysis is an

emerging phenomenon, and may be regarded as a true biological

result.

ACKNOWLEDGEMENTS

We thank Alon Kaufman and Nati Linial for stimulating discussions

and suggestions, and Orly Alter for technical and theoretical assis-

tance. R.V. is supported by SCCB, the Sudarsky Center for

Computational Biology in the Hebrew University of Jerusalem.

This study was supported by the EU Framework VI NoE

Fig. 8. Diacyclic graph of GO enrichment. Shown are GO nodes

(Camon et al, 2004) with significant p-value of enrichment as determined

by the NetAffx� tool4 (p-value < 5e-4). The color of each node matches

its significance level (along the spectrum of red shades, light: lowest to

dark: highest).

5http://adios.tau.ac.il/compact/UFF/SUPP

R.Varshavsky et al.

e512

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/22/14/e507/227946 by guest on 30 April 2025

http://adios.tau.ac.il/compact/UFF/SUPP


DIAMONDS consortium, and also partially supported by the Israel

Science Foundation (grant No. 39/02).

REFERENCES

Alter, O., Brown, P.O. and Botstein, D. (2000) Singular value decomposition for

genome-wide expression data processing and modeling, PNAS, 97, 10101–10106.

Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden,

M.D., Sallan, S.E., Lander, E.S., Golub, T.R. and Korsmeyer, S.J. (2002) MLL

translocations specify a distinct gene expression profile that distinguishes a unique

leukemia, 30, 41–47.

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.

Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User’s

Guide (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM,

Philadelphia, 1999.

Ben-Dor, A., Friedman, N. and Yakhini, Z. (2001) Class discovery in gene expression

data. RECOMB. 31–38.

Camon E, Barrell D, Lee V, Dimmer E. and Apweiler R. (2003) Gene Ontology

Annotation Database—An integrated resource of GO annotations to UniProt

Knowledgebase. In Silico Biol., 4: 0002.

Ding, C., He, X., Zha, H. and Simon, H. (2002) Adaptive dimension reduction for

clustering high dimensional data. IEEE International Conference on Data Mining.

107–114.

Ding, C.H.Q. (2003) Unsupervised Feature Selection Via Two-way Ordering in Gene

Expression Analysis, Bioinformatics, 19, 1259–1266.

Fauquet, C., Desbois, D., Fargette, D. and Vidal, G. (1988) Classification of furoviruses

based on the amino acid composition of their coat proteins. In Cooper, J.I. and

Asher, M.J.C. (eds), Viruses with Fungal Vectors. Association of Applied

Biologists, Edinburgh, 19–38.

Fauquet, C., Thouvenel, J. C. (1987). Viral diseases of plants in Ivory Cost. Intuition et

Documentation Technique, 46. ORSTOM, Paris, 243 pp.

Getz, G., Levine, E. and Domany, E. (2000) Coupled two-way clustering analysis of

gene microarray data, PNAS, 97, 12079–12084.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,

Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and

Lander, E.S. (1999) Molecular Classification of Cancer: Class Discovery and

Class Prediction by Gene Expression Monitoring, Science, 286, 531–537.

Guyon, I. and Elisseeff, A. (2003) An Introduction to Variable and Feature Selection,

Journal of Machine Learning Research, 3, 1157–1182.

Hastie, T., Tibshirani, R., Eisen, M., Alizadeh, A., Levy, R., Staudt, L., Chan, W.,

Botstein, D. and Brown, P. (2000) ’Gene shaving’ as a method for

identifying distinct sets of genes with similar expression patterns, Genome

Biology, 1.

Herrero, J., Diaz-Uriarte, R. and Dopazo, J. (2003) Gene expression data

preprocessing, Bioinformatics, 19, 655–656.

Horn, D. and Axel, I. (2003) Novel clustering algorithm for microarray expression data

in a truncated SVD space, Bioinformatics, 19, 1110–1115.

Horn, D. and Gottlieb, A. (2002) Algorithm for data clustering in pattern recognition

problems based on quantum mechanics, Physical Review Letters, 88.

Liu, B., Cui, Q., Jiang, T. and Ma, S. (2004) A combinational feature selection and

ensemble neural network method for classification of gene expression data, BMC

Bioinformatics,5. 136

Liu, H., Li, J. and Wong, L. (2002) A Comparative Study on Feature Selection

and Classification Methods Using Gene Expression Profiles and Proteomic

Patterns. In R. Lathrop, K.N., S. Miyano, T. Takagi, and M. Kanehisa (ed),

13th International Conference on Genome Informatics. Universal Academy

Press, Tokyo Japan, 51–60.

Ripley, B.D. (1996) Pattern Recognition and Neural Networks. Cambridge University

Press, Cambridge.

Shannon, C. (1948) A mathematical theory of communication,, The Bell system

technical journal, 27, 379–423, 623–656.

Sharan, R. and Shamir, R. (2000) CLICK: A Clustering Algorithm with Applications to

Gene Expression Analysis. AAAI Press, Menlo Park, CA, 307--316.

Sondberg-Madsen, N., Thomsen, C. and Pena, J.M. (2003) Unsupervised Feature

Subset Selection. Workshop on Probabilistic Graphical Models for Classification.

71–82.

Tishby, N., Pereira, F., C. and Bialek, W. (2000) The information bottleneck method,

CoRR, physics/0004057

Varshavsky, R., Linial, M. and Horn, D. (2005) COMPACT: A Comparative Package

for Clustering Assessment. Lecture Notes in Computer Science. Volume 3759,

159–167. Springer-Verlag.

Wall, M., Rechtsteiner, A. and Rocha, L. (2003) Singular Value Decomposition and

Principal Component Analysis. In Berrar, D., Dubitzky, W. and Granzow, M. (eds),

A Practical Approach to Microarray Data Analysis. Kluwer, 91–109.

Wolf, L. and Shashua, A. (2005) Feature Selection for Unsupervised and Supervised

Inference: The Emergence of Sparsity in a Weight-Based Approach, Journal of

Machine Learning Research, 6, 1855--1887.

Xing, E.P. and Karp, R.M. (2001) CLIFF: clustering of high-dimensional microarray

data via iterative feature filtering using normalized cuts. Bioinformatics, 17,

S306–315.

APPENDIX

Computational complexity of the four methods

In the following calculations, we will assume that mc < n, which
will give upper bound to the complexity. We will not assume that

m < n.
The computation of all eigenvalues for a dense symmetric matrix

requires O(p3) operations, where p is the size of the matrix

(Anderson, 1999).

We will define the complexity of the initial computation of all

CEs to be O(m�min(n,m)3) � K.

� SR: The computational complexity is lowest for the SRmethod.

There’s only one calculation of all CEs, followed by sorting.

Hence the complexity is O(K + m�logm).

� FS1: Calculation of all CEs followed by (mc �1) repetitive

diagonalization of a growingmatrix (from 2 to (mc�1)), leading

to O(K + m�mc
4).

� FS2: Calculation of all CEs followed by (mc �1) repetitive

diagonalization of a decreasing matrix (from m-2 to (m-mc)),

leading to O(m5-(m-mc)
5). Note that here, if n < (m-mc), the

complexity is O(mmcn
3)

� BE:Calculation of all CEs followed by (m-mc-1) repetitive diag-

onalization of a decreasing matrix (fromm-2 to (mc-1)), leading
toO(m5-mc

5). Note that here, if n <m, the complexity is reduced

to O((m2-mc
2)n3).

Clearly computational complexity is lowest for the SR method,

since only one calculation of all CEs is needed. BE or FS2 have the

highest complexity, depending on whether m > 2mc or not.
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