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ABSTRACT

Motivation: Specific non-covalent binding of metal ions and ligands,
such as nucleotides and cofactors, is essential for the function of
many proteins. Computational methods are useful for predicting
the location of such binding sites when experimental information
is lacking. Methods that use structural information, when available,
are particularly promising since they can potentially identify non-
contiguous binding motifs that cannot be found using only the amino
acid sequence. Furthermore, a prediction method that can utilize
low-resolution models is advantageous because high-resolution
structures are available for only a relatively small fraction of proteins.
Results: SitePredict is a machine learning-based method for
predicting binding sites in protein structures for specific metal ions
or small molecules. The method uses Random Forest classifiers
trained on diverse residue-based site properties including spatial
clustering of residue types and evolutionary conservation. SitePredict
was tested by cross-validation on a set of known binding sites for
six different metal ions and five different small molecules in a non-
redundant set of protein–ligand complex structures. The prediction
performance was good for all ligands considered, as reflected by
AUC values of at least 0.8. Furthermore, a more realistic test on
unbound structures showed only a slight decrease in the accuracy.
The properties that contribute the most to the prediction accuracy
of each ligand were also examined. Finally, examples of predicted
binding sites in homology models and uncharacterized proteins are
discussed.
Availability: Binding site prediction results for all PDB protein
structures and human protein homology models are available at
http://sitepredict.org/.
Contact: bordner.andrew@mayo.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Many proteins rely on non-covalently bound metal ions or
small molecules for their enzymatic function or regulation of
their activity. The presence and location of these binding sites
can therefore give useful clues for deducing the biochemical
function of an uncharacterized protein. As the pace of protein
sequence and structure determination quickens (Burley et al., 2008),
the assignment of protein function is becoming an increasingly
important task. Computational methods can assist in this search by

generating experimentally verifiable predictions of ligand binding
sites in proteins.

A number of successful methods have been developed for
predicting ligand binding sites by finding characteristic sequence
patterns (Andreini et al., 2004; Passerini et al., 2006; Shu et al., 2008;
Sigrist et al., 2002). Such methods are particularly useful when there
is no protein structure with detectable sequence similarity. Although
ligands bind to residues that are localized in 3D space, the binding
residues are generally not contiguous in the amino acid sequence.
Because of this fact, methods that also utilize structure information,
when it is available, are expected to perform better than those that
use sequence information alone.

Several distinctive properties of metal ion binding sites can be
used for their prediction. Metal ion binding sites were found to have
an outer shell of hydrophobic atomic groups that contains the inner
shell of hydrophilic groups that coordinate the ion (Yamashita et al.,
1990). However, as pointed out in that study, this may simply be
due to the fact that the coordinating atoms are covalently bound
to hydrophobic carbon-containing groups in the protein rather than
favorable enthalpic or entropic contributions to binding. It was also
observed that metal binding sites often correspond to statistically
significant clusters of negatively charged residues (Zhu and Karlin,
1996). Furthermore, divalent metal cations have characteristic
preferences for coordinating groups (backbone carbonyl, specific
side-chain groups or water molecules) and coordination number
(Dudev and Lim, 2003; Harding, 2004). Finally, binding site residues
are usually conserved in orthologous proteins, presumably because
of their crucial role in the protein’s function.

One early prediction method used the total electrostatic valence of
oxygen ligands, calculated from the inter-atomic distances, in order
to predict calcium ion binding sites (Nayal and Di Cera, 1994).
Another study used the FEATURE method (Bagley and Altman,
1995), which calculates properties in concentric shells around a
potential binding site, with a Bayesian score to predict calcium
ion binding sites (Wei and Altman, 1998). A later study used a
similar method to predict zinc ion binding sites and demonstrated
its applicability to unbound structures (Ebert and Altman, 2008).
Also properties of clustered triplets of residue types that commonly
coordinate zinc ions were successfully used to predict transition
metal ion binding sites in apo protein structures (Babor et al.,
2008). Binding sites for several different metal ions were also
identified using the Fold-X force field applied to the atomic structure
of the protein (Schymkowitz et al., 2005). Finally, the method
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of Sodhi et al. (2004) used neural networks trained on PSI-Blast
position-specific scoring matrices (PSSMs), secondary structure
states, solvent accessible surface area (SASA) and the inter-residue
distance matrix for neighboring residues to predict different metal
ion binding sites.

The prediction of small molecule binding sites is facilitated
by their tendency to bind in pockets on the surface of the
protein, due to the requirement of forming sufficient energetically
favorable contacts. A variety of algorithms that locate such surface
pockets have been developed (An et al., 2005; Harris et al.,
2008; Laurie and Jackson, 2005). Many structure-based binding
site prediction methods use predicted pockets. One study combined
pocket prediction with evolutionary conservation in order to predict
binding sites for an arbitrary small molecule (Huang and Schroeder,
2006). Another study (Glaser et al., 2006), used an optimized pocket
finding algorithm along with conservation to locate pockets that
bind ligands. The study of Burgoyne and Jackson (2006) compared
different properties for ligand binding prediction and found that the
total electrostatic potential, desolvation energy and conservation
were the best. One challenge with such methods for predicting
general ligand binding sites, irrespective of the identity of the ligand,
is that it is difficult to compile a reliable negative dataset of pockets
that do not bind any small molecule.

Two papers, Guo et al. (2005) and Nebel et al. (2007), described
methods that use 3D motifs to predict binding sites for adenosine
triphosphate (ATP) and adenine-based ligands, respectively. Finally,
Brylinski and Skolnick (2008) employed threading of the query
sequence to identify similar structures in the PDB with bound
ligands.

We have developed the SitePredict ligand binding site prediction
method that can be applied, with minor modification, to both metal
ion and small molecule binding sites. The primary difference is that
only surface pockets are considered for small molecule binding sites
whereas clusters of residues throughout the protein are considered
as potential metal ion binding sites. A machine learning method,
Random Forests, is used to make a prediction for a specific ligand
based on a combination of diverse properties including evolutionary
conservation, median SASA, counts of nearby residue pairs and
statistically significant clustering of residue types in the site. This
method was motivated by the success of a similar approach for
predicting protein–protein interfaces (Bordner and Abagyan, 2005).
Unlike many previous approaches, SitePredict does not rely on the
exact positions of side chains contacting the ligand. This is critical
since actual predictions are performed on unbound structures and the
protein structure undergoes conformational changes upon binding.
In fact, except for the median SASA, which is relatively insensitive,
there is no dependence on side-chain conformations at all. This
means that it can be applied to unrefined homology models or
low-resolution structures. The method’s performance was evaluated
using cross-validation on comprehensive non-redundant sets of both
holo and apo protein structures. Also the relative contribution of
the different site properties to the prediction accuracy revealed
specific determinants of binding for different ligands. Binding site
predictions were made for all protein structures in the PDB and
are available for searching or download at http://sitepredict.org/.
Also, as a demonstration of the method’s utility in functional
annotation, novel binding sites in proteins of unknown function
whose structures were solved by structural genomics projects were
examined and several examples which corroborate independent

functional assignments are discussed. Finally, SitePredict was
applied to predict ligand binding sites in homology models of human
proteins.

1.1 Non-redundant sets of protein structures and
ligand binding sites

The data used to train the machine learning classifier and assess
its prediction performance was derived from a non-redundant set
of X-ray structures created for each ligand. Each set was generated
by first clustering all protein chains in X-ray structures from the
wwPDB database (Berman et al., 2003) at 25% sequence identity
using the CD-HIT program (Li and Godzik, 2006). Next, each cluster
was examined and a ligand-bound protein, if present, was selected
and otherwise a protein without the bound ligand was selected. If
multiple chains were found in a cluster then the highest resolution
chain without breaks was chosen. This procedure resulted in a non-
redundant set of proteins containing the largest number of ligand-
bound structures. This is important for creating a good benchmark
set with an adequate number of diverse ligand binding sites, since
most proteins in the structure database do not have the particular
ligand bound. Although the methodology may be easily extended to
include the prediction of ligands that interact with multiple protein
molecules, for simplicity we only considered structures in which the
ligand interacts with a single protein molecule.

1.2 Overview of the SitePredict method
Small molecules usually bind in pockets on the protein surface where
they can form sufficient energetically favorable interactions with
the protein. Furthermore these pockets usually remain even in the
apo structure (An et al., 2005). Metal ions are also coordinated by
multiple chemical groups (Harding, 2004), however they do not
bind to pre-existing pockets in the surface because of their small
size. Because of this difference in binding proclivities, two different
prediction procedures are employed for each class of ligand. For
small molecules, only the binding pockets are considered as potential
binding sites and a prediction is made for each pocket as to whether
or not it binds a particular ligand, based on the properties of the
pocket. In contrast, for metal ions, the predictions are made for
approximately spherical regions of the protein, each comprised of
a cluster of a fixed number of neighboring residues. The prediction
aims to identify the residue clusters that significantly overlap with
a binding site for the metal ion of interest.

1.3 Residue cluster properties used for metal ion
binding site prediction

The overlapping residue clusters were defined by starting with each
of the residues in the query protein as a central residue and adding the
nine nearest residues to form 10-residue clusters. Increasing the size
of the clusters did not significantly improve prediction performance
(data not shown). The fractional overlap of a cluster with the binding
site, which varies between 0 and 1, was defined by the ratio:

O = N
(
cluster residues∩binding site residues

)
Min

(
N
(
cluster residues

)
, N
(
binding site residues

))
in which the numerator is the number of residues in common
between the cluster and the binding site and the denominator is
the least of either the number of cluster residues or the number of
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binding site residues. Clusters with an overlap fraction >0.5 were
considered as positive instances, i.e. ligand binding site regions,
whereas the remainder were considered as negative instances, i.e.
non-binding site regions.

The following properties were calculated for each residue cluster:
nearby residue pair counts, number of nearby backbone O atom
pairs, residue propensity log P-values, evolutionary conservation log
P-value and median-relative SASA. The residue pair counts were
calculated by counting the total number of nearby cluster residue
pairs of each residue type. Because there are 20 different standard
residue types, the number of unordered pairs of residue types, and
hence the number of residue pair counts, is 210. Nearby residue
pairs were required to have Cβ atom, or Cα atom for glycine,

separation <10 Å. The number of nearby backbone O atom pairs
was calculated by first creating a graph in which nodes represent
O atoms and are connected by an edge if the corresponding atoms
are separated by <5 Å and then counting the number of nodes in the
maximal clique. This procedure efficiently locates backbone O atom
clusters. The residue propensity P-values were calculated for each
of the 20 residue types by the statistical significance of observing
as many residues of that type in the cluster versus what would be
expected from a random arrangement of the protein’s residues. The
random probability is described by the hypergeometric cumulative
distribution function as

pi = Fhypergeom

(
Ncluster

i −1, N total
i , N total

j �=i ,
∑

i

Ncluster
i

)

in which Ncluster
i is the number of residues of type i in the cluster and

N total
i (N total

j �=i ) is the number of residues of type i (not of type i) in
the protein. The log P-value is expected to be more robust than raw
residue-type counts, since it accounts for the different distributions
of residue types occurring in distinct proteins. In other words, the
log P-value is high only if the fraction of residues of a particular
type in a cluster is considerably higher than the fraction of the same
residue type among all residues in the protein.

1.4 Pocket properties used for small molecule binding
site prediction

As mentioned above, only surface pockets on the protein surface
were considered as potential binding sites for small molecules. Also
pockets that are too small to contain the ligands, with volumes
<200 Å3, were excluded. Surface pockets were calculated using the
PocketFinder algorithm (An et al., 2005) as implemented in the ICM
program version 3.5 (Molsoft LLC). Properties were calculated for
the set of residues lining each pocket, which are within 4 Å of the
calculated pocket surface.

Properties that describe the size and shape of the surface pocket
as well as some of the same properties used for the metal ion
site prediction were used for small molecule site prediction. The
following properties of each pocket were used for the prediction of
small molecule binding sites: nearby residue pair counts, residue
propensity log P-values, evolutionary conservation log P-value,
pocket volume and pocket principal components. The properties
not involving the pocket shape are the same as those defined for
metal ion sites and described in Section 1.3, except that they were
calculated using the set of pocket residues. The three principal
components are the axis lengths of an ellipsoid that approximates

the pocket boundary. They conveniently summarize the generally
complicated shape of the pocket in a few numbers.

1.5 Random Forest classifiers
Binding site predictions are made using a supervised learning
method called Random Forests (Breiman, 2001). The Random
Forest method has many advantages compared with other machine
learning methods including: high accuracy, speed, resistance to
overfitting, the ability to use heterogeneous training data without
rescaling, estimation of the generalization error during training, and
the ability to estimate the contribution of each variable to the overall
prediction accuracy.ARandom Forest is a collection of classification
trees that are randomized by training on a bootstrap sample of the
training data and also using only a subset of M (<N) of the variables.
A prediction is made based on the fraction of trees selecting each
class. In this application the two classes are binding site and non-
binding site. A cutoff is chosen and if the fraction of trees predicting
the site to be a binding site is higher than the cutoff then the overall
prediction is binding site, otherwise the site is predicted to be a
non-binding site.

Because of bootstrap sampling, approximately one-third of the
data samples are not used for training each tree. The importance
of each variable to the prediction performance can be assessed by
calculating the decrease in prediction accuracy for this so-called
out-of-bag data upon permuting values for the variable.

1.6 Evaluation of prediction performance
The machine learning method requires a sufficient number of
independent examples of known binding sites for a ligand in order to
evaluate the prediction performance and avoid potential overfitting.
Only ligands with least 40 independent binding sites in the non-
redundant set of protein–ligand structures, described in Section 1.1,
were considered. The following metal ions fulfilled this criterion:
Ca, Cu, Fe, Mg, Mn and Zn. Fe ions annotated in both oxidation
states Fe(III) and Fe(II), with PDB heterocompound codes FE and
FE2, respectively, were grouped together. Because many small
molecules are converted into another molecule by the enzymatic
action of the protein in the binding pocket, both the reactant
and product were considered together as a group. For example,
ATP is often hydrolyzed to adenosine diphosphate (ADP) so that
these two molecules are in one group. Also, structures of protein–
ligand complexes are often solved with non-hydrolyzable analogs
bound so that these structures are also included within the same
group. Datasets were compiled for the following groups of small
molecules:

• adenosine monophosphate (AMP),

• ATP, ADP and analogs (ACP, ANP, ATS, SAP and TAT),

• flavin-adenine dinucleotide (FAD),

• heme (HEM and HEB),

• nicotinamide adenine dinucleotide (NAD) and derivatives
(NAP, NDP and NAI).

The PDB heterocompound ID, which coincides with the usual
abbreviations for some of the compounds, are shown in parentheses.
Table 1 shows the total number of proteins and sites for each ligand.

Random Forest input datasets, which contain all of the properties
described above, were then generated for each metal ion or group of
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Table 1. Number of ligand binding proteins and sites in the non-redundant
datasets for each ligand

Ligand Number of proteins Number of sites
in the training set in the training set

Ca 273 (355) 434 (536)
Cu 33 (45) 51 (67)
Fe 84 (95) 105 (123)
Mg 433 (479) 549 (575)
Mn 148 (172) 232 (239)
Zn 401 (541) 517 (687)
AMP 48 (71) 48 (83)
ATP, ADP + analogs 172 (269) 173 (299)
FAD 52 (85) 52 (105)
Heme 53 (123) 57 (208)
NAD, NADP, NADPH 107 (170) 107 (199)

The values in parentheses are the numbers of proteins or sites before removing sites
that contact multiple proteins.

small molecules. Missing conservation values, due to an insufficient
number of related protein sequences (<20), were imputed as the
median of all conservation values in the input dataset. This procedure
results in the assignment of a neutral value, which does not bias the
prediction, for evolutionary conservation in examples with missing
data. Because there are many more negative examples (non-binding
sites) in the data than positive examples (binding site residue cluster
or pocket) it was necessary to randomly select only a subset of
the negative data to obtain a balanced dataset. This is important
since training on highly unbalanced data gives a predictor that is
accurate only for the majority class. Datasets with twice as many
negative as positive examples were used because they gave slightly
better performance than evenly balanced (1:1 ratio) datasets (data
not shown). All positive examples were included in the datasets.

To evaluate the performance of the Random Forest prediction,
10-fold cross-validation was used. The cross-validation sets were
constructed so that the corresponding training and test sets contain
data for proteins from different Pfam families (Finn et al., 2006).
This insures the independence of the cross-validation sets, which
is important for an accurate assessment of the actual prediction
performance.

The overall cross-validation prediction performance was
summarized by the total area under the receiver operating
characteristic (ROC) curve, which plots sensitivity versus (1 -
specificity). The ROC curves were generated by varying the Random
Forest score cutoff. The area under the curve (AUC) can vary from
0.0 to 1.0. A random prediction is expected to yield an AUC of
0.5 and the closer the AUC value is to 1.0 the more accurate the
prediction is. Furthermore, the AUC is proportional to the Wilcoxon
rank-sum statistic and so can be associated with a P-value for
discriminating the two classes.

1.7 Class likelihood ratio for prediction confidence
The Random Forest score, defined as the fraction of trees voting
for the positive class, varies from 0.0 to 1.0. Potential sites
with high scores, near 1.0, are expected to be more confidently
predicted as binding sites than those with lower scores. Likewise,
potential sites with low scores, near 0.0, are expected to be more
confidently predicted as non-binding sites than those with higher

scores. This implies that the Random Forest score contains more
useful information than simply whether it is above or below the
binary classification cutoff.

The confidence of each prediction was estimated as a class
likelihood ratio calculated from class-dependent score distributions
using a method similar to that described for support vector
machine classification in Bordner and Abagyan (2005). First, the
distributions of cross-validation prediction scores for negative and
positive examples were estimated using kernel density estimation
as implemented in R (R Development Core Team, 2008). The
likelihood ratio R(score) was then calculated as the ratio of the
distributions, i.e.

R
(
score

)= p
(
score|binding site

)
p
(
score|non-binding site

)
A high value for R (much greater than the fraction of all residues
expected to bind the ligand) indicates that the site is confidently
predicted as a binding site for the ligand, a low value indicates that
the site is confidently predicted not to be a binding site for the ligand,
and an intermediate value indicates an ambiguous prediction. The
likelihood ratio is useful for prioritizing predictions for experimental
validation. Residue-level scores and likelihood ratios for metal ion
site predictions were calculated as the median values for all residue
clusters containing a particular residue.

2 RESULTS

2.1 Prediction accuracy
The accuracy of the SitePredict method in predicting binding sites
for different ligands, as assessed by the 10-fold cross-validation
AUC values, is shown in Table 2. Results using both ligand-bound
and ligand-unbound structures are given.

The transferability and generality of SitePredict is demonstrated
by the high AUC values for the cross-validation prediction because
the prediction is made for proteins in different Pfam families than
those used for training the Random Forest classifier. In other words,
high cross-validation AUC values imply that the method is expected
to perform well on proteins dissimilar to those used for training, such
as those without any known binding sites.

Table 1 also shows the cross-validation AUC values for binding
site predictions without using evolutionary conservation. There is
only a relatively small decrease in prediction performance for all
ligands. This is advantageous since the evolutionary conservation
could not be calculated for about 20% of the proteins due to a lack
of similar protein sequences. This shows that the accuracy does
not appreciably degrade for such proteins. Other methods that rely
on a multiple sequence alignment through, e.g. PSSMs, cannot be
applied to the significant fraction of proteins with few or no known
orthologs.

The prediction results for all PDB structures are available at the
SitePredict website (http://sitepredict.org/). Results for individual
PDB entries can be retrieved and visualized in 3D using the Jmol
viewer (Jmol, 2008) or the complete prediction tables can be
downloaded for analysis. The training datasets of binding sites for
each ligand, including those for bound/unbound pairs, are provided
as Supplementary Material.
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Table 2. Area under the ROC curve for 10-fold cross-validation prediction
of ligand binding sites using ligand-bound and ligand-unbound protein
structures

AUC

Ligand Bound Only top Without Unbound
structure 20 variables conservation structure

(bound structure) (bound structure)

Ca 0.861 0.850 0.856 0.813
Cu 0.952 0.784 0.952
Fe 0.960 0.948 0.953
Mg 0.823 0.809 0.794 0.763
Mn 0.897 0.884 0.879 0.895
Zn 0.964 0.958 0.958 0.913
AMP 0.799 0.842 0.797
ATP, ADP 0.884 0.901 0.852 0.836
+ analogs
FAD 0.941 0.928 0.941
Heme 0.971 0.955 0.971
NAD, NADP, 0.959 0.959 0.959 0.876
NADPH

AUC values are also given for predictions using only the top 20 most important variables
and without evolutionary conservation.

2.2 Prediction results for unbound structures
The decrease in the AUC for unbound as compared with bound
structures was relatively small (≤0.083) showing that SitePredict
is insensitive to rearrangements in the protein structure induced by
ligand binding. Only surface pockets are considered as potential
binding sites for small molecules so that the lack of a pocket
in the unbound structure that sufficiently overlaps the binding
sites (O > 0.5) results in a false negative prediction. All unbound
structures for NAD retained pockets in the binding sites, however,
pockets for two out of the 56 unbound structures (chain A of PDB
entries 1BYI and 1I7N) for ATP had too little overlap with the
binding site (O = 0.47 and 0.28, respectively) so that the method
missed these binding sites. As expected, this can be attributed to
large conformational changes in loops near the binding site leading
to relatively high RMSDs between binding site residues in bound and
unbound structures of 3.0 Å and 2.3 Å, respectively. Interestingly,
there is a surface pocket that sufficiently overlaps the ATP binding
site (O = 0.61) for chain B of PDB entry 1I7N, which is the same
protein as chain A (C domain of rat synapsin II), and this gives
a correctly predicted ATP binding site with a high likelihood ratio
of 3.9. The structural differences between the chains A and B are
mostly in the binding site loop, probably due to its flexibility in
the apo protein. Overall, these results support the findings of An
et al. (2005) that ligand binding pockets are almost always retained
in unbound structures and furthermore that the prediction accuracy
is not significantly degraded by differences in these pockets due to
structural changes upon ligand binding.

2.3 Contribution of binding site properties to
prediction performance

The top 20 properties that contribute the most to the prediction
accuracy for ligand sites were calculated using the procedure
described in Section 1.5 (see Supplementary Material for results).

As can be seen in Table 2, the AUC changes little for all ligands
except Cu if only these top 20 properties are used for prediction. The
most important residue propensities for each metal ion include the
most common coordinating residues for that particular ion according
to the analysis of Harding (2004). Evolutionary conservation and
SASA are also among the important variable for predicting metal
ion binding sites since they appear in the top 20 properties for all
ions examined. Metal ion binding sites are usually conserved and
generally, but not always, on the protein surface.

In contrast, evolutionary conservation only appears among the
most important properties for two small molecules, ATP and NAD.
Also, residue propensities appear less among the top properties for
the small molecules. This may be due to several factors: (i) metal
ions are positively charged and bound by clusters of negatively
charged residues, (ii) small molecule binding sites are larger so that
the spatial arrangement of residues within the site is more important
than for smaller ion binding sites and (iii) there are more residues
in a typical binding pocket than in the 10-residue clusters used
for metal ion prediction so that any clustering of residue types is
less statistically significant. Residues that are present in previously
identified sequence motifs are also contained in the important residue
pairs. For instance, A, G, K and S are in both the important residue
pair variables for ATP binding sites and also in the Walker A motif.
Also glycine appears in most of the important residue pairs for NAD
binding sites and a glycine-rich turn was found to be a determinant
of such sites (Baker et al., 1992).

2.4 Discrimination between different ligands
The ability of a Random Forest classifier trained on one ligand to
reject binding sites of different ligands was assessed by comparing
Random Forest scores from 10-fold cross-validation for one ligand
(ligand 1) with scores from training on all cross-validation data for
ligand 1 and then predicting for data from a different ligand (ligand
2). The average scores, AUC values and associated Wilcoxon rank-
sum P-values for all pairs of metal ions and small molecules are
given Tables 1 and 2 in the Supplementary Materials. Figure 1 shows
an example of the successful discrimination between distinct Ca and
Cu ion binding sites in the same protein.

It is apparent from the tables that the discrimination performance
is non-symmetric, i.e. a Random Forest trained on ligand 1 may
have poor selectivity for ligand 2 but one trained on ligand 2 may
be good at rejecting ligand 1 binding sites in favor of the correct
ligand 2 sites. There are only two sets of ligands for which the
method cannot discriminate in both reciprocal predictions: Ca and
Mg ions and AMP and ATP.

It is known that one of the most prevalent Ca binding motifs, the
EF-hand motif, can also bind Mg in some cases (Lewit-Bentley and
Rety, 2000) and that both ions have similar coordination propensities
(Kaufman-Katz et al., 1996). This is reflected by the fact that 15
out of the 20 top variables are shared by both Ca and Mg ion
binding sites. More generally, predictors trained on Mg or Mn had
lower specificity that those trained on other ions. The difficulty in
differentiating between the binding of some metal ions, such as Mg
and Mn, is also probably due in large part to the fact that many sites
are known to actually bind different ions in vitro and may do so in
vivo (Bock et al., 1999).

The difficulty in distinguishing binding sites for the ATP group
ligands, which also include ADP, and AMP is due to the similar
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Fig. 1. An example illustrating the successful discrimination between two
different metal ions, which in this case bind to the same protein (fungal lysyl
oxidase, PDB entry 1N9E). Calcium and copper binding site predictions are
shown in the top and bottom figures, respectively. Predicted binding residues,
with R > 20, are colored red, predicted non-binding residues, with R < 10, are
colored blue, and residues with intermediate ambiguous values are colored
yellow. The bound copper ion is orange and the calcium ions are green. The
insets show a detailed view of the binding sites.

properties of the binding sites. Half of the 20 top variables
contributing to the prediction accuracy are shared between these two
ligands. One possible explanation for this similarity in the important
binding site properties is the chemical similarity of the ligands; ADP
and AMP differ only by a phosphate group. In addition, all small
molecules considered, with the exception of heme, contain adenine
moieties, which make their discrimination relatively difficult. In
fact, none of the cases of poor ligand discrimination involve the
chemically dissimilar heme.

2.5 Binding site predictions for modeled human
proteins

Although current comparative modeling methods can usually
accurately reproduce the core backbone geometry for proteins
with available homologous template structures, they have difficulty
in predicting the correct conformations of side chains and loops
(Ginalski, 2006). Because SitePredict only requires backbone
structural information it can locate ligand binding sites in homology
models, even if they contain errors in side chain conformations.

Furthermore, because the prediction procedure is fast it can be
applied to homology models on a genome-wide scale for functional
annotation. Typically, between 30% and 60% of proteins in
sequenced genomes have a related protein of known structure and
these percentages are increasing as new structures become available
(Xiang, 2006).

The application of SitePredict to homology models was
demonstrated by predicting ligand binding sites in a set of models
for 688 human proteins downloaded from MODBASE (Pieper
et al., 2006), a database of protein structures generated by an
automated modeling pipeline using the MODELLER program (Sali
and Blundell, 1993). Only models that are expected to be accurate
[score > 0.7 (Melo et al., 2002) and PSI-BLAST E-value < 1×
10−4] but that have low sequence identity to the template protein
sequence (<25%), and thus potentially yield novel binding site
predictions not inferable from sequence homology alone, were
considered. Prediction results for all ligands are available on the
SitePredict website.

Although the binding sites, or even which ligands bind, are
unknown for most of the human proteins, high-resolution structures
with bound ligands are available for comparison in a few cases.
Structures with bound ATP group ligands (PDB entries 2GK6
and 2GT0, respectively) were available for human type 1 RNA
helicase (Upf1) and nicotinamide riboside kinase 1 (NRK1). In
both cases, the highest scoring predicted binding pockets in the
model structures, with R = 7.5 and 11.9, respectively, overlapped
the actual binding sites. Also the structure of one human protein
in the set with heme bound, prostacyclin synthase (PGIS, PDB
entry 3B6H) is available. Again the highest scoring binding pocket
(R = 50) overlapped with the heme binding site. Even though the
sequence similarity was low, the template structures for NRK1 and
PGIS (2BBW and 1TQN) contained the corresponding ligands. No
ligands are bound to the Upf1 template structure (1PJR).

2.6 Identifying new ligand binding sites in structures
of uncharacterized proteins

In recent years, the number of new X-ray structures of proteins
with no significant sequence similarity to those already solved has
been rapidly increasing, largely due to structural genomics projects
(Chandonia and Brenner, 2006). Even with available high-resolution
structures, the biological function of many of these proteins remains
unknown. Knowledge of what ligands bind to a protein and where
they bind can help in inferring the function.

Binding site predictions were examined for a set of proteins
with available X-ray structures but lacking functional annotation,
downloaded from the PSI Structural Genomics Knowledgebase
(http://kb.psi-structuralgenomics.org/KB/). Although the binding
site predictions will require experimental verification there were
some proteins for which independent evidence suggests that they
are correct.

One example is a predicted NAD binding site in Haemophilus
influenzae shikimate dehydrogenase-like protein HI0607 (PDB entry
1NPY). Phylogenetic analysis showed that this protein is in a
distinct group from the two previously known functional classes
(Singh et al., 2005). The protein was also shown to catalyze the
NADP+-dependent oxidation of shikimate. In addition, mutagenesis
of two conserved residues, D103 and K67, inactivated the enzyme,
thus implying that they are important catalytic groups. Both of
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these residues are in the predicted NAD-binding pocket. Finally,
the protein has 30% sequence identity to an AroE shikimate
dehydrogenase (PDB entry 1NVT) that has the same fold and NADP
bound in the predicted pocket region.

Another example is a predicted NAD-binding pocket in a mouse
protein annotated as a putative NADPH-dependent oxidoreductase
(PDB entry 1VJ1). A structural alignment revealed similarity to
a quinone oxidoreductase (PDB entry 1QOR) even though the
sequence identity is only 18% (Levin et al., 2004). Furthermore, the
quinone oxidoreductase structure has an NADPH molecule bound
in the pocket corresponding to the predicted NAD binding pocket
in the 1VJ1 structure.

3 CONCLUSIONS
SitePredict was shown to perform well in predicting specific metal
ion and small molecule binding sites in protein structures, with
AUC ≥0.80 for bound structures. Its performance on unbound
structures was only slightly lower, demonstrating that the method
is insensitive to most ligand-induced conformational changes in
the benchmark set, which include side-chain reorganization and
small to moderate backbone changes. SitePredict was also applied
to predicting binding sites in uncharacterized proteins in PDB
structures as well as automatically generated homology models of
human proteins. Almost all of these predictions await experimental
verification and potentially offer valuable clues to each protein’s
function.

There are several possible areas of future investigation. One is to
extend the binding site predictions to additional small molecules for
which there are not enough ligand–protein complexes in the PDB
for adequate training and validation. This could be accomplished,
for example, by either collecting independent experimental binding
data or training the method on clusters of similar binding sites, which
presumably bind the same or chemically similar ligands. Finally, it
would be useful to train additional classifiers that are optimized for
discrimination between difficult to distinguish ligands.
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