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ABSTRACT

Motivation: Base-calling of sequencing data produced by high-

throughput sequencing platforms is a fundamental process in current

bioinformatics analysis. However, existing third-party probabilistic or

machine-learning methods that significantly improve the accuracy of

base-calls on these platforms are impractical for production use due

to their computational inefficiency.

Results: We directly formulate base-calling as a blind deconvolution

problem and implemented BlindCall as an efficient solver to this in-

verse problem. BlindCall produced base-calls at accuracy comparable

to state-of-the-art probabilistic methods while processing data at

rates 10 times faster in most cases. The computational complexity

of BlindCall scales linearly with read length making it better suited

for new long-read sequencing technologies.

Availability and Implementation: BlindCall is implemented as a set of

Matlab scripts available for download at http://cbcb.umd.edu/*hcor

rada/secgen.

Contact: hcorrada@umiacs.umd.edu
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1 INTRODUCTION

Second-generation sequencing technology has revolutionized
high-throughput genomics in life science and clinical research.

The sheer scale of sequence generated by these instruments has

allowed unprecedented views into a number of molecular phe-

nomena, including population genetics, transcriptomics, epigen-

etics and translational profiling. Both the throughput and
accuracy of second-generation sequencing instruments has

increased at an accelerated pace in the last few years due to

the use of high-resolution optics and biochemical methods that

allow sequencing of billions of DNA fragments in parallel by
generating fluorescence intensity signals that can be decoded

into DNA sequences. However due to experimental and hard-

ware limitations, these raw signals are inherently noisy (Aird

et al., 2011; Bravo and Irizarry, 2010; Dohm et al., 2008;

Erlich et al., 2008). Base-calling is the essential step of converting
these noisy fluorescent intensity signals into sequences used in

downstream analysis. Providing accurate base-calls greatly re-

duces many difficulties in downstream bioinformatics analysis

like genome assembly and variant calling (Alkan et al., 2011;

Bravo and Irizarry, 2010).

Sequencing-by-synthesis (Bentley et al., 2008) generates mil-

lions of reads of short DNA sequences by measuring in parallel

the fluorescence intensity of billions of PCR-amplified and
labeled clusters of DNA from a sample of interest. The

DNA fragments attach to a glass surface where it is then PCR-
amplified in situ to create a cluster of DNA fragments with iden-

tical nucleotide composition. Sequence reads are generated from

these DNA clusters in parallel and by cycles. A single nucleotide
is sequenced from all DNA clusters in parallel by adding labeled

nucleotides that incorporate to their complementary nucleotide.
This synthesizes DNA fragments complementary to the frag-

ments in each cluster as sequencing progresses. A set of four

images is created measuring the fluorescence intensity along
four channels to detect incorporation at each cycle. These

images are then processed to produce fluorescence-intensity
measurements from which sequences are then inferred by base-

calling. In the default base-calling process for Illumina sequen-

cers, called Bustard, the highest intensity in each quadruplet
of intensity measurements determines the base at the correspond-

ing position of the corresponding read. For current Illumina
technologies, sequencers can produce up to 600GB per run

(Illumina, 2013).
The raw intensity signals generated by this process are known

to be subject to several biases (Aird et al., 2011; Bravo and
Irizarry, 2010; Dohm et al., 2008; Erlich et al., 2008) (Fig. 1A

and B). (i) Cross talk: there are significant correlations between

different nucleotide channels; (ii) phasing/pre-phasing: the signal
in one cycle can spread to the cycles ahead and the cycles after it;

(iii) signal decay: where signal intensities become lower in later
sequencing cycles; (iv) background noise: the signal to noise ratio

becomes lower in later sequencing cycles. A significant challenge

in base-calling is accounting for these biases.
Existing base-calling methods can be classified into two major

groups: (i) unsupervised model-based methods that capture the
sequencing-by-synthesis process in a statistical model of fluores-

cence intensity from which base-call probabilities can be
extracted directly (Bravo and Irizarry, 2010; Kao and Song,

2011; Kao et al., 2009; Massingham and Goldman, 2012) and

(ii) supervised methods that train a statistical model on a set of
base-calls whereby fluorescence intensity measurements are clas-

sified into base-calls (Erlich et al., 2008; Kircher et al., 2009). The
former methods have been shown to significantly improve the

accuracy of Bustard base-calls. These model-based methods aim

to capture the sequencing process described above in a statistical
model from which base-call probabilities are usually obtained.

While these probabilistic or machine-learning methods improve*To whom correspondence should be addressed.
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the accuracy of base-calls, they are impractical for use due to

their computational inefficiency, which usually scales quadrati-

cally with read length since most of them resort to dynamic
programming for model fitting (Kao and Song, 2011; Kao

et al., 2009; Massingham and Goldman, 2012).

In this article, we show that the base-calling problem can be

formulated as an optimization problem called blind deconvolu-
tion. Based on this observation, we developed BlindCall as a

method that treats base-calling as a blind deconvolution problem

(Levin et al., 2011; Xu et al., 2013). We model intensity signals

(B) output by the sequencer as the convolution of a latent sparse

signal of interest X and a convolution kernel k modeling cross-

talk and phasing biases, plus background noise N:

B ¼ k � XþN:

The blind deconvolution problem is to recover the latent signal X
given only the observed B. This reduces the base-calling problem

into solving an inverse problem that admits computationally

efficient solutions. The blind deconvolution problem has been

a research hotspot in recent years (Levin et al., 2011; Xu et al.,

2013) and we adapt methods for its solution to the base-calling

problem (Wang and Yin, 2010).
BlindCall was able to provide base-calls at comparable accur-

acy to state-of-the-art probabilistic methods while processing

data at rates ten times or faster in most cases. It scales linearly

with read length and is thus better suited for new long-read

sequencing technologies. Direct blind deconvolution modeling

and the ultra-efficient processing based on optimization methods
presented here are essential for bioinformatics analysis work-

flows to cope with increased throughput and read lengths in

new sequencing technologies.

2 METHODS

BlindCall follows the following architecture (Fig. 2A): a training module

uses blind deconvolution (Fig. 2B) on a randomly sampled subset (e.g.

1000 reads) of the intensity data to iteratively estimate the convolution

kernel k and produce a deconvolved signal from which base-calling is

performed. The base-calling module then uses the convolution kernel

estimated in the training module to produce a deconvolved output

signal for the entire dataset and call bases.

2.1 Blind deconvolution

We solve the blind deconvolution problem using an iterative procedure:

(i) fixing k and estimating latent signal X using a specific non-blind de-

convolution method based on iterative support detection (ISD) (described

below) and then (ii) fixing X to estimate convolution kernel k to cor-

rect for cross-talk and phasing effects. We divide the signal into non-

overlapping windows: in each 20-cycle window we assume an invariant

convolution kernel. The discrete convolution can be written as matrix

multiplication B¼KX, where K is a convolution matrix constructed

from the kernel k. A normalization procedure is used in each iteration

to account for intensity biases across channels.

Fig. 1. Signal properties in the base-calling problem. (A) Fluorescence intensity measurements from one cluster for 50 sequencing cycles. Cross-talk and

signal decay effects are clearly observed in this data. Background intensity increases as sequencing progresses. (B) The phasing effect demonstrated on a

subset of data from (A). High intensity in the C channel in cycle 32 affects background intensity in the C channel in neighboring cycles

Fig. 2. The BlindCall architecture. BlindCall consists of two modules: (A)

the training module uses blind deconvolution and (B) to simultaneously

estimate model parameters and produce a deconvolved signal from which

base-calling is done. The calling module uses the parameters estimated in

the training module to produce a deconvolved output signal
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2.2 Channel intensity normalization

Intensity data for Illumina sequencing show certain biases, specifically

(i) signal strength variation across channels, (ii) signal strength variation

across clusters and (iii) signal decay over sequencing cycles. For accurate

base-calling, these biases must be addressed through normalization.

Traditionally, read normalization is applied to tackle the second and

third problems first, in order to address the first problem. In our

method, we circumvent the read normalization problem by analyzing

the relative intensity ratio of successive calls across sequence reads.

After an initial deconvolution in which cross-talk is corrected, we nor-

malize each channel by scaling the intensities across reads by the same

quantile (95%) in the respective channels and select the strongest channel

after normalization as candidate base-calls. We then select successive

candidate calls that are of different bases and construct a set of linear

equations of the form xik � rkxjk ¼ 0, where xik and xjk are the relative

intensity of channels in the k-th relation and rk is the observed intensity

ratio for the k-th relation. The set of linear equations is then Rx ¼ 0,

where R is a M� 6 matrix, with M being the total number of base-calls

pairs within consideration. To estimate x, we solve a least-squares prob-

lem under the constraint that xk k2¼ 1: The solution is obtained by sol-

ving an eigenvalue problem since it can be formulated into the Rayleigh

quotient min xk k2¼1 Rxk k2, and its solution must satisfy the eigenvalue

equation RtRx ¼ lx: Since the number of base-calls across channels

varies, the solution of this optimization problem favors channels that

are called frequently. We normalize the problem using the number of

base-calls and solve the generalized eigenvalue problem RtRx ¼ lDx

where D is a diagonal matrix that records the number of base-calls in

each channel. This formulation can be interpreted as finding the stable

state of a normalized non-linear diffusion, and is used in normalized cut

(Shi and Malik, 2000), Laplacian Eigenmaps (Belkin and Niyogi, 2001),

and PageRank (Page et al., 1999). The estimated vector x is the relative

intensity of each channel and we use it to normalize each channel in

subsequent steps.

2.3 Sparse signal reconstruction through ISD

To perform base-calling we need to reconstruct latent sparse signal X,

corresponding only to nucleotide incorporation measurements given a

convolution kernel k. A straightforward l 2 optimization problem to es-

timate latent signal X minimizes B� k � Xk k
2:We know the latent signal

is sparser than the observed signal, so we add this property as a constraint

to the least squares problem and use an iterative procedure to solve the

problem under the sparsity constraint. This idea is termed ISD in the

mathematical community (Wang and Yin, 2010), and can also be applied

to deconvolution problems stemming from image deblurring applica-

tions. In our case, the support (non-zero entries) detected for latent

signal X corresponds exactly to base-calls. Assuming XSupp is the signal

taking non-zeros only in the support set obtained using our support

detection algorithm, we want to find an X that minimizes

B� k � Xk k
2
þl X� XSupp

�� ��2: This optimization outputs a corrected

signal subject to the support set constraint. The support detection pro-

cedure is critical to the output accuracy—if the support set is correct, we

are close to our solution. At the beginning, we have no knowledge of the

support set, since that directly tells us the answer. To tackle this, we use

an increasing series litrf g that puts increasing weight on the second con-

straint. This weight is low at first since the support set is not accurate. As

we gradually refine the estimates we increase this weight. In our imple-

mentation, support detection is conducted by incorporating the channel-

normalization method discussed in the previous section and picking the

strongest normalized channel.

We provide further mathematical justification as to why this iterative

procedure recovers the clear intensity signals of incorporation events.

For reference to the applications in image deblurring we refer to the

convoluted signal B as the blurred signal, and to the latent signal X,

the clear signal.

Observation 1: Assume the clear signal is a non-negative signal with

spikes, the convolution (blur) kernel is non-negative and kk k1¼ 1, then

the convoluted (blurred) signal is denser than the latent (clear) signal.

This observation holds for all blurs since the blur spreads the spikes

thus creates more non-zero intensities, so the support set becomes larger

with the blurred signal. This observation hints us to design an optimiza-

tion that favors sparse solutions:

min
X

B� k � Xk k
2
þl Xk kp, 0 � p � 1:

The second term is a sparse-inducing penalty. This sparse regulariza-

tion problem is well known in wavelet analysis (Mallat, 2009). We also

have the following observation.

Observation 2: By comparing the lp norm ð0 � p � 2Þ of the clear/

blurred signal, we discover that the sparse norm penalty favors the

clear signal.

As special cases:

� l1norm measures the total variation of the signal, thus the blurred

signal and clear signal have the same l1 norm.

� The l2 norm of the blur signal is smaller than that of the clear signal.

� The support set for the blurred signal is larger than the clear signal,

therefore it has larger l0 cost.

The above observations suggest that we use a sparse norm to penalize

the blur signal and make it resemble the clear signal. Thus, we analyze the

deconvolution model with an l0 penalty:

min
X

B� k � Xk k
2
þ� Xk k0:

By introducing an auxiliary variable and using an exterior penalty

technique, the above minimization problem is equivalent to solving the

following optimization problem:

min
X

B� k � Xk k
2
þ� wk k0þl w� Xk k2, l! þ1:

One strategy to solve the above optimization is the alternating mini-

mization technique (Wang et al., 2008) and cast the problem into two

sub-problems: (i) fixing X and analyzing the terms containing w, we have

the w sub-problem:

min
w

w� Xk k2þ�l wk k0:

The solution can be found by entry-wise comparison (Mallat, 2009; Xu

et al., 2013) and the result is the so-called hard thresholding:

wi ¼
Xi, if jXij4

ffiffi
�
l

p
0, otherwise

�
:

Then (ii) fix w, and analyze the terms containing X, we have

min
X

B� k � Xk k
2
þl w� Xk k2:

This optimization problem has the same form with our deconvolution

model when w ¼ XSupp: In our ISD method, XSupp is obtained by adaptive

hard thresholding, where � is set adaptively to select strictly one non-zero

element into the support set by selecting the channel with maximum inten-

sity. Thus, our ISD method solves an optimization problem with an l0

penalty favoring sparse signals corresponding to nucleotide incorporation.

2.4 Convolution kernel estimation

Given latent signal X we use a least-squares method to estimate the con-

volution kernel k modeling cross-talk and phasing effects by solving:

min
k

B� k � Xk k
2:

C.Ye et al.
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We estimate convolution kernel k in two distinct steps: we use data from

the first four cycles and only model cross-talk in the convolution kernel

and use the blind-deconvolution iterative procedure to estimate cross-talk

effects. We then fix the components of the convolution kernel corres-

ponding to cross-talk effects for the remaining windows and estimate

the components of the convolution kernel corresponding to phasing

effects only. We assume the phasing effect is the same across channels.

2.5 Deriving quality scores from deconvolved signal

We measure the quality of a base-call by the ratio of the intensity of the

strongest channel and the sum of the two strongest channels after the

deconvolution procedure. This number ranges between 0.5 and 1.0 and is

used as the raw quality score. This scheme is similar to the one in

Illumina’s Bustard basecaller. Like most existing base-callers, we calibrate

these raw quality scores by aligning reads to the reference genome and

mapping raw quality scores to the alignment error rate.

2.6 Validation methods

The following datasets were used to test the accuracy and computational

efficiency of BlindCall and state-of-the-art probabilistic methods:

Illumina HiSeq 2000 phiX174: 1 926928 single-end reads of 101 cycles

from a single tile. Data was sequenced at the University of Maryland,

College Park and is available for download at http://cbcb.umd.edu/

*hcorrada/secgen.

Ibis Test: 200K single-end reads of phiX174451 sequencing cycles.

Bordetella pertussis: 100 tiles of 76-cycle single-end reads from the cocco-

bacillus B.pertussis, using the complete genome of the Tohoma I strain as

a reference.

AYB phiX174: released with AYB and contains human sequence with a

PhiX174 spike-in.

The last three datasets were downloaded from the AYB authors’ website

(http://www.ebi.ac.uk/goldman-srv/AYB/#data).

To calculate accuracy we align the reads based on the phiX174 refer-

ence using Bowtie2 (Langmead and Salzberg, 2012) with –end-to-end

and –sensitive settings. Reported error rates are based on reads with

no more than five substitution errors, following the methodology

in Massingham and Goldman (2012). We used SparseAssembler

(Ye et al., 2012) to obtain assemblies from base-calls obtained by each

method. To derive assembly statistics, we sub-sampled 100 datasets from

the complete set of reads at 5�, 10� and 20� coverage, and perform

assemblies on each of these. We report N50 and maximum contig length

for each resulting assembly.

Version 1.9.4 of the Off-line basecaller was downloaded from Illumina

to run Bustard. Version 2 of AYB was downloaded from http://www.ebi.

ac.uk/goldman-srv/AYB. We ran AYB for 5 iterations as per its default

setting.

3 RESULTS

BlindCall is implemented as a set of Matlab scripts available

at http://cbcb.umd.edu/*hcorrada/secgen. As an example of

its computational efficiency, running BlindCall on a single-core

Matlab instance on an Intel i7 3610QM laptop with 2.3–3.3GHz

processor and 8GB of memory, we found that it was able to pro-

cess 1 million bases/s, or485 billion bases/CPU day. We note

that a significant portion of its running time (50%) is spent on

disk IO to read intensity data and write the fasta/fastq outputs.

To the best of our knowledge, BlindCall is one of the fastest

base-callers available at this time, even though it is implemented

in a scripting language. A port of this algorithm into a lower-

level language (C/Cþþ) will give further improvements on speed

over the current Matlab version.

We compared the running time of BlindCall to the state-of-the

art probabilistic base-caller AYB (Massingham and Goldman,

2012) and the state-of-the-art supervised learning method

freeIbis (Renaud et al., 2013) on a dataset of 1.9 million reads

from a PhiX174 run on an Illumina HiSeq 2000 (Table 1). We

found that BlindCall was able to process this dataset �20 times

faster than AYB and 10 times faster than freeIbis while retaining

similar accuracy. A plot of per cycle error rate of these base-

callers (Fig. 3) shows that all methods produce significant

improvements over Bustard, especially in later sequencing

cycles. We observed a similar pattern when testing other datasets

(Table 2).

We also obtained better assemblies, especially at low cover-

age, using BlindCall, AYB and freeIbis relative to Bustard

Table 1. Base callers accuracy and runtime comparison

Bustard AYB BlindCall slow BlindCall fast freeIbis

Perfect reads 1 446079 1 532000 1 509451 1 508 779 1 530 099

Error rate (%) 0.29 0.21 0.23 0.23 0.21

Time (minimum) 17 217 8/12 4/8 9/126

Assembly results N50 Maximum N50 Maximum N50 Maximum N50 Maximum N50 Maximum

5� 610 1122 628 1155 629 1164 623 1167 649 1184

10� 3 375 3469 3198 3322 3382 3487 3389 3485 3306 3418

20� 4466 4478 4627 4637 4511 4523 4470 4483 4333 4357

AYB, accuracy and run times for Bustard. freeIbis and BlindCall for a dataset of 1.9 million reads from a HiSeq 2000 run of PhiX174. BlindCall Fast corresponds to non-

iterative version of the blind-deconvolution method. Running times for BlindCall are reported as (processing time/total time), where the total time includes reading intensity

data from disk and writing base-calls to disk. For freeIbis, we report the time as (predicting time with single thread/ training time with 10 threads). BlindCall was able to

produce base-calls of comparable accuracy to AYB and freeIbis at significantly faster computational time (8min/12min versus 217min and 126min, respectively). It is also

faster than Bustard (8min/12min versus 17min). AYB, freeIbis and BlindCall all improve on Bustard base calls. We also compared assemblies of the PhiX174 genome using

reads generated by Bustard, BlindCall, freeIbis and AYB. The reported N50s andMax contig lengths are averages4100 random samples with the corresponding coverage (5�,

10� or 20�). While BlindCall is able to process data at a significantly lower computational cost, the assemblies obtained using BlindCall are of comparable quality to those

obtained using AYB or freeIbis.

BlindCall
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base-calls (Table 1). We also found that the calibrated quality

values obtained from BlindCall are very accurate (Fig. 4).
We next compared each base-calling method’s ability to scale

to longer read lengths by calculating running time as a function

of read length for the same dataset (Fig. 5). Like most probabil-

istic model-based base callers, AYB resorts to a dynamic pro-

gramming strategy with quadratic running time complexity with

respect to the read length. In contrast, BlindCall scales linearly

with read length. freeIbis uses supervised learning approach, and

while it also scales linearly with read length, its training time is

much slower than BlindCall (even using 10 threads for freeIbis,

compared to a single thread for BlindCall). Base-callers based on

the blind deconvolution framework will be able to scale as se-

quencers produce longer reads.

4 CONCLUSION

BlindCall is a simple and ultra-fast non-probabilistic base-calling

method for Illumina high-throughput sequencing data based on

blind deconvolution. We have shown that it provides comparable

Table 2. Accuracy comparison

Ibis Test B.pertussis PhiX174 (AYB)

Perfect reads Error rate (%) Perfect reads Error rate (%) Perfect reads Error rate (%)

Bustard 99 834 1.45 1557 963 2.01 24 478 0.49

AYB 133 537 0.73 2304 005 1.26 26 878 0.38

BlindCall slow 110 951 1.12 1902 621 1.61 25 144 0.45

BlindCall fast 105 312 1.26 1856 286 1.66 24 740 0.47

Time Slow 0.08/0.3/1 0.11/6/10 0.15/14/22

Fast 0.08/0.1/1 0.11/3/8 0.15/7/16

Accuracy for Bustard, AYB and BlindCall on various datasets. BlindCall was able to produce comparable accuracy to state-of-the-art base callers at significantly faster

computational time. All methods improve on Bustard base calls. Run times for BlindCall are reported as (training time/processing time/total time in minutes) where the total

time includes reading intensity data from disk and writing base-calls to disk.

Fig. 5. Base-calling by blind deconvolution is scalable to long read

lengths. We compare the computational time of BlindCall with a state-

of-the-art probabilistic base caller AYB, the state-of-the-art supervised

learning method freeIbis and Illumina’s Bustard on the PhiX174 dataset

reported in Table 1 as a function of the number of sequencing cycles. Since

most model-based base callers resort to a dynamic programming solution,

running time is quadratic with respect to the read length. In contrast,

BlindCall scales linearly with read length. Base callers based on the

blind deconvolution framework will be able to scale as sequencers produce

longer reads. freeIbis also scales linearly but is much slower than BlindCall

Fig. 3. Third-party base callers improve Bustard per-cycle error rate. We

plot error rate of each base-caller per sequencing cycle on the PhiX174

test data. All three base callers significantly improve accuracy over

Bustard, especially in later cycles. BlindCall is able to achieve comparable

accuracy while processing data at a much faster rate

Fig. 4. BlindCall produces accurate calibrated quality scores. We plot

observed error rates (on the PHRED scale) for Bustard, AYB and

BlindCall as predicted by quality scores and observed high correlation

for all base callers

C.Ye et al.
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accuracy to probabilistic base-calling methods while producing
base-calls at rates more than ten times faster.
Almost all probabilistic methods solve the base-calling prob-

lem in a ‘forward’ way, i.e. by setting a set of basis functions and

searching for an optimal path, which often leads to dynamic
programming solutions. Fitting these statistical methods is com-
putationally expensive, and will not scale as the increase in

sequencing throughput continues. Also, a stationarity assump-
tion must be made in order to estimate parameters in these prob-
abilistic methods through a Markov process. In contrast,

BlindCall models base-calling as an ‘inverse’ problem of blind
deconvolution, which requires no probabilistic assumptions of
the sequencing process.

As steady progress has been made to improve the accuracy of
probabilistic methods, we expect that similar progress will be
made on non-probabilistic methods based on the blind deconvo-
lution methods described in this article. Furthermore, these

methods will be better suited to cope with increased throughput
and read lengths of new sequencing technologies.
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