Expression of Cell Adhesion Molecules in Murine Placentas and a Placental Cell Line

Jeffery A. Bowen and Joan S. Hunt

Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7400

ABSTRACT

Integrins and vascular cell adhesion molecule-1 (VCAM-1) are required for normal placental development. In this study, integrin subunits $\alpha_4$, $\alpha_v$, $\beta_1$, and $\beta_3$, and VCAM-1 were investigated for expression in uteroplacental units (gestation day [g.d.] 6 and 8) and placentas (g.d. 10, 12, 14, 16, and 18) of Swiss-Webster mice. All subunits and VCAM-1 mRNA (identified by reverse transcriptase polymerase chain reaction [RT-PCR]) and protein (detected by immunofluorescence) were present in all tissues throughout gestation. VCAM-1 was expressed strongly in the ectoplacental cone and trophoblast giant cells, $\alpha_4$ was expressed strongly by trophoblast giant cells and moderately by spongiosotrophoblast and labyrinthine trophoblast, and $\alpha_v$ was expressed more strongly in the spongiosotrophoblast than in the labyrinthine zone. The $\beta_1$ was more strongly expressed in the labyrinthine than the spongiosotrophoblast zone, while $\beta_3$ and VCAM-1 were essentially equal in the two zones. Trophoblast-like SM9-1 cells were positive for all of the adhesion molecules when tested by RT-PCR and immunocytochemistry. Adhesion molecule expression in SM9-1 cells was consistent with expression in the labyrinthine zone. Collectively, the results of this study demonstrate that murine placentas contain mRNA and protein for $\alpha_4$, $\alpha_v$, $\beta_1$, $\beta_3$, and VCAM-1, and that expression is cell-specific. These results and the identification of an adhesion molecule-expressing trophoblastic cell line should facilitate future studies on the function of adhesion molecules in placental development.

INTRODUCTION

The integrin family of glycoproteins is expressed in the uteri of all species studied to date. Integrin expression patterns are predictably associated with blastocyst development, implantation, and development of the placenta regardless of the type of placenta [1–7]. These catenated heterodimeric proteins, which comprise non-covalently bound $\alpha$ and $\beta$ subunits, participate in cell-to-cell and cell-to-substrate adhesion [1]. At least 23 heterodimer combinations are known to be formed from the currently identified 17 $\alpha$ and 8 $\beta$ subunits [8, 9]. The ligand specificity of the integrin heterodimer is determined by the $\alpha$ and $\beta$ subunit combinations [1].

Variable patterns of expression of certain integrin subunits in the murine uterus during the reproductive cycle and pregnancy suggest that these proteins are directly involved in the process of implantation and normal placental formation and function [10–12]. The developmental regulation of their expression in the mouse blastocyst is also consistent with their potential involvement in implantation [2]. Integrins participate in a number of functions required for placentalization, including cell adhesion, migration, and invasion. Additionally, integrins are involved in bidirectional signaling [13]. They are or may be activated in response to an agonist or changes in the cytoskeletal assembly (inside-out signaling) and, once bound to a ligand, can induce a multitude of intracellular events that can lead to changes in cell migration and gene activation (outside-in signaling). Thus, integrins are attractive as potential participants in the complex events of implantation and placentalization.

A number of integrin subunits ($\alpha_1$, $\alpha_2$, $\alpha_4$, $\alpha_7$, $\beta_1$, and $\beta_3$) have been identified in normal trophoblast cells of pre-implantation and implanting mouse embryos [10], and it appears that abnormal expression by integrin subunits $\alpha_4$, $\alpha_v$, and $\beta_1$ may be associated with implantation failure and abnormal placental development [14]. In integrin subunit $\alpha_4$-null mice, the chorionic and allantoic membranes fail to fuse, and the fetus dies on or about gestation day (g.d.) 9 [15]. Similar defects occur in fusion of the chorioallantoic membrane in vascular cell adhesion molecule-1 (VCAM-1)-deficient mice [16, 17]. VCAM-1 is the counter-receptor for $\alpha_4\beta_1$. Mice carrying mutations in the $\alpha_v$ integrin subunit demonstrate defects in blood vessel formation which result in vascular hemorrhage. Although many $\alpha_v$ integrin subunit-null mice die immediately after birth, some die during gestation [18], indicating possible placental abnormalities. Mice with a targeted deletion in the $\beta_1$ integrin subunit, which binds to 11 different $\alpha$ subunits [1], die during the perimplantation stage as a result of inner cell mass failure [19, 20].

Although these membrane-bound proteins have been determined to be critical for proper placental development in the mouse by knock-out technology, their patterns of expression within the placenta as a function of gestation have not been well characterized. Therefore, in the present study, immunohistochemical and reverse transcription-polymerase chain reaction (RT-PCR) were used to identify the spatial and temporal expression of integrin subunits ($\alpha_4$, $\alpha_v$, $\beta_1$, and $\beta_3$) and of VCAM-1 protein and mRNA in the murine placenta. Additionally, a cell line derived from g.d. 9 Swiss-Webster mouse placentas was evaluated for integrin subunit and VCAM-1 expression using immunocytochemistry and RT-PCR techniques to establish its potential for use as an in vitro model for studying the regulation and function of trophoblast adhesion molecules.

MATERIALS AND METHODS

Mice and Tissue Collection

A breeding colony of Swiss-Webster mice maintained in accordance with the guidelines set forth by the Animal Use and Care Committee of the University of Kansas Medical Center supplied the tissues for this study. Uteri were collected from pregnant mice (presence of a vaginal plug indicated g.d. 1) on g.d. 6, 8, 10, 12, 14, 16, 18 (3 mice/g.d.).
For immunofluorescent microscopy, uteroplacental units (embryonic and uteroplacental tissues) were cross-sectioned and frozen in Tissue-Tek Optimal Cutting Temperature (OCT) compound (Miles Inc., Elkhart, IN) in liquid nitrogen vapor and stored at −80°C. Additionally, placental samples were flash-frozen in liquid nitrogen and stored at −80°C for analysis by RT-PCR.

**Cell Culture**

A cell line derived from a g.d. 9 Swiss-Webster mouse placenta (SM9-1) using methods that have been described [21] (the presence of a vaginal plug was considered g.d. 0) was grown in 75-cm² tissue culture flasks in RPMI 1640 containing antibiotics and supplemented with 10% fetal bovine serum and 5% CO₂. All experiments were done on low-passage (passages 10–13) placental cell lines. For immunocytochemistry studies, SM9-1 cells were grown on LabTek Chamber Slides (Nunc, Inc., Naperville, IL). RT-PCR, SM9-1 cells from two 75-cm² flasks, approximately 80% confluent, were harvested by scraping the cells from the flasks, pelleting, and freezing at −80°C for later extraction of poly(A)+ mRNA.

**Indirect Immunofluorescence**

Sections of implantation sites and placentas (4- to 8-μm thick sections) from three different mice per g.d. (n = 3) were cut using a cryostat (Reichert-Jung HistoStat; Cambridge Instruments, Buffalo, NY) and mounted on Plus-coated Superfrost slides (Fisher Scientific, Pittsburgh, PA). The tissues and SM9-1 cells adherent to LabTek Chamber Slides were washed in PBS and fixed in −20°C acetone for 10 min, rinsed in PBS with 0.3% Tween-20, and blocked with 1% BSA and 3% goat serum in PBS for 30 min at room temperature. The tissue sections and cells on glass slides were subsequently incubated with a primary antibody (Table 1) or matching control IgG (negative control) for 1 h at 37°C. After several washes in PBS containing 0.3% Tween-20, the tissue sections and cells were incubated with a biotinylated goat secondary antibody against the host species of the primary antibody. Samples were incubated with fluorescein-streptavidin (Sigma Chemical Co.) for 30 min at room temperature. All slides were overlaid with a coverslip and mounting medium containing glycerol-gelatin with 1% phenol (Sigma Chemical Co.). Slides were viewed using a Nikon Axiohot2 equipped with epifluorescence (Nikon Instruments, Garden City, NY), photographed on 1000 Royal Gold or T-Max 3200 film (Eastman Kodak, Rochester, NY), and scored by two independent observers using the scoring system of negative (−), weak (+), moderate (+), or strong (+++) staining as described previously [22].

**RT-PCR**

Poly(A)+ mRNA was isolated from SM9-1 cells and Swiss-Webster mouse uteroplacental units (g.d. 6 and 8) and placentas (g.d. 10, 12, 14, 16, 18) from 3 different mice per g.d. (n = 3) using mRNA isolation kits (FastTrack; Invitrogen, San Diego, CA). With the exception of murine leukemia virus (MuLV) reverse transcriptase (mRT), mRT buffer, and RNasin ribonuclease (RNase) inhibitor, which were purchased from Promega (Madison, WI), all of the components for these procedures were purchased from Perkin-Elmer (Norwich, CT). RT-PCR analysis employed primers and conditions that have been previously described [23–26]. Table 2 gives the primer sequences and cycle conditions.

**RESULTS**

Uteroplacental units (g.d. 6 and 8) and placentas (10, 12, 14, and 16) were examined for the expression of integrin subunits (α4, αv, β1, and β3) and VCAM-1 proteins. The results are summarized in Table 3.
staining pattern in the cytoplasm. The cells in the labyrinthine zone expressed a diffuse pattern of staining in the cytoplasm with slightly more intense labeling at points of cell-to-cell contact. Interestingly, a single band of cells located between the labyrinthine and spongiotrophoblast zones expressed a higher intensity of staining than either the cells of the labyrinthine or spongiotrophoblast zones.

Figure 1, D–F demonstrates the staining pattern of αv in the murine placenta. In early postimplantation placenta, this integrin subunit was localized to the ectoplacental cone and trophoblast giant cells (Fig. 1D). The trophoblast giant cells of later stages (> g.d. 10) had a diffuse staining pattern colocalized to the plasma membrane (Fig. 1E). The spongiotrophoblast and labyrinthine zones and chorionic plate demonstrated staining with gestational variations, although the spongiotrophoblast zone was more intensely labeled than either the labyrinthine zone or the chorionic plate. The spongiotrophoblast zone showed decreased staining intensity in g.d. 16 and 18 placental samples, but staining still remained more intense than in other compartments (Fig. 1F). Staining of the spongiotrophoblast cells for αv highlighted a perinuclear localization and gave a diffuse staining pattern throughout the cytoplasm and on the cell plasma membrane. Staining in the labyrinthine zone was also diffuse.

Expression of the β1 integrin subunit in the developing placenta at g.d. 8 is shown in Figure 1, G–I. The ectoplacental cone and trophoblast giant cells of the early postimplantation conceptus stained strongly for the β1 integrin subunit (Fig. 1G). Figure 1H shows trophoblast giant cells from a g.d. 12 placenta, which exhibited the typically strong staining in this cell type. The stain was localized to the plasma membrane and appeared to exhibit both a diffuse and punctate pattern on the cell surface. The spongiotrophoblast and labyrinthine zones and chorionic plate were strongly stained although there was variability among cells in the spongiotrophoblast zone (Fig. 1I). All cells within the labyrinthine zone displayed a diffuse staining pattern in the cytoplasm and on the cell surface.

The ectoplacental cone and trophoblast giant cells of early postimplantation conceptus (g.d. 8) were positively stained (Fig. 1J) for the β3 integrin subunit. The trophoblast giant cells of the mature placenta (g.d. 12) displayed a fine punctate pattern on plasma membrane (Fig. 1K). The cells of the spongiotrophoblast and labyrinthine zones and chorionic plate were less intensely stained. Although the staining intensities of the spongiotrophoblast and labyrinthine cells were generally similar, compartment-specific patterns were detectable (Fig. 1L). The β3 integrin in the labyrinthine zone was localized predominantly to the cell membrane, whereas the cells of the spongiotrophoblast layer were diffusely stained throughout the cytoplasm. No differences were detected through gestation.

Figure 1M demonstrates that at g.d. 8, the counter receptor for the α4β1 integrin, VCAM-1, was detected on the ectoplacental cone and in trophoblast giant cells of the early postimplantation conceptus. The trophoblast giant cells from the mature placenta (g.d. 12) were weakly positive for VCAM-1 and displayed a diffuse staining pattern on the cell periphery (Fig. 1N). The spongiotrophoblast zone was weakly positive with a diffuse pattern, as illustrated for g.d. 16 in Figure 1O. The labyrinthine zones and chorionic plate contained little VCAM-1 although some cells were more intensely labeled than others. In general, the staining pattern was diffuse in both the labyrinthine and spongiotro-
phoblast compartments, with some staining localized to points of cell-to-cell contacts.

The notable staining features for the integrin subunits α4, αv, β1, and β3 and VCAM-1 are summarized in Table 4.

**Table 4. Notable features of the integrin subunits and VCAM-1.**

<table>
<thead>
<tr>
<th>Adhesion molecule</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>α4 integrin</td>
<td>- strong at points of cell-to-cell contact</td>
</tr>
<tr>
<td></td>
<td>- intense at inter-zone borders, especially trophoblast giant cells</td>
</tr>
<tr>
<td></td>
<td>- little cytoplasmic staining</td>
</tr>
<tr>
<td>αv integrin</td>
<td>- strongest in spongiotrophoblast zone; decreased there on g.d. 16, 18</td>
</tr>
<tr>
<td></td>
<td>- diffuse staining in cells</td>
</tr>
<tr>
<td></td>
<td>- present at points of cell-to-cell contact</td>
</tr>
<tr>
<td>β1 integrin</td>
<td>- strongest in labyrinthine zone</td>
</tr>
<tr>
<td></td>
<td>- variable staining in the spongiotrophoblast zone</td>
</tr>
<tr>
<td></td>
<td>- strong at points of cell-to-cell contact</td>
</tr>
<tr>
<td>β3 integrin</td>
<td>- staining was diffuse and localized to the cell periphery</td>
</tr>
<tr>
<td></td>
<td>- present at points of cell-to-cell contact in trophoblast giant cells</td>
</tr>
<tr>
<td></td>
<td>- no differences in staining intensities between zones</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>- strongest in g.d. 6 and 8 ectoplacental cone and trophoblast giant cells</td>
</tr>
<tr>
<td></td>
<td>- present at points of cell-to-cell contact</td>
</tr>
<tr>
<td></td>
<td>- weak in spongiotrophoblast and labyrinthine zones and trophoblast giant cells</td>
</tr>
</tbody>
</table>

**Placental Expression of Integrin Subunits and VCAM-1 mRNA**

The above experiments indicated that placental cells express integrin subunit and VCAM-1 proteins. Thus, the next set of experiments was conducted to determine whether these proteins are transcribed within the placenta. Poly(A)* mRNA was isolated from uteroplacental units (g.d. 6, 8) and placentas (g.d. 10, 12, 14, 16, and 18). Messenger RNA for the specific integrin subunits α4, αv, β1, and β3 and VCAM-1 was detected in all uteroplacental units and placentas tested. Figure 2 shows semiquantitative RT-PCR analysis of g.d. 8 uteroplacental units and g.d. 16 placentas. Integrin subunit and VCAM-1 mRNA were present throughout gestation, indicating that these proteins were transcribed within the placenta. Strikingly, levels for β3 mRNA were low when compared to G3PDH mRNA even though the protein was easily detected by indirect immunofluorescence (Fig. 1, J–L). Conversely, VCAM-1 mRNA was detected at a higher concentration than G3PDH mRNA, but the protein was weakly expressed in the mature placenta. These data suggest differential regulation at the levels of transcription and translation.

**Expression of Integrin Subunits and VCAM-1 in a Murine Trophoblastic Cell Line**

Having determined that protein and message for the integrin subunits and VCAM-1 were present in the developing placenta, the next set of experiments was conducted to investigate the presence of the same panel of integrin subunits and VCAM-1 proteins and mRNA in the murine trophoblastic cell line SM9-1. As demonstrated in Figure 3, the pattern and intensity of integrin subunits and VCAM-1 expression in SM9-1 cells paralleled expression of the same proteins in placentas. Figure 3A shows the staining pattern of the α4 integrin subunit as detected by indirect immunofluorescence. SM9-1 cells exhibited a strong perinuclear staining pattern and a distinct but diffuse pattern along cell-cell borders. As seen in Figure 3B, the αv integrin subunit was detected in a perinuclear arrangement and was found on cell-cell borders. The antibody to the αv subunit revealed a distinct staining pattern characterized by radial streaks near the leading edge of the cell. By contrast, the stain for the β1 subunit was very intense and localized to the perinuclear region and cell-cell contacts (Fig. 3C). The staining for β3 was less intense, but this protein was also localized to sites of cell-cell contact with some intracellular staining (Fig. 3D). Similarly, as seen in Figure 3E, the staining for VCAM-1 was not intense, although protein was detected throughout the cytoplasm and at sites of cell-cell adhesion.

Poly(A)* mRNA was isolated from cultured SM9-1 cells and analyzed for the presence of the same panel of integrin subunits and VCAM-1 transcripts. Figure 4 demonstrates the presence of specific message from each of the integrin subunit genes and the VCAM-1 gene in the SM9-1 cell line. Each primer set produced an amplicon of the expected size for each integrin subunit and VCAM-1 (see Table 2 and Fig. 2). Similar to observations on placental mRNA, higher intensity signals were observed for the α4, αv, and β1 integrin subunits and VCAM-1 transcripts than for the β3 integrin subunit.

**DISCUSSION**

Although integrins and VCAM-1 are known to be vital to placental formation and function [1], little is known about the expression of these proteins during development. The first goal of this investigation was to identify the nor-
nal patterns of expression of a selected group of integrin subunits and VCAM-1 as a function of gestation. We established 1) that proteins for integrin subunits (α4, αv, β1, and β3) and VCAM-1 are expressed within the developing murine placenta, and 2) that mRNAs for the specific integrin subunits and VCAM-1 are present in uteroplacental units and placentas. The second goal was to determine whether the placental cell line SM9-1 expressed proteins and transcripts for the selected panel of integrin subunits and VCAM-1. These experiments showed that the SM9-1 placental cell line expressed mRNA for the same adhesion molecules that were identified in the placenta.

Transcription of the α4 integrin gene and expression of the protein as well as its corresponding dimer, β1, within the developing placenta are not surprising. Both proteins are required for normal implantation and placental development, as demonstrated in mice with null mutations for these proteins [14]. The current study showed that the protein for α4 integrin subunit was present throughout the placenta with no zonal preference. Although the precise role and regulation of the α4 integrin subunit in placental development is unknown, function-perturbing antibodies to the α4β1 integrin injected into rats and rabbits result in allograft rejections [27, 28], indicating that α4β1 may be involved in creating an immune-privileged site.

The expression of β1 integrin subunit mRNA and protein in placental development is more complex. If β1 formed heterodimers only with α4, then the localization of the stains would be identical, but this is not the case. Our observation that β1 integrin staining was more intense than α4 integrin staining in the labyrinthine zone suggested that it may bind to a different α integrin subunit(s). The β1 subunit is the most versatile of the integrin subunits and can bind 12 different α subunits [1], including the two α subunits examined in this study. It is probably because of this multifaceted nature of β1 that mice null for the β1 subunit die around g.d. 5 [18].

The expression patterns of αv and β3 mRNA and proteins in mouse placentas reported here confirm and extend observations made by others [10] which showed that αv and β3 integrin subunit proteins are constitutively expressed on the trophoblast through g.d. 8. While the protein for β3 integrin subunit was expressed equally in both the spongiotrophoblast and labyrinthine layers, the spongiotrophoblast cells expressed a higher level of αv integrin subunit protein than the labyrinthine layer. The data from this study showed that the intensity of staining of αv was stronger than that of the β3 integrin in the spongiotrophoblast zone, suggesting that αv may dimerize with another integrin subunit (i.e., β1, β5, β6) in the zone and may reflect differences in the invasive character of these cell types. The αv family of integrins is very important in angiogenesis, neovascularization, and tumor migration [29]. Because angiogenesis and neovascularization are critical for normal placental function, and the transfer of nutrients and other important factors to the growing fetus, aberrant expression of αv could result in conditions detrimental to fetal growth and development.

The transcription of VCAM-1 mRNA in the uteroplacental units, and expression of VCAM-1 protein in the ectoplacental cone and trophoblast giant cells in early gestation suggest that this protein is important for early placental formation, an idea that is consistent with previous observations on the function of VCAM-1 in early placental formation using targeted disruption of the VCAM-1 gene [16]. VCAM-1 is the counter receptor for the α4β1 integrin [1] and is expressed on a variety of cell types, in which its primary function is to mediate cell-to-cell adhesion [17]. Thus, VCAM-1 may act in conjunction with α4β1 to create an immune-privileged site and/or to aid in cell-to-cell interactions in the formation of a normal placenta.
The placental cell line SM9-1 was examined for protein and mRNA expression of the adhesion molecules. As in the placenta, the SM9-1 cells contained mRNA encoding the integrin subunits α4, αv, β1, and β3, and VCAM-1. The protein expression of adhesion molecules was similar if not identical to expression in the labyrinthine zone. For example, the SM9-1 cells were moderately stained for the αv integrin subunit and intensely stained for β1 integrin subunit. Since VCAM-1 and the integrin subunits α4 and β3 showed no zonal differences in staining in the placenta, they could not be used to differentiate between the spongiotrophoblast and labyrinthine zones. Thus, the SM9-1 placental cell line may comprise a valuable model system to study the regulation and function of trophoblast adhesion molecules.

The involvement of integrins in normal placental development is unquestioned, as demonstrated in studies with mutant mice. This study demonstrates for the first time that the murine placenta contains mRNA and protein for integrin subunits α4, αv, β1, and β3 and VCAM-1 that vary during gestation. The characterization of integrin expression in the normal developing placenta should aid future studies designed to investigate paracrine factors that modulate placental adhesion molecules and interactions between adhesion molecules and cytokines such as tumor necrosis factor α [30] and Fas ligand [31]. Identifying patterns of expression in the trophoblast cell line lays the groundwork for future in vitro studies on the regulation of adhesion molecules.

ACKNOWLEDGMENTS

The authors appreciate technical assistance in generating the SM9-1 cell line provided by W. Dalziel, and preliminary characterization studies done by W. Dalziel and R.K. Sharma. We thank Dr. Joseph Tash and The Cell Line provided by W. Dalziel, and preliminary characterization studies done by W. Dalziel, and R.K. Sharma. We thank Dr. Joseph Tash and The Image Analysis Core of the P30 Center for Reproductive Sciences for assistance in preparing the figures.

REFERENCES