Harmonizing Biodiversity Conservation and Productivity in the Context of Increasing Demands on Landscapes

RALF SEPPELT, MICHAEL BECKMANN, SILVIA CEAUŞU, ANNA F. CORD, KATHARINA GERSTNER, JESSICA GUREVITCH, STEPHAN KAMBACH, STEFAN KLOTZ, CHASE MENDENHALL, HELEN R. P. PHILLIPS, KRISTIN POWELL, PETER H. VERBURG, WILLEM VERHAGEN, MARTEN WINTER, AND TIM NEWBOLD

Biodiversity conservation and agricultural production are often seen as mutually exclusive objectives. Strategies for reconciling them are intensely debated. We argue that harmonization between biodiversity conservation and crop production can be improved by increasing our understanding of the underlying relationships between them. We provide a general conceptual framework that links biodiversity and agricultural production through the separate relationships between land use and biodiversity and between land use and production. Hypothesized relationships are derived by synthesizing existing empirical and theoretical ecological knowledge. The framework suggests nonlinear relationships caused by the multifaceted impacts of land use (composition, configuration, and intensity). We propose solutions for overcoming the apparently dichotomous aims of maximizing either biodiversity conservation or agricultural production and suggest new hypotheses that emerge from our proposed framework.

Keywords: agricultural production, biodiversity conservation, land-use intensity, landscape configuration, landscape composition
We propose such a framework and present some of the hypotheses that emerge from it. We begin by reviewing the current state of knowledge on the separate relationships between land use and agricultural production and between land use and biodiversity. We then synthesize these relationships into a framework for understanding the trade-offs between production and biodiversity. We argue that a complex and nonlinear relationship between biodiversity and agricultural production is likely, driven by nonlinear and context-dependent relationships between land use and production and between land use and biodiversity.

Land use–production relationships

Levels of agricultural production depend on a multitude of context-dependent factors, including land-use-management practices, land-use history, infrastructure, and access to markets and subsidies, many of which are correlated (Václavík et al. 2013). Human land use has led to a diversity of land systems worldwide that differ widely in the amount of land dedicated to agriculture (i.e., landscape composition), the spatial arrangement of natural and agricultural elements in the landscape (i.e., landscape configuration), and the kind of management practices applied. The latter is most frequently understood as land-use intensity, characterized by the amount of inputs (chemicals, water, fertilizer, labor) and management aspects (stocking density, tillage regimes; van Asselen and Verburg 2012).

The most straightforward way to increase total production is by increasing the proportion of cultivated land in the landscape. Increased areas of arable land enable a near-linear increase in production (figure 1a), although once a certain threshold is reached, gains will be reduced by the inclusion of landscape patches less suited for agriculture and by the impairment of ecosystem functions arising from nearby natural habitat. Intensification is likely to lead to asymptotically increasing production, with diminishing returns (figure 1b) owing to limiting factors, such as radiation or water availability, or to the impairment of supporting and regulating ecosystem services, such as biocontrol or pollination (Kremen et al. 2007, Deguines et al. 2014). Overintensification might even result in a hump-shaped relationship if long-term processes, such as more frequent erosion events with loss of soil fertility, pest outbreaks due to lack of biocontrol species, or developing resistance against pest-control chemicals, are considered. This pattern of saturation is well known in agricultural economics and is usually
referred to as a Cobb-Douglas function (Hayami 1970). Experimental studies could fully separate the effect of total area from intensity of use, but in real-world landscapes, we expect both aspects to interact.

The nature of the relationship between production and landscape configuration is less certain (figure 1c). There might be production benefits of larger farms with more continuous (i.e., less patchy) area under agriculture, owing to scaling effects or to increased management efficiency (Ihse 1995). There might also be production losses due to homogeneous management of large but heterogeneous fields.

However, higher production could be expected in more patchily farmed landscapes, owing to factors resulting from higher biodiversity and therefore better delivery of ecosystem services.

Land use–biodiversity relationships

Evidence strongly suggests that biodiversity (defined here as the combination of richness and abundance; see the introduction) decreases with an increasing proportion of agricultural land owing to the loss and fragmentation of natural habitats (figure 1d; Gerstner et al. 2014a, Newbold et al. 2014, 2015). The form of this relationship will depend on exactly how landscape composition affects the relative abundances of species: An accelerating loss of species is predicted by species-area relationships (Ladle and Whittaker 2011), although these generally assume—unrealistically—that agricultural land is entirely unsuitable for any species (Koh and Ghazoul 2010, but see Pereira and Daily 2006) and do not account for changes in abundance. However, if the majority of species are habitat specialists, a decelerating curve might be more likely with rapid initial losses.

In our framework, increasing land-use intensity can result in a decelerating decrease in biodiversity (figure 1e; as was shown by, e.g., Gerstner et al. 2014a). Small increases in intensity in minimally altered habitat initially lead to large losses of diversity, whereas further intensification will result in continuing but less dramatic declines (figure 1e; e.g., Kleijn et al. 2009).

Finally, the relationship between diversity and landscape configuration is uncertain, with various plausible relationships (figure 1f). Landscapes of simpler configuration might support a higher diversity if the remaining habitats are in larger patches (Gerstner et al. 2014a). However, landscapes of more complex configuration might support relatively high abundances of a greater number of species than simpler landscapes (Stein et al. 2014). Furthermore, small-scale extinctions in fragmented landscapes might be reversed through colonization if migration through the agricultural matrix is possible (Perfecto and Vandermeer 2008).

The available evidence suggests that landscape composition and, to a lesser extent, land-use intensity are the most important drivers of biodiversity (figure 1d and 1e; Fahrig
agricultural production. For example, it has been shown that the presence of weed patches in agricultural landscapes positively

agricultural practices such as large-scale clearing of vulnerable soils may result in large losses of biodiversity but at the same time result in low and declining yields due to soil degradation (Sodhi et al. 2009). However, there are cases in which biodiversity under agricultural production is low and agricultural productivity can be achieved only through very high levels of intensification and degradation of the natural area (figure 2, black arcs). For example, this is the case for highly intense agriculture in the so-called Corn Belt of the US Midwest, with very high soil erosion, the depletion of aquifers, water pollution, the evolution of herbicide, and pesticide-resistant pests, etc. leading to a plateauing of agricultural production (Václavík et al. 2013).

Research capturing all three elements of the proposed framework is just emerging. By comparing monocultures with functionally diverse grassland systems at 31 sites in Europe, Finn and colleagues (2013) supported the hypothesis that more diverse landscapes can support higher agricultural yields and better maintain ecosystem function (in this case, resistance against invasion; figure 2c, example 1). Storkey and colleagues (2011) investigated the agricultural production–biodiversity relationship of arable systems in Europe, showing that higher yields are associated with a higher level of extinction threat among plant species (figure 2c, example 2). As floral diversity is still high in countries with modest inputs of agrochemicals, the authors assumed that land-use intensity is a major driver, although they acknowledged that countries with lower-intensity agriculture are also characterized by smaller field sizes and more complex landscapes. Storkey and colleagues (2011) therefore argued that establishing refugia on marginal land and field margins will play an important role for preserving threatened arable flora. Finally, Donald and colleagues (2014) showed that the populations of various farmland bird species declined in the twentieth century in Europe, with significantly steeper trends in countries with more intensive agriculture and higher cereal yields (figure 2c, example 3). Finally, using meta-analytic and synthetic review techniques, Letourneau and colleagues (2010) showed that pest-suppressive diversification schemes of landscapes interfered with production by reducing densities of the main crop, replacing it with intercrops or noncrop plants.

Conclusions

The proposed framework will help to identify key knowledge gaps and generates a number of hypotheses about trade-offs between agricultural production and biodiversity (box 1). Knowledge about the relationships among land use, biodiversity, and agricultural production is incomplete in several respects. Although previous studies focus on the species richness of plants, birds, and insects, which provide important ecosystem functions such as seed dispersal, pollination, and biocontrol, there is a lack of information on the relationships between species abundance and agricultural production. For example, it has been shown that the presence of weed patches in agricultural landscapes positively

Synthesis: Land use and the biodiversity–production relationship

Figures 2a and 2b conceptualize the relationships discussed above leading to a range of plausible relationships between agricultural production and biodiversity. We show the combined effects of land-use composition, configuration, and intensity on a single axis, but this remains conceptual, and we do not attempt to define a combined metric. The colored arcs of the smaller upper panels translate directly to the arcs of the same color in the main panel and can be associated with different land-use systems. This ranges from best cases, in which biodiversity is both maintained within agricultural areas and supports production (upper edge of the gray shaded area in figure 2c), to worst cases, in which agricultural production is at the expense of biodiversity (lower edge of the gray shaded area).

High biodiversity and high agricultural production are possible where biodiversity can provide benefits to agricultural crops, such as through control of pests (Karp et al. 2013) or pollination (Deguines et al. 2014), and where agricultural areas are managed to maintain high levels of biodiversity (figure 2, green arcs). This requires specific management strategies such as intercropping, agroforestry, or provisioning of nesting habitats (e.g., for pollinators; Perfecto and Vandermeer 2008).

Tscharntke and colleagues (2005), for instance, showed that structurally complex landscapes compensate for local high-intensity management by enhancing local biodiversity. Kremen and colleagues (2007) provided a rationale for these relationships by proposing a model for mobile-agent-based ecosystem service, such as pollination or biocontrol. The functional relationship could be, for example, a hump-shaped curve (figure 2; Tscharntke et al. 2005), although quantitative data along such a complexity gradient are still lacking.

Beyond a certain point, only larger fields with more efficient production or more energy input and higher land-use intensity can achieve a further increase of production. Use of chemical inputs is increased, and practices that sterilize, structurally level, and standardize agricultural plots are promoted (Daily et al. 2003, Tscharntke et al. 2012). The consequences are rapid losses of biodiversity (Karp et al. 2012, Gerstner et al. 2014a) and comparably slower increases of agricultural yields (figure 2, blue arcs; Hayami 1970).

Where the focus is exclusively on agricultural production, biodiversity is lost quickly. In these cases, increasing production might be less successful if it depends on components of the biodiversity (figure 2, red arcs). This could lead to a worst-case condition for both biodiversity and production, characterized by antagonistic relationships between wildlife and agricultural production. For example, unsustainable

http://bioscience.oxfordjournals.org
October 2016 / Vol. 66 No. 10 • BioScience 893
affects sunflower yields owing to higher visitation rates of bees and therefore more pollination (Carvalheiro et al. 2011). Previous studies have also been biased geographically (the examples discussed above focused on Europe). These studies do, however, illustrate how meta-analysis (Letourneau et al. 2010), large-scale field experiments (Finn et al. 2013), or analysis of secondary data (Storkey et al. 2011, Donald et al. 2014) can substantiate the framework by examining how land use moderates the relationship between biodiversity and agricultural production.

We have illustrated how various nonlinear relationships in the complex three-dimensional space of land use, biodiversity, and production could be conceptually synthesized into various relationships between production and biodiversity (figure 2). These relationships encompass the option space for reconciling biodiversity and production. Future research should aim to identify which relationships are seen in different situations. The framework goes beyond the dichotomous views taken in previous discussions, showing that a consideration of gradients in the different facets of land use allows an understanding of the nonlinear nature of the relationships. Moving away from a strictly dichotomous view is key to working toward a more complete understanding and more nuanced decisionmaking. A challenge remains to develop general metrics that combine all aspects of land use (configuration, composition, and intensity), which will allow the application of the proposed framework.

The proposed conceptual framework not only synthesizes the numerous possible nonlinear relationships known from theoretical and empirical studies but also provides guidance for addressing information gaps by experimental studies or meta-analyses. Most of the available literature focuses on just two out of the three dimensions of land use, biodiversity, and production. Although these available studies have informed the framework, additional information is required to fill the missing dimensions, to elucidate the underlying mechanisms, and to identify those land systems that provide the smallest trade-offs or greatest synergies between biodiversity and agricultural production. It is therefore of high priority for ecologists studying land use–biodiversity relationships to also obtain estimates of agricultural production. We also encourage broadening the set of biodiversity indicators used to include species’ abundance information.

Finally, the framework identifies possible options for reconciling demands for agricultural production with demands for biodiversity conservation. Although most studies arguing for sustainable land-use strategies have only addressed single dimensions of land-use change, a thorough study of the impacts of multiple alternative ways to increase production is necessary to identify, within a specific context, the most beneficial ways to balance biodiversity conservation and agricultural production. There are multiple unexplored combinations of landscape composition, configuration, and management, which might offer the opportunity to manage landscapes optimally both to feed the needs of a growing human population and to conserve biodiversity. Conservation of biodiversity needs to be achieved by designing appropriate production systems, which contain and benefit from higher biodiversity, rather than focusing only on the protection of pristine habitat.
Acknowledgments
This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1052875, by the Helmholtz Centre for Environmental Research, and by the Synthesis Centre (sDiv) of the German Centre for Integrative Biodiversity Research (DFG FZT 118). We acknowledge funding from the Helmholtz Association (Research School ESCALATE, VH-KO-613, M.B., S.K.), the UK Natural Environment Research Council (NE/J011193/1, T.N.), the Germany Federal Ministry of Education and Research (GLUES, 01LL0901A, K.G.), the EU 7th Framework Program (OPERAs, 308393, W.V.), and the National Science Foundation (1119891, J.G.). This research contributes to the Global Land Project (www.globallandproject.org).

References cited

Ralf Seppelt (ralf.seppelt@ufz.de), Michael Beckmann, Anna F. Cord, and Katharina Gerstner are affiliated with the Department of Computational Landscape Ecology at the UFZ–Helmholtz Centre for Environmental Research, in Leipzig, Germany; RS is also with the Institute of Geoscience and Geography at the Martin Luther University Halle-Wittenberg, in Germany. Silvia Ceausu, Stefan Klotz, and Marten Winter are affiliated with iDiv, the German Centre for Integrative Biodiversity Research, in Leipzig, Germany; SC is also with the Institute for Biology at Martin Luther University Halle-Wittenberg, in Germany, and SK is also with the Department Community Ecology at the UFZ–Helmholtz Centre for Environmental Research, in Germany. Jessica Gurerrick is affiliated with the Department of Ecology and Evolution at Stony Brook University, in New York. Stephan Kammbach is with the Institute for Biology at Martin Luther University Halle-Wittenberg, and the Department of Community Ecology at the UFZ–Helmholtz Centre for Environmental Research. Chase Mendenhall is affiliated with the Center for Conservation Biology and the Department of Biology at Stanford University, in California. Helen R. P. Phillips is with the Department of Life Sciences at Imperial College London and the Department of Life Sciences at the Natural History Museum, in London, United Kingdom. Kristin Powell is affiliated with the National Socio-Environmental Synthesis Center, in Annapolis, Maryland. Peter H. Verburg and Willem Verhagen are affiliated with the Department of Earth Sciences at VU University Amsterdam, in The Netherlands. Tim Newbold is affiliated with the United Nations Environment Programme World Conservation Monitoring Centre, in Cambridge, United Kingdom.