Expression of Phospholipase C-β4 in Rat Circumvallate Taste Buds

Takashi Toyono, Shinji Kataoka, Yuji Seta and Kuniaki Toyoshima
Department of Oral Anatomy and Neurobiology, Kyushu Dental College, Kokurakita-ku, Kitakyushu 803-8580, Japan
Correspondence to be sent to: Takashi Toyono, e-mail: toyono@kyu-dent.ac.jp

Key words: mGluR1α, phospholipase C-β4, taste bud, umami

Introduction

The heteromer of T1R1 and T1R3 and taste-mGluR4 function as receptors for glutamate (umami) taste sensation (Chaudhari et al., 2000; Nelson et al., 2002). Metabotropic glutamate receptor type 1 (mGluR1α) is expressed in taste receptor cells in rat gustatory papillae (Toyono et al., 2003). It has been known that mGluR1α couples preferentially to an α-subunit of the Goq family, leading to activation of phospholipase C-β (PLC-β) and the consequent mobilization of intracellular Ca2+ levels in the central nervous system (Hermans and Challiss, 2001). The inositol tri-phosphate (IP3) pathway is involved in taste transduction for glutamate in mouse fungiform papilla (Ninomiya et al., 2000). Applications of glutamate and the mixture of GMP and glutamate to rat taste cells increase intracellular Ca2+ levels (Lin et al., 2003). Thus, mGluR1α may be a candidate for another type of umami receptors because mGluR1α plays some roles in IP3 pathway and the mobilization of intracellular Ca2+.

Recent studies have provided evidence that the members of Goq family, Goq, Gz14, Gz15 and PLC-β2, are expressed in rat taste buds (Kusakabe et al., 1998; Rössler et al., 1998). Further, PLC-β2 is known to co-expressed with IP3 type III receptor (IP3_R3) in rodent circumvallate taste buds (Clapp et al., 2001). PLC-β2 generates IP3, which then activates IP3_R3 of intracellular Ca2+ stores in taste cells. In this context, it is conceivable that there may exist a similar signaling cascade via mGluR1α in umami taste sensation. However, no mention has so far been made of the expression patterns of mGluR1α and these signaling molecules in rat taste bud cells.

There are four different PLC-β isoforms (PLC-β1–4) that have been cloned (Rhee and Bae, 1997). They are all regulated by heterotrimeric G proteins and there is evidence suggesting that different isoforms may be involved in a variety of signaling circuits. PLC-β can be activated by both the Go subunits of the Goq family and by the βγ subunits generated by a number of different heterotrimeric G proteins. On the other hand, PLC-β4 can be activated by Goq but not by βγ-subunits of G-proteins (Jiang et al., 1994). The major molecular cascade from mGluR1 to PLC-β is considered to be mGluR1–Goq–PLC-β4 in Purkinje cells (Hirono et al., 2001). In view of these respects, we deduced that PLC-β4 might contribute the mGluR1-mediated signal transduction in taste sensation. However, a search of the literatures fails to reveal the expression of PLC-β4 in rat taste tissues.

In the present study, we examined for the first time the expression patterns of mGluR1α and taste signaling molecules, Goq and PLC-β2 in rat circumvallate papillae. In addition, we examined the expression PLC-β4 mRNA and its protein in gustatory papillae and taste buds by using reverse transcription–polymerase chain reaction (RT–PCR) and immunohistochemistry.

Materials and methods

The methods used in this study were approved by the Institutional Animal Care and Use Committee of Kyushu Dental College.

In situ hybridization

Adult SD rats were anesthetized with chloral hydrate (350 mg/kg) and transcardially perfused with a fixative containing 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (pH 7.3) for 15 min. The areas of circumvallate papillae were dissected out and rinsed overnight with 0.1 M phosphate buffer containing 30% sucrose. Tissues were then embedded in Tissue-Tek and snap-frozen in a dry ice-isopentane mixture. In situ hybridization analysis for mGluR1α were performed as described previously (Toyono et al., 2003).

Immunohistochemistry

The frozen sections were prepared in similar manners to as described above. Sections were washed in PBS and incubated for 12 h at room temperature in a solution containing rabbit polyclonal antibody against rat PLC-β4 (Santa Cruz Biotechnology) at a dilution of 1:150. Alexa™488-conjugated goat anti-rabbit IgG (1:200; Invitrogen) was used as a secondary antibody. Negative controls to immunofluorescent staining were performed by replacing the primary antibodies with PBS or by pre-incubating of primary antibodies with cognate peptides. After immunostaining for PLC-β4, double-labelled experiments were performed with Alexa Fluor 546-labelled PLC-β2 rabbit polyclonal antibody (Santa Cruz biotechnology). This labelled antibody was prepared with the Zenon Rabbit IgG Labeling Kits (Invitrogen).

After in situ hybridization, some sections were analyzed for co-expression of mGluR1-mRNA and Goq-protein, or of mGluR1-mRNA and PLC-β2-protein by using immunohistochemistry.

RT–PCR

RT–PCR analyses for PLC-β4 were performed as described previously (Toyono et al., 2003). Primer sequences for the PCR were as follows: PLC-β4, 5′-ATCGTGGCCAGTATGACAAG-3′ (forward) and 5′-ATCTGCTGATCTTTCG-3′ (reverse); product size, 590 bp. PCR amplifications were performed under the following conditions: 94°C for 30 s, 55°C for 1 min, 72°C for 1 min for a total of 40 cycles and elongation step at 72°C for 10 min for PLC-β4 and GAPDH.

Results and discussion

The expression patterns of mGluR1 and signaling molecules were examined by in situ hybridization and immunohistochemistry in rat circumvallate taste buds. A subset of mGluR1-expressing taste bud cells co-expressed PLC-β2. According to the study by Zhang et al. (2003), PLC-β2 deficient mice abolished sweet, amino acid and bitter taste perception. Their study suggested that mGluR1α might play some roles in umami taste-signaling cascades through PLC-β2. We also examined the expression of Goq in mGluR1 expressing cells in rat taste bud cells. Almost all mGluR1 expressing cells co-expressed Goq. Further, double immunolabeling experiments for Goq and PLC-β2 showed that almost all PLC-β2 expressing cells co-expressed Goq. In their study on the group I metabotropic glutamate receptors, Hermans and Challiss (2001), found that mGluR1α couples...
In the central nervous system of the mouse, despite the existence of fibers (Figure 1B). Double labeled experiments showed that a subset of taste bud cells and intragemmal and subgemmal nerve vallate papillae, the antibody against PLC-β4 is preferentially to an α subunit of the Gαq family, leading to activation of PLC-β in the central nervous system. Taken together with our results it seems that, as well as the central nervous system, mGluR1α may couple with Gαq which consequently, may activate PLC-β2 in umami taste transduction in taste bud cells.

RT-PCR assay showed that PLC-β4 mRNA expressed in circumvallate papillae (Figure 1A). In fungiform, foliate and circumvallate papillae, the antibody against PLC-β4 gave labeling of the subset of taste bud cells and intragemmal and subgemmal nerve fibers (Figure 1B). Double labeled experiments showed that a subset of PLC-β4 expressing cells also co-expressed PLC-β2 (Figure 1C–E).

In the central nervous system of the mouse, despite the existence of four PLC-β isoforms (PLC-β1–4), only one or two of them is expressed in each neuron and glial cell (Watanabe et al., 1998). PLC-β3 and PLC-β4 are major isoforms with lower levels of PLC-β1 in Purkinje cells. Similar to the results obtained from mouse central nervous system, PLC-β2 and PLC-β4 are expressed in a subset of taste bud cells and these isoforms may form a functional IP3 signaling cascade, playing some roles in the taste signal transductions. PLC-β4 is known to work through mGluR1 in the mouse cerebellum, and PLC-β4-deficient mouse is reported to show ataxia (Kim et al., 1997). A clue to understand the role of PLC-β4 in taste transduction may be gain from the analysis of the PLC-β4-null mouse.

References