In This Issue

Articles highlighted

Pig olfactory brain

Page 415

The pig olfactory system is understudied despite the fact that these animals represent a good model of human physiology and possess an exquisitely sensitive sense of smell. Brunjes et al now provide an overview of the pig olfactory system including Nissl, myelin and Golgi stains. Moreover, they used confocal microscopy to examine projection neurons and GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, as well as neuromodulatory cholinergic and serotonergic fibers. They also included astrocytes and microglial cells in this analysis. Their data suggest that the pig olfactory brain is quite large, highly organized and resembles other mammalian olfactory systems.

Disgust-related personality traits in men with olfactory dysfunction

Page 427

Olfaction provides a crucial input for the disgust system. Disgust protects organisms against contamination, infection and disease by evoking behavioral patterns that aim at avoiding possible sources of contagion such as body exccretions, spoiled food, dirt and ill or dead animals. Individuals differ in various disgust-related personality traits including disgust proneness (DP), i.e., the tendency to experience disgust, disgust sensitivity (DS), i.e., tendency to perceive one's own disgust experiences as difficult to control, and self-disgust (SD) which is the strong dislike/aversion of one's self. Ille et al investigated disgust dispositions in anosmic and hyposmic male patients as well as in normosmic men. Dysosmic patients displayed lowered DP toward spoilage, elevated DP toward poor hygiene, and elevated SD whereas no differences were found with respect to DS. The authors explain the differences by difficulties in perceiving one's own body odor in dysosmics and resulting challenges for personal hygiene and propose that enhanced personal disgust may be related to a general social insecurity in people with olfactory malfunction.

Ethnic differences in taste perception

Page 449

Nutritional intake varies as a function of ethnicity. Besides other factors differences in the perceived taste of foods may influence variations in ethnicity-related food intake. Indeed, Williams et al describe that Hispanics and African Americans rated taste sensations higher than non-Hispanic Whites and that these differences were more pronounced in men. Such differences could be crucial for diet-related disease risks and propose that dietary interventions should consider the different sensory experiences that ethnic groups perceive when consuming food.

Wolfgang Meyerhof