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Can the computer see what
the human sees?
Aziz Nazha | Amazon Web Services

In this issue of Blood, Matek et al1 developed a computer vision model to dif-
ferentiate between bone marrow cell morphologies on a large, expert anno-
tated dataset.

Machine learning (ML) is a branch of
computer science in which an algorithm
generates predictive models by learning
from training data without explicitly
being programmed.2,3 Significant advan-
ces in ML algorithms have been achieved
in recent years, especially in the field of
computer vision (using ML algorithms to
detect objects and patterns in images).2,3

These advances allowed Google search
to accurately label complex images,
enable smartphones to recognize faces,
and paved the way for the development
of self-driving cars. Computer vision
algorithms have also been used in
healthcare to label radiological and path-
ological images.4,5

Computer vision uses deep neural net-
works that represent mathematical
modeling of the neuron in the human
brain.2 These networks have 3 compo-
nents: an input layer that takes source
material from either text, structured data,
or image; an output layer that provides
the desired output; and multiple hidden
layers that connect the input and output
layers. The most common subtype of
neural network used in computer vision
is convolutional neural network (CNN).
CNN can be used to classify images
(identify if the image has a dog or a cat),
segment images (draw a line around the
desired prediction), or detect objects in
the image by drawing a box around
them. These methods can be used
separately or combined in 1 intelligent
system.

In this study, the authors trained a CNN
model on 171374 bone marrow cytology
images from 961 patients diagnosed
with variety of hematological diseases
and evaluated at the Munich Leukemia
Laboratory between 2011 and 2013. To
prepare the slides to be used by the ML
model, the authors first digitally scanned
the whole slide images (340 oil immer-
sion with original dimensions of 2452 3

2056 pixels) for the morphological cell
analysis. From the examined regions,
diagnostically relevant cell images were
annotated into 21 different classes (these
classes include myeloid and lymphoid
malignancies and nonmalignant condi-
tions). The images were then annotated
by experienced hematopathologists and
sized at 250 3 250 pixels. It is common
to downsize the images before training
them with a CNN model given that
larger images can be difficult to train and
require a lot of computational power.
The authors acknowledged the imbal-
ance between the classes given that
some of these classes are less prevalent
than others. To overcome that, the
authors oversampled the imbalanced
classes using image augmentation (a
common technique to improve the ML
model performance). The authors then
used a CNN model (ResNext-50) to train
the algorithm for recognizing each class.
The ML model showed accurate perfor-
mance for the classes with a higher num-
ber in the training samples, whereas the
performance was lower on the rarer clas-
ses. This observation is common when

training ML models on imbalanced data-
sets. Whereas humans can be trained on
a small number of images to identify
objects, ML models require a large
amount of data to be able to produce
accurate results. The authors acknowl-
edged the difficulties in identifying indi-
vidual morphologies, especially when
they are closely related in the leukocyte-
differentiating lineage. The authors then
validated the model on an independent
data set of 627 single-cell images from
30 slides of 10 patients. Approximately
39% of these images in the validation
cohort were classified as an artifact or
not identifiable categories, suggesting
that the classes of these images cannot
be predicted by the model. This discrep-
ancy between the model performance in
the original dataset and the validation
cohort could be related to different tech-
niques in staining and annotating the
images, but also raise an important point
when evaluating the performance of an
ML model in healthcare. The reproduc-
ibility of the model in multiple different
clinical settings is an important part of
the successful implementation/adapta-
tion of this model in the clinical workflow
and should be required before imple-
menting these algorithms in any hospital
or laboratory.

The authors also completed another
important step in building an ML model
by performing an explainability analysis
(trying to identify the structure that the
algorithm is looking at when making a
prediction). Although the model was
able to identify the structure that human
looks at in common images, it was less
robust in rarer images. Several studies
have shown that CNNs in some cases
are using irrelevant structures in radiolog-
ical or pathological images to make a
prediction of an outcome.6,7 Explainabil-
ity of a ML algorithm represent another
important step of the successful adapta-
tions of these models in clinical practice.

This study represents a significant step
toward the integration of ML models in
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clinical practice. The authors profession-
ally annotated a very large dataset and
used a state-of-the-art computer vision
algorithm to train and validate the
model. The dataset can be used for
future research to improve the model
performance and to integrate it in the
workflow of hematopathologists.

In summary, artificial intelligence and ML
algorithms are changing our lives. These
technologies will have significant impact
on healthcare in the next decade.
Although these algorithms may not
replace physicians and researchers, it will
definitely aid them in providing better
care/research that can improve patient
lives. As Oren Harari once said: “The
electric light did not come from the con-
tinuous improvement of candles.” If we
really want to have a significant impact
on healthcare in the future, we need to
start embracing the impact of these tech-
nologies and learn how to use and inte-
grate them into our daily workflow.
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Control of hemolysis in
patients with PNH
Lucio Luzzatto | Muhimbili University of Health and Allied Sciences;
University of Florence

Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by the triad of
intravascular hemolysis (IVH), a tendency to thrombosis, and an element of
bone marrow failure. With the introduction of the anti-C5 antibody eculizu-
mab (ECU),1 IVH and associated symptoms are abrogated, and the risk of
thrombosis is greatly reduced; however, most patients remain anemic, and
some remain transfusion dependent.2 In this issue of Blood, Kulasekararaj
et al3 report that danicopan (DNC), an inhibitor of complement factor D,
added to ECU, corrects or at least ameliorates the anemia.

This important clinical result is also of
great interest with respect to pathophysi-
ology (see figure panels A-B). When a
patient with PNH is on ECU, red cells no
longer suffer complement-mediated lysis,
but unlysed red cells undergo opsoniza-
tion by C3 fragments (see figure, panel C)
and are thus marked for removal by mac-
rophages. In patients who are on ECU,

extravascular hemolysis (EVH) is a regular
iatrogenic feature4; its clinical correlates
are persistent anemia with reticulocytosis
and hyperbiluribinemia, sometimes with
visible jaundice.

Overcoming EVH has been a major
stimulus for introducing agents that act
upstream of C5 on the proximal

complement pathway. There are now 3
such agents: pegcetacoplan (APL2), which
is already approved by the US Food and
Drug Administration,5 as well as iptacopan
(IPT)6 and DNC, both of which are in
phase 3 trials. In this context, the findings
by Kulasekararaj et al are most relevant:
DNC, in patients who are already on ECU,
causes an increase in hemoglobin, a
decrease in reticulocytes, and a decrease
in bilirubin, which is exactly what one
would expect when, with IVH already con-
trolled by ECU, EVH is curbed as well. Of
course the patients feel better, and Figure
3 in the article by Kulasekararaj et al illus-
trates a gratifying abolition of blood trans-
fusion requirements in all but 1 patient.
The decrease in the proportion of C3d-
coated red cells is not as great as one
might have hoped; perhaps plasma levels
are not always optimal, and the dosage
may need adjustments. Patient-to-patient
variability in this parameter might also
depend on the complement receptor 1
genotype,7 which will require testing.

Because the complement system is part
of innate immunity, tampering with it
should not be taken lightly. Congenital
C3 deficiency is associated with a risk for
serious infection from capsulated and
gram-negative bacteria; iatrogenic C3
deficiency may be less complete, but the
same risk can be expected. We note,
however, that with normally developed
acquired immunity, the defensive func-
tion of complement may be less crucial
in adults than in children.8

Inhibition of complement at the level of
C3 can also largely preempt the distal
pathway; therefore, in principle, any of
the 3 agents mentioned above might
control hemolysis in PNH on its own.
This is not to say that the 3 are equiva-
lent: APL2 targets C3 itself, a proenzyme
and one of the most abundant plasma
proteins (1.2 g/L); IPT targets factor B
(plasma concentration of 200 mg/L),
another proenzyme of the alternative
pathway C3 convertase; and DNC tar-
gets factor D (plasma concentration
1 mg/L), the serine protease that
cleaves-activates factor B (see figure). All
of the drug-target interactions have been
solved at the molecular level, but target
concentrations and characteristics of the
3 drugs differ: the choice among them
may not prove easy. Some of us believe
that the price of a drug should not be
dictated simply by market forces9; how-
ever, the benchmark will be the current
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