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Abstract
Damage control refers to those actions made towards minimizing damage or loss. Depending on the context,
these can range from emergency procedures dealing with the sinking of a ship or to a surgery dealing with
severe trauma or even to an imaginary company in Marvel comics, which repairs damaged property arising
from conflicts between super heroes and villains. In the context of host microbe interactions, tissue damage
control refers to an adaptive response that limits the extent of tissue damage associated with infection.
Tissue damage control can limit the severity of infectious diseases without interfering with pathogen burden,
conferring disease tolerance to infection. This contrasts with immune-driven resistance mechanisms, which
although essential to protect the host from infection, can impose tissue damage to host parenchyma
tissues. This damaging effect is countered by stress responses that confer tissue damage control and disease
tolerance to infection. Here we discuss how the stress response regulated by the transcription factor nuclear
factor-erythroid 2-related factor 2 (Nrf2) acts in such a manner.

Introduction
Resistance to infection defines a defence strategy that limits
host disease severity via immune driven mechanisms that
target pathogens for expulsion, containment or killing.
Disease tolerance defines a distinct defence strategy that limits
host disease severity without however, targeting pathogens
[1–3]. Described originally in plants [4], disease tolerance is
operational in flies [5–7] and mammals, including in mice
[8,9] as well as in humans [10]. The term disease tolerance is
used hereby to refer explicitly to the defence strategy defined
originally in the plant literature [4,11], which limits host
‘damage to functions and structures’ [4] imposed by infection,
without interfering with host pathogen load [4,11].

Disease tolerance is regulated by a number of evolutionar-
ily conserved stress and/or damage responses. These confer
tissue damage control, i.e. prevent ‘damage to functions and
structures’ imposed by infection [4,12]. Presumably, stress
and/or damage responses evolved from ancestral forms of
life where they provided cellular adaptation to environmental
changes [13]. Much like resistance mechanisms, these adaptive
responses evolved, most probably, under the selective
pressure imposed by host microbe interactions.

Resistance mechanisms can elicit, per se, varying levels
of cellular stress and damage to the host parenchyma, as
illustrated for innate immune responses associated with
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the production of reactive oxygen species (ROS) and/or
reactive nitrogen species (RNS). This is coupled to a
countervailing oxidative stress response regulated by nuclear
factor-erythroid 2-related factor 2 (Nrf2), a member of the
cap’n’collar basic leucine zipper family transcription factor
characterized structurally by the presence of Nrf2–ECH
homology domains [14]. Other members of this family
include NF–E2 p45, Nrf1 and Nrf3 [14].

Mechanisms regulating Nrf2 activation in
the context of infection
Engagement of pattern recognition receptors (PRRs) by
pathogen-associated molecular patterns (PAMP) activates
Nrf2 in innate immune cells such as monocytes/macrophages
(Mø). For example, lipopolysaccharide (LPS) recognition
by toll-like receptor 4 (TLR4) triggers the transcrip-
tion/expression of the inducible form of nitric oxide synthase
(iNOS/NOS2), via a mechanism involving the adaptor
molecule Myd88 (myeloid differentiation primary response
gene 88) and the transcription factor nuclear factor kappa
B (NF-κB) [15]. The TLR4–MyD88–NF-κB signal trans-
duction pathway also triggers the transcription/expression
of the phagocytic NADPH oxidase (NOX2/gp91phox) [16],
which generates intracellular superoxide (O2

� − ). The NO
generated by iNOS reacts with O2

� − and produces
peroxinitrate (ONNO− ) anions, which targets several thiol-
based (S-H) redox systems, including reactive cysteines in
the Kelch-like ECH-associated protein 1 (Keap1) [13,17,18]
(Figure 1). Keap1 is an adaptor for the cullin (Cul)3–
RING (really interesting new gene)-box protein (Rbx)1
ubiquitin ligase complex, which targets Nrf2 constitutively
for proteolytic degradation by the 26s proteasome [13].
Under oxidative stress, some of the reactive cysteines of
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Figure 1 Control of Nrf2 activation by different E3 ubiquitin ligase complexes

Acronyms are defined throughout the text. When no longer targeted for degradation by E3 ubiquitin ligase complexes, Nrf2

activity is controlled mainly by its rate of transcription, with newly transcribed Nrf2 regulating gene expression. It is the

Keap1–Cul3–Rbx1, Hrd1 E3 ubiquitin ligase and SCFβ-TrCP complexes, however that underlie the stress responsive nature of

Nrf2 activity.

Figure 2 Outcomes of Nrf2 activation

Upon infection, activation of Nrf2 in different cellular components of the immune system acts in an immunoregulatory

manner, which modulates resistance to infection. Activation of Nrf2 in parenchyma tissues provides tissue damage control

and disease tolerance to infection. Control of Nrf2 activation is illustrated in the context of a generic E3 ubiquitin ligase

complex, detailed under Figure 2.

Keap1, i.e. Cys151 are targeted by ONNO− , generating thiol
oxidation products and ultimately forming disulfide bonds
[19]. These alter the tertiary structure of Keap1, inhibiting
its ubiquitin ligase activity and Nrf2 degradation [13,17,18].
The newly transcribed Nrf2 undergoes nuclear translocation
and binds to small musculoaponeurotic fibrosarcoma (sMaf)
transcription factors, including MafF, MafG and MafK
[14], driving the transcription of Nrf2-responsive genes
containing DNA antioxidant responsive elements (AREs) in
their promoter [13] (Figure 1). In addition, NF-κB also acts

directly on the Nrf2 promoter to induce Nrf2 transcription
[13], presumably required to sustain Nrf2-dependent gene
expression (Figure 2).

It is now clear that other E3 ubiquitin ligase complexes
contribute to integrate Nrf2 activation within different
forms of cellular stress [13]. These include the Skp1 (S-
phase kinase-associated protein 1)–Cul1–F-box (SCF)–β-
transducin repeats-containing proteins (β-TrCP) complex
(SCFβ-TrCP) [20], which recognizes the Neh6 (Nrf2-ECH
homology 6) domain of Nrf2 when phophorylated by the
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glycogen synthase kinase 3 (GSK3) [20]. Presumably, Nrf2
phosphorylation at the Neh6 domain allows for coupling
of different forms of stress sensed by GSK3 with Nrf2
ubiquitination by the SCFβ-TrCP complex and its degradation
by the 26s proteasome [13,20] (Figure 1). The HMG (high
mobility group)-coA reductase degradation 1 (Hrd1) E3
ubiquitin–protein ligase involved in endoplasmic reticulum-
associated protein degradation (ERAD) also controls Nrf2
activation [21]. Hrd1 targets the Nhe4–5 domain of Nrf2
for ubiquitination and degradation by the 26s proteasome
[21] (Figure 1). How Hrd1 acts in the context of other
components of the endoplasmic reticulum stress response,
such as the protein kinase RNA-like ER kinase 1 (PERK1)
[22], to regulate Nrf2 is not clear.

It is worth noting that Nrf2 activity is controlled to a large
extent by its rate of transcription/expression (Figure 1). This
is regulated by several transcription factors including NF-κB
and Nrf2 itself, as well as clock components that impose a
circadian control to Nrf2 activity [23] (Figure 1).

Nrf2 and resistance to infection
Perhaps the best demonstration that Nrf2 modulates host
resistance to infection is provided by the observation that
deletion of the Nrf2 allele in mice enhances resistance to
Marburg virus infection [24]. This effect is mediated by the
Marburg virus encoded VP24 protein, which binds the Kelch
domain of Keap1 and inhibits the ubiquitin ligase activity
of the Keap1–Cul3–Rbx1 complex, hence inducing Nrf2
activation [24,25]. Several other observations are consistent
with the notion that viruses induce host Nrf2 activation
in vitro, as suggested for Kaposi’s sarcoma-associated herpes
virus [26], as well as for Influenza [27,28] and dengue
[29] viruses. However, the pathophysiologic relevance of
these observations remains to be elucidated. Conversely,
other viruses such as hepatitis C virus, down-regulate Nrf2
activation via a mechanism impairing its nuclear import
through delocalization of sMaf proteins [30]. The impact of
this phenomenon to the outcome of hepatitis C virus infection
is also not clear.

Intracellular bacteria also modulate Nrf2 activation, as
demonstrated for Salmonella typhimurium infection in Mø
[31]. Activation of Nrf2 enforces the transcription/expression
of Ferroportin-1, an iron exporter that decreases iron cellular
content [31]. This limits Salmonella access to iron, restraining
the proliferation of this intracellular pathogen [31]. Whether
Nrf2 acts under pathophysiologic conditions to promote
resistance to Salmonella infection is likely, but this remains to
be formally demonstrated [31]. Pharmacologic activation of
Nrf2 by sulforaphane promotes resistance to Pseudomonas
aeruginosa [32] as well as to Plasmodium infection in mice
[33].

Nrf2 in tissue damage control and disease
tolerance
The Nrf2 signal transduction pathway also confers tissue
damage control and disease tolerance to systemic infections.

One of the mechanisms via which this occurs involves
the establishment of a functional cross-talk between the
gasotransmitters NO and CO, as illustrated for Plasmodium
infection [34,35]. When applied pharmacologically, both NO
[35–37] and CO [34,38,39] can suppress the development
of experimental cerebral malaria in mice, a lethal form
of severe malaria that resembles, in many aspects, human
cerebral malaria [40]. This protective effect acts via Nrf2
activation by NO [41], presumably through a mechanism
targeting Keap1 at Cys151 [13,42], but this has not been
established experimentally. Nrf2 activation induces HO-1
(heme oxygenase-1) expression and the production of CO,
via haeme catabolism by HO-1, which acts ultimately as
the gasotransmitter suppressing the onset of experimental
cerebral malaria [41]. This occurs via a mechanism involving
the binding of CO to the prosthetic haeme group of cell free
haemoglobin generated during the blood stage of Plasmodium
infection, thus preventing haeme from participating in the
pathogenesis of experimental cerebral malaria [34,38,39,41].
The protective effect exerted by the NO->Nrf2->HO-1-
>CO signal transduction pathway is not associated with
modulation of host pathogen load, suggesting that the cross-
talk established between these two gasotransmitters confers
disease tolerance to Plasmodium infection via a mechanism
regulated by Nrf2 [11,41].

Presumably, the mechanism via which Nrf2 confers
tissue damage control and disease tolerance to malaria also
involves the expression of Nrf2-responsive genes regulating
haeme/iron metabolism [43]. These include the iron storage
protein Ferritin H chain (FtH) [44,45], which can confer per
se tissue damage control and disease tolerance to malaria in
mice [10].

There is further evidence that argues strongly for a
central role of the Nrf2 signal transduction pathway in the
establishment of disease tolerance to Plasmodium infection.
In a similar manner to humans carrying hemizygous sickle
mutations in the β-chain of haemoglobin, transgenic sickle
haemoglobin mice are protected from cerebral malaria [38].
This protective effect is exerted irrespectively of parasite load,
revealing that sickle haemoglobin can confer disease tolerance
to Plasmodium infection [11,38]. Sickle haemoglobin induces
the expression of HO-1 through a mechanism regulated by
Nrf2 and leading to the production of CO, which confers
tissue damage control and disease tolerance to malaria [38,39].
Whether this mechanism explains how sickle haemoglobin
protects humans from malaria remains to be established but
is likely to be the case.

It is probable that a similar mechanism underlies the
protective effect exerted by other chronic haemolytic
conditions against malaria, including haemoglobin C [46,47],
glucose 6 phosphate dihydrogenase (G6PD) deficiency in
males [48], β- or α-thalassemia [47] as well as mutations
underlying red blood cell cytoskeleton or membrane protein
defects [49]. Presumably, the protective effect associated
with these mutations is mediated via different mechanisms
that converge at the level of Nrf2 activation. Therefore
it is possible that sickle haemoglobin and probably these
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other red blood cell mutations co-evolved with the Nrf2
signal transduction pathway to limit disease severity driven
by these mutations while conferring protection against
malaria, such as illustrated for the sickle haemoglobin
[38].

There is also circumstantial evidence to suggest that
Nrf2 confers disease tolerance to systemic infections, other
than malaria. Namely, Nrf2 is protective against endotoxic
shock [50], severe sepsis triggered by polymicrobial infection
[50] and lung injury induced by Staphylococcus aureus
infection [51] in mice. These salutary effects have been
associated mainly with immunoregulation but there is no
clear evidence whether Nrf2 modulates pathogen load in
these specific experimental settings [50]. Our own data
confirms that Nrf2 activation prevents the lethal outcome
of polymicrobial sepsis in mice, without however interfering
with pathogen load (Weis, S., Ribeiro, A. and Soares, M.P.,
unpublished observation). This suggests that Nrf2 can confer
disease tolerance to infection, presumably acting as an
immunoregulatory transcription factor in innate immune
cells and/or parenchyma cells to provide tissue damage
control, although this remains to be fully established.

Mechanisms underlying the protective
effect of Nrf2 against infection
There is a general consensus that Nrf2 is protective against
systemic infections, via a mechanism targeting NF-κB
and modulating pro-inflammatory gene expression in Mø
[50,52] (Figure 2). However, Nrf2 activation is required
to sustain interleukin (IL)-1β secretion in Mø, via a
mechanism involving NLRP3 (NACHT, LRR and PYD
domains-containing protein 3) driven caspase 1 activation, an
essential step in the processing of pro-IL-1β towards IL-1β

secretion [53]. This would argue that Nrf2 promotes, rather
than restrains, inflammation. Moreover, Nrf2 induces the
expression of the activating transcription factor 3 (ATF3) in
Mø, an IL-6 repressor that is protective against LPS but highly
deleterious against bacterial infection [54]. This suggests that
Nrf2 can also act in a deleterious manner in the context of
systemic bacterial infections (Figure 2).

Oxidative stress can trigger parenchyma cells to undergo
regulated necrosis [55], leading to tissue damage and organ
dysfunction, eventually compromising disease tolerance
to infection [12]. Therefore, host protective mechanisms
that prevent parenchyma cells from undergoing regulated
necrosis, such as those driven by Nrf2, should enforce
tissue damage control and disease tolerance to systemic
infections [12] (Figure 2). Presumably, this occurs via the
expression of Nrf2 regulated effector genes, such as those
controlling glutathione synthesis/conjugation [13,18], haeme
metabolism, i.e. HO-1 [56–58], iron metabolism, e.g. FtH
[59,60], ferroportin-1 [31] and/or lipid peroxidation, e.g.
biliverdin reductase [61]. Other mechanisms underlying the
protective effects of Nrf2 were linked to maintenance of
mitochondrial function [51].

Trade-off of the stress response driven by
Nrf2
Disease tolerance mechanisms do not exert a negative impact
on pathogens. As such, stress responses underlying disease
tolerance create a situation in which the infected host,
although healthy, can transmit the disease. This has probably
major consequences on the natural selection of genes
regulating stress responses, including Nrf2 [62]. Moreover,
stress responses preserve core cellular functions at the expense
of ‘accessory’ ones [63–65] and therefore must be tightly
regulated over time [11]. Nrf2 is no exception to this rule
as illustrated by the observation that chronic Nrf2 activation
promotes tumorigenesis [66].

Conclusion
The stress response regulated by Nrf2 probably plays a major
role in conferring disease tolerance to systemic infections,
such as those triggered by bacteria infection and leading to
severe sepsis or the one triggered by Plasmodium infection
and leading to severe forms of malaria. Viral infections, on
the other hand, appear to thrive on host Nrf2 activation, as
illustrated by a number of examples in which induction of
Nrf2 activity favours virus proliferation. Given the above,
it is not clear to what extent the Nrf2 signal transduction
pathway may be targeted to treat infectious diseases.
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