Data and Text Mining

GRIEVOUS: Your command-line general for resolving cross-dataset genotype inconsistencies

James V. Talwar1,2,*; Adam Klie1,2; Meghana S. Pagadala3; Hannah Carter1,2,4,*

1Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA 92093, USA; 2Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA; 3Biomedical Science Program, University of California San Diego, La Jolla, CA 92093, USA; 4Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA

*To whom correspondence should be addressed.

Associate Editor: Macha Nikolski

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Summary: Harmonizing variant indexing and allele assignments across datasets is crucial for data integrity in cross-dataset studies such as multi-cohort genome-wide association studies, meta-analyses, and the development, validation, and application of polygenic risk scores. Ensuring this indexing and allele consistency is a laborious, time-consuming, and error-prone process requiring a certain degree of computational proficiency. Here, we introduce GRIEVOUS, a command-line tool for cross-dataset variant homogenization. By means of an internal database and a custom indexing methodology, GRIEVOUS identifies, formats, and aligns all biallelic SNPs across all summary statistic and genotype files of interest. Upon completion of dataset harmonization, GRIEVOUS can also be used to extract the maximal set of biallelic SNPs common to all datasets.

Availability and Implementation: GRIEVOUS and all supporting documentation and tutorials can be found at https://github.com/jvtalwar/GRIEVOUS. It is freely and publicly available under the MIT license and can be installed via pip.

Contact: jtalwar@ucsd.edu; hkcarter@health.ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The explosion of genetic variant datasets, driven by increasingly affordable genomic profiling technologies, presents exciting opportunities across a number of fields, ranging from precision medicine to ecology to agriculture. However, taking full advantage of genetic data from multiple sources can be challenging when datasets employ different conventions for encoding variants. Analyses requiring the integration of various datasets range from the straightforward, such as validating genetic findings or polygenic scores in new datasets, to the more complex, such as cross-dataset joint statistical analyses (e.g., genome-wide association meta-analyses [Zeggini and Ioannidis, 2009; Evangelou and Ioannidis, 2013], two-sample Mendelian randomizations [Hartwig et al., 2016; Sanderson et al., 2022]). These approaches can frequently be undermined by discrepancies in the definition of identical variants across datasets (Zeggini and Ioannidis, 2009; Hartwig et al., 2016).

Common variants, such as single nucleotide polymorphisms (SNPs), are abundantly shared across different datasets, and can be imputed against reference panels to increase coverage (van Leeuwen et al., 2015; Coleman et al., 2016). Quality control of SNP data is critical, and best practices include setting uncertain genotypes to missing, orienting genotypes to the forward reference DNA strand, and filtering on missingness, minor allele frequency, or deviation from Hardy Weinberg equilibrium (Marees et al., 2018; Choi et al., 2020; Anderson et al., 2010; Coleman et al., 2016). However, even after performing the steps to
generate a high-quality dataset, there can still be discrepancies between datasets due to differences in conventions used to define genotypes. If left uncorrected, these discrepancies can create illusory genotypic differences where none exist. Given that common variant sets can include millions of SNPs, it can be challenging and time consuming to manually identify and resolve discrepancies.

To reduce this burden to the researcher, we developed a Generalized Realignment of Innocuous and Essential Variants Otherwise Utilized as Skewed or GRIEVOUS, a command-line tool designed to ensure cross-cohort consistency and maximal feature recovery of biallelic SNPs, the most commonly used class of variants for genetic studies (Choi et al., 2020). Whether creating a composite cohort from smaller studies for joint analyses, or ensuring feature fidelity for validation studies or polygenic score portability, GRIEVOUS reduces the problem of variant consistency and recovery to a simple streamlined set of commands.

2 Material and Methods

2.1 Datasets

Summary statistics and genotype data were obtained for two diseases: breast cancer (BC) and prostate cancer (PC). Specifically, data consisted of one summary statistic file and two different genotype datasets, each of which diverged in genotyping and imputation methodology from the other. Each file (i.e., both summary statistics and genotypes), for each condition studied here, indexed variants in a unique manner, capturing the discordance that can exist between datasets.

For BC, summary statistics were obtained from a large-scale BC GWAS study by Michailidou et al. (Michailidou et al., 2017) downloaded from: https://becg.cege.medschl.cam.ac.uk/becadata/oncoarray/oncoarray-and-combined-summary-result/gwas-summary-results-breast-cancer-risk-2017 and the genotype datasets utilized were from the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE; dbGaP study accession: phs001265.v1.p1) project and the UK Biobank (UKBB). For PC, summary statistics from a large-scale PC multi-ancestry GWAS meta-analysis by Conti et al. (Conti et al., 2021) were downloaded from dbGaP (study accession: phs001120.v2.p1). Genomic data from the ELucidating Loci Involved in Prostate cancer SusEptibility (ELLIPSE; dbGaP study accession: phs001120.v1.p1) consortium and UKBB were utilized as the PC genotype datasets. PC PRSs were calculated as an effect size weighted genotype summation, with effect sizes and p-values for SNP subselection derived from the Conti et al. (Conti et al., 2021) summary statistics. Finally, we note that both DRIVE and ELLIPSE were subsets of each disease’s summary statistic GWAS.

Both DRIVE and ELLIPSE were genotyped using the OncoArray microarray (Amos et al., 2017), while the UKBB was genotyped using the UK Biobank Axiom Array (Bycroft et al., 2018). To recover untyped markers in both DRIVE and ELLIPSE, we imputed genotypes with Minimac4 using the 1000 Genomes Phase 3 Version 5 reference panel, via the Michigan Imputation Server (Das et al., 2016). Details of UKBB imputation can be found in the original UKBB report by Bycroft et al. (Bycroft et al., 2018)

2.2 GRIEVOUS: Design and Framework

The current state of variant indexing can be summarized concisely as indexing variants, ranging from custom concatenations of dataset variant information (e.g., CHR_POS_REF_ALT), to rsIDs, to any mixture in between (Figure 1A). Arbitrary assignments of reference (REF) and alternate (ALT) definitions across datasets poses a similar problem (Figure 1A). Differing genotyping technologies, and in the case of summary statistics, the characterization of effect alleles, often lead to divergences in REF/ALT definitions across datasets. Harmonization of dataset indices and allele assignments, thus first requires variant organization, a task specifically addressed by the design of GRIEVOUS (Figure 1B).

GRIEVOUS deploys a flexible internal database, backed by chromosome-level parquet files, to build a unified variant index and align allele assignments. Initialized in an empty manner, GRIEVOUS databases are continuously updated with each run, adding all hitherto unobserved biallelic SNPs identified in a given dataset (Figure 1B). The iterative nature of database variant additions ensures that each subsequent dataset is consistently oriented with the set of common biallelic SNPs found in all previously GRIEVOUS realigned datasets.

The key command behind GRIEVOUS is realign, which consists of three steps: clean, register, and align (Supplementary Fig. S1). Clean identifies valid biallelic SNPs, by means of a graph formulation (Supplementary Methods: Identifying Valid Variants), and resolves duplications and multiple indexing issues. Specifically, variant positions are defined as nodes and dataset-specific IDs as edges. Any node for which there exists an edge to another node in the graph is considered an invalid variant, with a dataset-specific ID pointing to multiple genomic positions. Register performs variant indexing reformulation (i.e., a colon-separated unification of chromosome, position, REF, and ALT defined by the dataset; CHR:POS:REF:ALT) and database comparison. Dataset variants found in the reverse index assignment from a GRIEVOUS database are marked for realignment, while all variants not found in the database by genomic position are registered for addition. Align enacts the adjustment of SNP assignments, updates the database, and writes output files for the realign run. These files include reports of identified, reassigned, and duplicated variants, and for PLINK2 binary file inputs (Purcell et al., 2007; Chang et al., 2015), reassignment files to convert the binary genomic data to the GRIEVOUS format.

GRIEVOUS can harmonize an arbitrary number of user-defined genomic datasets, whether they be PLINK2 binary files, summary statistics, or a mixture of the two (Figure 1C). Variants are processed at the chromosome-level, allowing parallelization and integration into different workflows. Additional commands, merge and intersect, combine chromosome-level reports and generate the maximal set of biallelic SNPs common to all datasets of interest, respectively (Figure 1B). GRIEVOUS also supports the creation of multiple databases for project-specific needs, enhancing parallel processing and organization.

3 Results

Polygenic risk scores (PRS) provide an example of an application where performance and portability depend on the fidelity of SNP assignments across datasets. They are traditionally calculated as an effect size weighted genotype summation, wherein each SNP’s effect size is multiplied by the number of corresponding alleles carried, and these products are summed across risk alleles. Thus, if differences exist in how genotypes are defined across datasets, the contribution of discrepant SNPs to the score could be calculated incorrectly, introducing noise to the PRS calculation and reducing score performance on the outcome of interest.
GRIEVOUS

Figure 1: A) Example of the same genotypes described by two different genomic datasets that employ different schemes for indexing and assigning variants. This complicates variant recovery and leads to spurious artificial allele frequency divergences across datasets. B) Each genomic dataset is harmonized with GRIEVOUS. Upon ensuring all datasets employ the same reference assembly and strand orientation, each dataset is passed through realign, sequentially, and then passed to merge to generate composite dataset level reports of all identified biallelic and inverted variants resulting from the GRIEVOUS realignment process. Finally, intersect is called once across all datasets, to identify the maximal set of biallelic SNPs common across all datasets. C) After harmonization with GRIEVOUS, all genomic datasets employ the same schema of variant indexing, and all biallelic SNPs common across all datasets are consistently assigned, eliminating cross-dataset artificial allele frequency divergences.

This problem can be avoided through careful harmonization of SNP consistency across datasets prior to PRS calculation. GRIEVOUS accomplishes this through indexing unification, assignment synchronization, and variant recovery across datasets. To demonstrate GRIEVOUS’ effectiveness, we applied it to harmonize summary statistics and genotype data for two different diseases: breast cancer (BC) and prostate cancer (PC; Material and Methods: Datasets).

For each condition, GRIEVOUS realign was applied sequentially in a dataset consistent order: 1) summary statistics, 2) DRIVE/ELLIPSE genotypes, 3) UKBB genotypes. This process aligned the ALT allele in the genotyped datasets to the effect allele in the summary statistics for all genotypes, 3) UKBB genotypes. This process aligned the ALT allele in the genotyped datasets to the effect allele in the summary statistics for all genotypes, and employed multiple cores (summary statistics: 2; genotype files: 4).

In summary, GRIEVOUS harmonized datasets and identified the shared set of biallelic SNPs for both diseases, demonstrating its utility in genomic dataset harmonization.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Dataset</th>
<th>Total Number of Variants</th>
<th>Number of Biallelic SNPs Identified</th>
<th>Number of Biallelic SNPs Reassigned</th>
<th>Average Run Time (Minutes)</th>
<th>Max Memory Usage (GB)</th>
<th>Across Dataset SNP Intersection Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast Cancer</td>
<td>Michailidou et al.</td>
<td>11,792,542</td>
<td>10,413,027</td>
<td>0*</td>
<td>1.71 ± 1.03</td>
<td>3.00</td>
<td>10,295,993</td>
</tr>
<tr>
<td></td>
<td>DRIVE</td>
<td>48,838,144</td>
<td>44,849,194</td>
<td>2</td>
<td>9.15 ± 4.03</td>
<td>9.97</td>
<td>26,098,508</td>
</tr>
<tr>
<td></td>
<td>UKBB</td>
<td>97,013,422</td>
<td>92,429,914</td>
<td>659</td>
<td>8.03 ± 3.69</td>
<td>14.77</td>
<td>9,137,423</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>Conti et al.</td>
<td>20,235,255</td>
<td>26,529,253</td>
<td>0*</td>
<td>4.66 ± 3.48</td>
<td>6.80</td>
<td>11,329,170</td>
</tr>
<tr>
<td></td>
<td>ELLIPSE</td>
<td>48,899,508</td>
<td>44,905,050</td>
<td>11,329,170</td>
<td>7.22 ± 3.49</td>
<td>8.55</td>
<td>11,329,170</td>
</tr>
<tr>
<td></td>
<td>UKBB</td>
<td>97,013,422</td>
<td>92,429,914</td>
<td>11,374,523</td>
<td>10.42 ± 7.85</td>
<td>14.96</td>
<td>11,374,523</td>
</tr>
</tbody>
</table>

Table 1: Summary of datasets and GRIEVOUS realignment results. * denotes summary statistics. # denotes the first dataset GRIEVOUS realigned for a condition, which by definition will reassign 0 SNPs. All GRIEVOUS realignments were deployed in parallel and employed multiple cores (summary statistics: 2; genotype files: 4).

4 Conclusion

The harmonization of variant indexing and assignments is crucial for the accuracy of multi-dataset studies of genetic variants such as the development, validation, and application of PRSs. Here we introduce GRIEVOUS, a command-line tool designed to simplify and expedite the process of harmonizing and recovering variants across different cohorts. GRIEVOUS efficiently unifies variant indices, and primarily focuses on the recovery of biallelic SNPs. Variants not fitting this category currently still require manual verification by the user to ensure allele assignment consistency. However, these could be supported in future releases. Before using GRIEVOUS, it is important for users to confirm that all datasets use the same reference assembly and strand orientation to ensure accurate results.

In summary, GRIEVOUS streamlines the time-consuming and meticulous process of SNP homogenization and reduces opportunities for human error.

Availability and Implementation

In order to promote the widespread use of GRIEVOUS, we have made it freely available under the MIT license and easily installable via pip. The code for GRIEVOUS, which was implemented in Python, along with supporting documentation and tutorials, can be found on Github (https://github.com/jvtalwar/GRIEVOUS). The code for GRIEVOUS is also archived on Zenodo.(Talwar, 2024)

Acknowledgements

The results shown here are in large part based upon data generated by the UKBB (Project #37671) and the following dbGaP studies: phs001265.v1.p1, phs001120.v2.p1, and phs001120.v1.p1. This research
also used publicly available summary statistics from the Breast Cancer Association Consortium (available at: https://bcac.egei.medschl.cam.ac.uk/).

For phs001265.v1.p1 we acknowledge: OncoArray genotyping and phenotype data harmonization for the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) breast-cancer case control samples was supported by X01 HG007491 and U19 CA148065 and by Cancer Research UK (C1287/A16563). Genotyping was conducted by the Center for Inherited Disease Research (CIDR), Center for Cancer Genetic Epidemiology, University of Cambridge, and the National Cancer Institute. The following studies contributed germline DNA from breast cancer cases and controls: the Two Sister Study (2SISTER), Breast Oncology Galicia Network (BREOGAN), Copenhagen General Population Study (CGPS), Cancer Prevention Study 2 (CPSII), The European Prospective Investigation into Cancer and Nutrition (EPIC), Melbourne Collaborative Cohort Study (MC3S), Multiethnic Cohort (MEC), Nashville Breast Health Study (NBHS), Nurses Health Study (NHS), Nurses Health Study 2 (NHS2), Polish Breast Cancer Study (PBCS), Prostate Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), Studies of Epidemiology and Risk Factors in Cancer Heredity (SEARCH), The Sister Study (SISTER), Swedish Mammary Cohort (SMC), Women of African Ancestry Breast Cancer Study (WAABCS), Women’s Health Initiative (WHI).

For phs001120 we acknowledge: Funding for the meta-analysis was provided by NIH grant U19CA148537. For de novo genotyping we would like to acknowledge the NCRN nurses and consultants for their work in the UKGPCS study. We thank all the patients who took part in this study. This work was supported by Cancer Research UK (grant numbers C5047/A7357, C1287/A10118, C1287/A5260, C5047/A3354, C5047/A10692, C16913/A6135 and C16913/A6835). We would also like to thank the following for funding support: Prostate Research Campaign UK (now Prostate Cancer UK), The Institute of Cancer Research and The Everyman Campaign, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. The MEC was supported by NIH grants CA63464, CA54281 and CA098758.

Funding

This work was supported by NIH Grant R01CA269919 to HC and infrastructure grant 2P41GM103504-11.

Conflict of Interest

The authors declare no competing interests.

Author Contributions

References

Talwar, J.V. (2024) jvtalwar/GRIEVOUS: GRIEVOUS Version 0.1.5.

Figure 1: A) Example of the same genotypes described by two different genomic datasets that employ different schemas for indexing and assigning variants. This complicates variant recovery and leads to spurious artificial allele frequency divergences across datasets. B) Each genomic dataset is harmonized with GRIEVOUS. Upon ensuring all datasets employ the same reference assembly and strand orientation, each dataset is passed through realign, sequentially, and then passed to merge to generate composite dataset level reports of all identified biallelic and inverted variants resulting from the GRIEVOUS realignment process. Finally, intersect is called once across all datasets, to identify the maximal set of biallelic SNPs common across all datasets. C) After harmonization with GRIEVOUS, all genomic datasets employ the same schema of variant indexing, and all biallelic SNPs common across all datasets are consistently assigned, eliminating cross-dataset artificial allele frequency divergences.