Gene expression

Boolean relationships among genes responsive to ionizing radiation in the NCI 60 ACDS

Ranadip Pal¹, Aniruddha Datta¹, Albert J. Fornace Jr², Michael L. Bittner³ and Edward R. Dougherty¹,4,*

¹Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA, ²National Cancer Institute, NIH Bethesda, MD 20892, USA, ³Translational Genomics Research Institute, 400 North Fifth Street, Suite 1600, Phoenix, AZ 85004, USA and ⁴University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA

Received on September 27, 2004; revised on November 27, 2004; accepted on December 7, 2004

Advance Access publication December 14, 2004

ABSTRACT

Motivation: An early use of gene-expression data coming from microarrays was to discover non-linear multivariate intergene relationships. Pursuing this direction, the motivation for this paper is 2-fold: (1) to discover and elucidate multivariate logical predictive relations among gene expressions in a dataset arising from radiation studies using the NCI 60 Anti-Cancer Drug Screen (ACDS) cell lines; and (2) to demonstrate how these logical relations based on coarse quantization reflect corresponding relations in the continuous data.

Results: Using the coefficient of determination, a large number of logical relationships have been discovered among genes in the NCI 60 ACDS cell lines. Moreover, these relationships can be seen directly in the original continuous data, and many are robust relative to the thresholds used to obtain the logical data from the continuous data. A key observation is that a number of intergene relationships appear to be considerably stronger when p53 is functional as compared to when it is not, which is consistent with earlier findings in the literature.

Availability: The appendix is available at http://gsp.tamu.edu/Publications/supplement.htm

Contact: edward@ee.tamu.edu

1 INTRODUCTION

Our purpose in this paper is 2-fold: (1) to discover and elucidate multivariate logical predictive relations among gene expressions in a dataset arising from radiation studies using the NCI 60 Anti-Cancer Drug Screen (ACDS) cell lines; and (2) to demonstrate how these logical relations based on coarse quantization closely reflect corresponding relations in the continuous data. The first goal relates to our desire to discover multivariate gene expressions that go beyond correlative relationships previously discovered in the data and to our interest in finding candidate genes from which to build genetic regulatory networks. The second goal is to address the manner and extent to which logical relations among the quantized expression levels reflect numerical relations among the analog data, the latter being more directly related to the actual mRNA concentrations governing transcription.

Correlation can identify pairwise genetic coregulative responses to a particular stimulus; however, correlation does not address the fundamental problem of determining sets of genes whose actions and interactions drive the cell’s decision to set the transcriptional level of a particular gene. Transcriptional control is accomplished by a complex method that interprets a variety of inputs (McAdams and Shapiro, 1995; Evans and Littlewood, 1998). Hence, it is necessary to apply analytical tools that detect multivariate influences on decision making present in complex genetic networks. This demand has motivated the use of the coefficient of determination (CoD) to measure the strength of relation between a set of predictor genes and a target gene (Dougherty et al., 1999, 2000; Kim et al., 2000). In these applications working with cDNA microarray data, the continuous numerical expression data has been reduced to ternary logical data via a method of internal standardization (Chen et al., 1997). In essence, relative to a given target gene and set of predictor genes, the CoD measures the relative increase in predictive capability using the predictor-gene expressions as opposed to predicting the target-gene expression based only on knowledge of the target gene’s isolated behavior across the dataset. Reduction to logical data accomplishes the kind of extreme compression necessary to apply predictive analysis with small samples typical of microarray experiments and facilitates the understanding of predictive relations based essentially on an up-regulated/down-regulated paradigm.

As to the second goal of the present paper, if binary or ternary relations are sufficiently descriptive of a predictive relation between predictor and target genes, then one might expect that the logical functions are discernible within the continuous, pre-quantized data. After all, the hypothesis is that somehow the ON–OFF model sufficiently characterizes the multivariate relations between mRNA concentrations, at least to the extent that these concentrations themselves characterize transcriptional control. This issue is key for gene regulatory networks based on logical functional relationships, such as Boolean networks (Kauffman, 1993) and their extension to probabilistic Boolean networks (Shmulevich et al., 2002). It will be demonstrated using the NCI 60 cell lines that, in fact, strong predictive (high CoD) functions discovered in the ternary context have counterparts for the continuous data.

Several studies have been conducted in the past using the NCI 60 ACDS. We summarize a few representative cases and highlight the

© The Author 2004. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org
differences between the present work and the relevant earlier studies. In O’Connor et al. (1997), the integrity of the p53 tumor suppressor pathway in the cell lines of the NCI 60 ACDS was characterized using different measures of p53 functionality: (1) the sequence of the corresponding gene; (2) the stress induction of p53 related genes such as GADD45, MDM2, and WAF1; (3) the ability to induce growth in a p53 deficient yeast assay; and (4) the ability to arrest in the G1 phase following γ-irradiation. In addition, the sensitivity of the cell lines to different chemotherapeutic agents was correlated with their p53 status and the conclusion was that most chemotherapeutic agents (except for the anti-mitotics), the presence of functional p53 resulted in enhanced chemosensitivity. Despite the useful characterization of p53 status for the ACDS provided in O’Connor et al. (1997), the correlation analysis used to relate chemosensitivity to p53 status is only a first step in trying to understand such relationships.

The fact that in a subsequent paper using NCI cell lines (Amundson et al., 2000) individual correlations were calculated between the basal expression levels of 10 transcripts, the p53 status and chemosensitivity to different agents is an indication of the awareness that, in general, the relationships are multivariate in nature. For instance in Amundson et al. (2000), it was discovered that, in addition to the positive correlation between p53 status and chemosensitivity established earlier (O’Connor et al., 1997), an even stronger negative correlation exists between basal levels of BCLX and chemosensitivity.

The preceding discussion justifies studying the gene-expression data from the NCI ACDS using multivariate tools such as CoD analysis. We will go a step further and use the data to establish Boolean relationships; to our knowledge, this step has not been carried out previously. Here it is appropriate to point out that the results in this paper are concerned with coarse modeling from data, unlike the Molecular Interaction Maps (Kohn, 1999), which are tools for conveniently representing the detailed interaction between molecules. We believe that both of these techniques will have a complementary role to play as we seek to unravel the complex signaling pathways between biological molecules.

The paper is organized as follows: In Section 2, we provide an intuitive discussion of the CoD technique that we use to ferret out intergene relationships. In Section 3, we provide a description of the data and its subsequent processing. Section 4 presents several instances of the existence of Boolean relationships between different genes. In Section 5, we discuss the apparent role of the tumor suppressor gene p53 in altering the inter-gene relationships. Finally, Section 6 summarizes our main conclusions and outlines the directions for future research.

2 COEFFICIENT OF DETERMINATION

In this section, we provide an intuitive discussion of the CoD analysis which is the main data analysis tool used in this paper. As already mentioned, the CoD measures the degree to which the best estimate for the transcriptional activity of a target gene can be improved using the knowledge of the transcriptional activity of some other predictor genes, relative to the best estimate in the absence of any knowledge of the transcriptional activity of the predictors. Mathematically,

$$\text{CoD} = \frac{e_0 - e_{opt}}{e_0}$$

where e_0 is the error arising when using the best estimate of the target-gene expression level given only statistics relating to the target gene itself, without using any information concerning other genes, and e_{opt} is the error arising using the best estimate of the target-gene expression level using the expression levels of a set of predictor genes (Dougherty et al., 2000). If a predictor set can perfectly predict a target, then $e_{opt} = 0$ and CoD = 1; at the other extreme, if a predictor set provides no additional information about the target, then $e_{opt} = e_0$ and CoD = 0. In general, $0 \leq \text{CoD} \leq 1$.

The CoD technique has at least three advantages over standard correlation analysis. First, the CoD can be applied to multiple predictors, thereby giving it the ability to discern multivariate intergene relationships. Second, the CoD can discover both linear and non-linear relationships, whereas the correlation coefficient only addresses linear relationships. For instance, if gene G1 has the expression pattern (0,0,1,1,0,1) across six cell lines and gene G2 has the corresponding expression pattern (1,1,−1,0,0,−1), then the relation $G_1 = 1 - G_2^2$, is picked up by the CoD, with CoD = 1, but not picked up by the correlation coefficient, with Corr = 0. A third advantage of the CoD is that, whereas the correlation coefficient is independent of the order, the CoDs for G1 predicting G2 and G2 predicting G1 can be substantially different. For instance, in the example just given, the CoD of G2 predicting G1 is 1, whereas the CoD for G1 predicting G2 is only 1/2.

Since we are attempting to discover functional relationships between genes using thresholded data, we would like the functional relationships to exhibit some robustness relative to threshold selection. To define a measure of robustness, suppose that based on a given threshold we obtain the optimal predictor $z = f_{opt}(x, y)$, where t_0 is the threshold, z is the discrete (say, binary or ternary) value of the target gene, and x and y are the discrete values of the predictor genes. The error of this best predictor determines the CoD, say, $\text{CoD}(x,y; z; t_0)$. If we change the threshold, then two things might happen. First, the error might change, thereby changing the CoD. Second, a different predictor may be optimal, thereby changing not only the CoD but the predictor function as well. Since our main interest is in finding functional relationships, we focus on the first possibility; i.e. we keep the function $f_{opt}(x, y)$ and evaluate its performance when the discrete values have been obtained by different thresholds. To do this, we define the coefficient of threshold robustness by

$$Q_{t_0}(t) = \frac{e_0(t) - e_{t_0}(t)}{e_0(t)}$$

where $e_0(t)$ is the error for the best predictor of z at threshold t given no observations and $e_{t_0}(t)$ is the error of predicting z by $f_{opt}(x, y)$ at threshold t. $Q_{t_0}(t)$ measures the degree to which the best estimate for the transcriptional activity of a target gene is improved at threshold t by predicting it using the optimal predictor for threshold t_0. The predictor functions thresholded at t, relative to the best estimate at t_0 in the absence of any knowledge of the predictors. Note that $Q_{t_0}(t) = \text{CoD}(x,y; z; t_0)$ and that $Q_{t_0}(t) \leq \text{CoD}(x,y; z; t)$. We judge the
relationship \(z = f_0(x, y) \) to be robust relative to threshold \(t_0 \) when \(Q_0(t) \) is stable for \(t \) near \(t_0 \). Since it is possible to have \(Q_0(t) > Q_0(t_0) \) (and we will see this for genes in this study), \(f_0(x, y) \) is robust relative to threshold \(t_0 \) when \(Q_0(t) \) does not fall much below \(Q_0(t_0) \) for \(t \) near \(t_0 \). We will plot \(Q_0(t) \) in the neighborhood of \(t_0 \) to examine the relevance of the logical function \(f_0(x, y) \) relative to the continuous data.

3 THE DATA AND ITS PROCESSING

The data for the current study has been obtained from radiation experiments conducted on cell lines from the NCI 60 ACDS. The NCI 60 ACDS is a set of about 60 human cancer cell lines maintained at the National Cancer Institute. These cell lines have been derived from cancers of the colon, breast, ovary, lung, kidney, prostate, central nervous system, skin and bone marrow, and serve as a screen for determining the efficacy of compounds proposed as anti-cancer agents.

Sixty four cell lines from the NCI 60 ACDS were irradiated with high doses of ionizing radiation and harvested \(\sim 4 \) h later. Microarrays were produced by printing cDNA PCR products onto coated glass slides. A set of 6392 probes was printed, resulting in a set of 6000 genes, some of which were replicates. In order to determine whether members of this set of genes show a response to irradiation, total RNA was isolated from non-irradiated and irradiated parallel cultures of each cell line, labeled with different fluorophores, and simultaneously hybridized to the microarray. The genes that had responsiveness in at least six cell lines were selected. A gene was considered to be responsive if the irradiated-to-non-irradiated expression ratio was higher than the induction threshold of 1.8 or below the repression threshold of 0.5. In this way, we identified about 1000 genes for further analysis. However, among this set, there were many genes with a large percentage of missing values [quality factor <0.3] (Chen et al., 2002) corresponding to different cell lines. The results would suffer substantial inaccuracy if the missing-value estimation for these genes were to be used. Thus, from the set of 1000 genes, we removed all genes having poor quality data in more than 20% of the cell lines, used missing-value estimation [kNNN impute (Troyanskaya et al., 2001)] on the remaining gene expression ratios, and ternarized the estimated data using the induction (+1) threshold 1.8 and the repression (−1) threshold 0.5. CoD analysis was applied to the ternarized data to identify relationships between several genes responsive to ionizing radiation. These results are discussed in the next section. Since the intergene relationships tend to be non-linear and multivariate in nature, the CoD technique is more appropriate than bivariate correlation analysis.

The method used to choose the thresholds is based upon an estimate of the variance of genes that typically do not change their expression levels by a large amount in many different cellular circumstances. The levels chosen represent a 99% confidence that the level of change observed represents a change from the non-irradiated value, and thus a response by the cell. Since this experiment contains a fair number of genes whose transcriptional response to radiation is known, and their responses are faithfully categorized by the chosen thresholds, we believe that it is a reasonable yardstick to apply to these cells’ responses to radiation. Even so, since the logical relations we obtain depend on the thresholds, as discussed, we consider robustness relative to the thresholds.

4 SOME BOOLEAN RELATIONSHIPS

We examined all genes that have a significantly lower CoD when predicting a target individually than when predicting in conjunction with other genes. Specifically, we require that gene \(G1 \) predicting gene \(G3 \) and gene \(G2 \) predicting gene \(G3 \) have individual CoD values at least 0.25 lower than the CoD of genes \(G1 \) and \(G2 \) together predicting gene \(G3 \). This identifies genes that in combination can significantly, more strongly predict a particular target gene than individually. Were we not to require individual low CoDs together with a high joint CoD, we would obtain many high joint CoDs resulting from simply adjoining any gene to a gene possessing high individual CoD. We note that an analogous effort to find strong multivariate gene classification, when there is significantly weaker single-gene classification, has been considered for gene-expression classification of gliomas (Kim et al., 2002); however, while the issue there was constructing phenotypic classifiers based on continuous data, the focus here is on constructing logical functions to predict gene activity insofar as a gene is upregulated or not.

A large number of logical relationships has been discovered, 557 for two-gene cases (CoD > 0.65) and 483 for three-gene cases (CoD > 0.8); however, many of these are not robust to threshold. The threshold robustness figures for all of these cases are available at the companion website. We give some illustrative examples in the following sections.

A natural question arises: is there reason to expect that the rules found here represent what is really happening, rather than a chance occurrence due to the large number of combinations of multiple genes? To address this issue, Monte Carlo Simulations have been carried out by generating random data containing the same number of genes (496) and cell lines (64) as used for the actual data. The mean and variance of the randomly generated data are equal to the mean and variance of the actual data. The same thresholds are used to process the random data as for the actual data. If we use the same cutoff CoD of 0.65 for two-gene predictors, then the random data provides only one such relationship, with CoD = 0.727. There are no other CoDs > 0.6. This compares to 557 two-gene predictions with CoD > 0.65, possessing individual CoDs at least \(-0.25 \) less than the two-gene CoD, when using the original data. Moreover, for single-gene predictors, there is a maximum CoD of 0.375 for random data, whereas, for the original gene-expression data, the maximum CoD is 0.85. Details are available on the companion website.

4.1 Examples of OR logic

If we consider the gene mannose receptor, C type 1 (MRC1) as a target and the genes visinin-like 1 (VSNL1) and 5-hydroxytryptamine (serotonin) receptor 2C (HTR2C) as predictors for MRC1, then the individual CoDs for predicting MRC1 by the other two genes are both 0.417; however, used together to predict MRC1, the CoD is 0.75. The Boolean relationship is as shown in Table 1, which defines the OR relation. Symbolically,

\[MRC1 = VSNL1 \lor HTR2C \]

To further investigate the relationship between the three genes, we have produced the expression plots in Figure 1a, where the blue, green and red bars represent the expression levels for MRC1, HTR2C and VSNL1, respectively. In this plot, only those cell lines are shown where at least one of the predictors or target is non-zero. The black horizontal lines denote the thresholds for ternarizing, which are 1.8.
Thus, if either of the predictors is high, then the OR relation between the target and the predictors in four genes. (Table 1. Table 1. Truth table showing the relationship \(\text{MRC1} = \text{VSNL1} \lor \text{HTR2C} \))

<table>
<thead>
<tr>
<th>VSNL1</th>
<th>HTR2C</th>
<th>MRC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

for +1 and 0.5 for −1. Note that there are no −1 values. The plot demonstrates the OR relation between the target and the predictors in most of the cell lines. Thus, if either of the predictors is high, then the target gene-expression level is also high, and that while individual prediction by a single predictor may not be very reliable, a combined prediction is quite accurate. This relationship is quite robust to changes in threshold as shown by the coefficient of robustness in Figure 2a, where we have only plotted around the threshold for induction because there are no repressed cell lines for these genes.

A second instance of OR logic appears if we consider the gene small inducible cytokine A7 (monocyte chemotactic protein 3) (SCYA7) as the target and the genes prosaposin (variant Gaucher disease and variant metachromatic leukodystrophy) (PSAP) and ribosomal protein L3 (RPL3) as the predictors. The CoD for the predictor combination is 0.875 while the individual CoDs are <0.65.

Figure 1b shows the OR-type relationship on the data. Here, the predictor combination is 0.875 while the individual CoDs are <0.65. This relationship is quite robust to changes in threshold as shown by the coefficient of robustness (Fig. 2b) suggests robustness to threshold changes.
A third instance of OR logic occurs with the genes adenomatosis polyposis coli (APC) as a target and the genes integrin, alpha L antigen CD11A p180 (ITGAL) and Homo sapiens mRNA for TLI32 as predictors for APC. The CoD for predicting APC by the other two genes is 0.4 in both the cases; the CoD is 0.8 when used together to predict APC.

4.2 Example of AND logic

A striking case of AND logic is exhibited when we consider the gene SCYA7 as the target and the genes mucin 5, subtypes A and C, tracheobronchial/gastric (MUC5AC) and calcium-sensing receptor (hypocalciuric hypercalcemia 1, severe neonatal hyperparathyroidism) (CASR) as the predictors. The CoD for combined prediction is 0.75 whereas the CoD for each of the individual predictor genes is 0. The expression levels for these three genes are plotted in Figure 1c, where the blue, green and red bars represent the gene expression levels for SCYA7, CASR and MUC5AC, respectively. The target clearly resembles an AND function of the two predictors: when both predictors are high, then and only then is the target high. The Boolean relationship is described in Table 2 and expressed as

$$SCYA7 = CASR \land MUC5AC$$

The robustness of this Boolean relationship to the threshold is not strong (Fig. 2c).

4.3 Example of EXOR logic

When the genes MRC1 and interleukin 18 (interferon-gamma-inducing factor) jointly predict the target gene enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase (EHHADH), the output behaves as an XOR (exclusive OR) function of the inputs. This is clear from the plot shown in Figure 1d, where the blue, red and green bars represent expression levels for EHHADH, Interleukin18 and MRC1, respectively. If both predictors are upregulated or if both are 0, then the target is also 0. It appears that Interleukin18 can be a suppressor for EHHADH whenever MRC1 is upregulated. The Boolean XOR relation is shown in Table 3 and the coefficient of robustness is shown in Figure 3. The x- and y-axes show the thresholds for induction and repression, respectively, while the z-axis shows the CoD, which always stays above 0.65 for small changes in threshold values.

4.4 Boolean relationships among four genes

We now consider a situation in which there are three predictor genes. Figure 1e shows the relationship among three predictors and a target gene. The red, green, gray and blue bars represent the genes Homo sapiens clone TCCCTA00151 mRNA sequence (mRNA), platelet factor 4 (PF4), bradykinin receptor B2 (BDKRB2) and the target.
Table 3. Truth table showing EXOR relationship $EHHADH = MRC1 \oplus Interleukin18$

<table>
<thead>
<tr>
<th>MRC1</th>
<th>InL</th>
<th>EHHADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

![Fig. 3. $Q(t_1, t_2)$ for EXOR function.](image)

Table 4. Truth table for relationship among four genes

<table>
<thead>
<tr>
<th>mRNA</th>
<th>PF4</th>
<th>BDKRB2</th>
<th>MRC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

![Fig. 4. $Q(t)$ for four-gene relationship.](image)

![Fig. 5. $Q(t_1, t_2)$ for four-gene relationship.](image)

gene MRC1, respectively. The relationship shows that the target gene is upregulated when one or two predictors are upregulated, but when all the predictor genes are upregulated the target is not induced. The Boolean relationship is shown in Table 4. Figure 4 shows the coefficient of threshold robustness relative to the upper threshold and indicates stability with respect to small changes in the induction threshold. We do not consider the repression threshold because almost all values are either 0 or 1.

For another Boolean relationship between four genes, consider the genes albumin (ALB), $EHHADH$ and thyroid hormone receptor-associated protein (TRAP150) predicting the gene APC. From the data, they predict APC with a CoD of 1. The data suggest that when gene $TRAP150$ is repressed, APC cannot be induced. APC is induced when either ALB or $EHHADH$ is induced and $TRAP150$ is not repressed.

Another strong relationship among genes is depicted in Figure 1f, where the red, green, grey and blue bars represent islet cell autoantigen 1 (ICA1), syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan) (SDC2), heterogeneous nuclear ribonucleoprotein L (HNRPL) and the target MRC1, respectively. This relationship is quite robust with changes in threshold for both repression and induction, as shown in Figure 5. The CoD stays >0.75 for small changes in threshold values.

5 ROLE OF p53 STATUS

In our data, there are 20 cell lines with functional p53 and 44 cell lines with mutant p53. The definition of the status of the p53 tumor suppressor pathway is precisely characterized in the previously mentioned study (O’Connor et al., 1997). In most cases, the gene had an
incapacitating mutation, leading to observable loss of normal function. When the function is lost, there is no difference between loss by mutation or loss by inability to express the gene.

We have divided the expression data into two sets, one in which p53 is functional and the other in which it is mutant, have analyzed both sets separately, and have concluded that there are stronger intergene predictive relationships when p53 is functional than when p53 is mutant. For each dataset, all 2- and 3-gene predictor sets are considered for all targets. Figure 6 shows the probability distribution functions of the CoD values. The dashed and solid curves give the probability distribution functions of the CoD values for the wild-type p53 and the mutant p53 cell lines, respectively. We observe that for wild-type p53 the average and maximum CoD values exceed the corresponding values for mutant p53 cell lines. We next present a few specific instances of genes whose behavior seems to depend on the p53 status.

Genes TATA element modulatory factor 1 (TMF1), cyclin T2 (CCNT2), polymerase (DNA directed), delta 3 (POLD3) and guanylate binding protein 1, interferon-inducible, 67 kDa (GBP1) are induced when p53 is not active but they stay dormant when p53 is active. These genes might play a role when the tumor suppressor (p53) is inactive. On the other hand, some genes show strong responsiveness when p53 is mutant and display considerable variability when p53 is wild type. Instances of such genes are serine-inducible kinase (SNK), tumor necrosis factor receptor superfamily (TNFRSF10C), UDP glycosyltransferase 2 family, polypeptide B10 (UGT2B10), propepin P factor, complement (PFC), ST14, PHLDA3, damage-specific DNA binding protein 2 (DDB2), XPC and Killer/DR5.

Gene RAD52 homolog is predicted with a CoD of 1 by an EST [moderately similar to LCP2 (human lymphocyte cytosolic protein 2)] when p53 is active but the CoD falls to 0 when p53 is mutant. Corresponding relationships exist in the unquantized gene-expression data.

Gene PPM1D is mostly 0 when p53 is mutant; however, when p53 is active it has large variations. Other genes can predict these variations quite well. The CoD for genes centromere protein A (CENPA) and 4-hydroxyphenylpyruvate dioxygenase (HPD) predicting PPM1D is 0.85 when p53 is active. The strength of this relationship is borne out by the plot in Figure 7, where the dashed and solid curves represent PPM1D and CENPA, respectively. There appears to be an inverse relationship between these two genes.

The data furnish many other examples where p53 status is crucial for good prediction. For the gene CENPA, there are many variations when p53 is mutant but these are not predicted strongly by other genes. The best two-gene predictor gives a CoD of 0.545 when p53 is mutant but when p53 is active, it gives a CoD of 0.83. Similar relationships hold for gene PBP2R3A. When p53 is mutant, the best CoD value is 0.35, whereas the best CoD increases to 0.75 when p53 is functional.

6 CONCLUSION
We have used experimental data to discover logical relationships between genes, which are consistent with the current paradigms for modeling genetic regulatory networks that depend on the premise that genes interact with each other by means that can be described logically. The results of the current study using cancer cell line data show that, not only do such relationships exist, but they can also be unearthed via the CoD technique. Another important observation that follows from the data is that several of the relationships unearthed between the different genes seem to be considerably stronger when p53 is functional compared with when it is not. This is consistent with earlier findings in the literature. For instance, as noted in the previous section, gene PPM1D is mostly 0 when p53 is mutant, but when p53 is active PPM1D has large variations that can be predicted by other genes. This is consistent with the knowledge that p53 is involved in the regulation of PPM1D, as is the inverse relationship between PPM1D and CENPA (Bulavin et al., 2004). Another example is the known interaction between WAF1 and p53 (Amundson et al., 2000), which in this study is manifested by the CoDs for p53 predicting WAF1 and WAF1 predicting p53 both exceeding 0.85. The results reported in this paper lay the groundwork for further studies using the NCI 60 ACDS. A promising research direction currently under way is to use gene-expression data to construct networks that can
then be used to design and evaluate possible intervention strategies for cancer treatment (Datta et al., 2003).

REFERENCES

