With rapidly growing amounts of genomic sequence data, there is renewed interest in inferring species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++.

Availability: DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree

Contact: oeluenst@cs.iastate.edu

1 INTRODUCTION

With rapidly growing amounts of genomic sequence data, there is renewed interest in inferring species trees from collections of gene trees with a history of duplication and loss (e.g. Sanderson and McMahon, 2007). There are several methods for inferring species trees from collections of potentially paralogous gene trees, including unnode coding (Simmons et al., 2000) and gene tree parsimony (GTP) (Maddison, 1997; Slowinski and Page, 1999). GTP takes a collection of rooted, binary gene trees and seeks a rooted, binary species tree with the minimum reconciliation cost for the corresponding taxa. The reconciliation cost can be the overall number of gene duplications, or gene duplications and losses, induced in the gene trees by the species tree. With incomplete gene sampling, it is difficult to distinguish gene loss from the absence of sequence data. Therefore, following Page and Charleston (1997), we define the reconciliation cost strictly in terms of gene duplications. The reconciliation cost for a collection of gene trees and a single species tree is linear time computable (Zhang, 1997). However, finding the minimum reconciliation cost across all possible species trees is an intrinsically difficult problem (Ma et al., 1998). Therefore, heuristics are commonly used to estimate a solution for GTP.

GTP has been successfully applied to phylogenetic inference in snakes (Slowinski et al., 1997), vertebrates (Page, 2000; Page and Cotton, 2002) and plants (Sanderson and McMahon, 2007). Yet the run time performance of previous GTP implementations is not suitable for large-scale studies. Currently, there are two programs, Gip (Sanderson and McMahon, 2007) and GeneTree (Page, 1998), for the GTP approach. Gip performs an exhaustive search of all possible species trees, and therefore, it is only suitable for analyses with very few taxa. GeneTree implements standard local search heuristics for gene tree parsimony based on the rooted Subtree Pruning and Rerooting (rSPR) tree edit operation (Semple and Steel, 2003). Due to the high time complexity of the underlying algorithm, GeneTree typically cannot infer large species trees. Furthermore, the GTP approach requires rooted input gene trees, and rooting gene trees can be difficult if there is a history of gene duplication and loss.

We introduce DupTree, a program that enables the first truly genome-scale phylogenetic analyses based on GTP, and also allows unrooted input gene trees. DupTree implements the same standard rSPR based heuristics that are found in GeneTree, but solves the local rSPR search problem much more efficiently than GeneTree using the algorithm from Bansal et al. (2007). Due to some random choices in the heuristic, the resulting species trees from DupTree and GeneTree may differ slightly. In practice, we noticed little or no difference. Our efficiency study (Table 1) demonstrates the enormous speed-up of DupTree in comparison to GeneTree. For the study, we first generated sets of 20 random gene trees, each having the same set of taxa. Next, we conducted 6 runs, each with a different number of taxa in the 20 random gene trees (50, 100, 200, 400, 1000, 2000). Table 1 compares the resulting run times for GeneTree and DupTree.

2 FEATURES

The input for a DupTree analysis is a single file containing a list of the gene trees, all in Newick format. The output, in either
Alternately, DupTree can examine the reconciliation cost of every gene tree, based on ‘tree bisection and reconnection (TBR)’ (Bansal and Eulenstein, 2007), a parallel version of the rSPR tree search, as well as options for incorporating gene losses into the reconciliation cost.

ACKNOWLEDGEMENTS

We thank Mike Sanderson for providing extensive comments and testing of DupTree, and the reviewers for their suggestions.

Funding: National Science Foundation (EF-0334832 to A.W., M.S.B. and O.E., and EF-0423641 to J.G.B.).

Conflict of Interest: none declared.

REFERENCES

Table 1. Runtime comparison between GeneTree and DupTree

<table>
<thead>
<tr>
<th>Number of taxa</th>
<th>Run times for GeneTree</th>
<th>Run times for DupTree</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>9 min : 23 s</td>
<td>1 s</td>
</tr>
<tr>
<td>100</td>
<td>3 h : 25 min</td>
<td>6 s</td>
</tr>
<tr>
<td>200</td>
<td>4 days : 12 h : 33 min</td>
<td>58 s</td>
</tr>
<tr>
<td>400</td>
<td>N/A</td>
<td>9 min : 19 s</td>
</tr>
<tr>
<td>1000</td>
<td>N/A</td>
<td>3 h : 20 min</td>
</tr>
<tr>
<td>2000</td>
<td>N/A</td>
<td>2 days : 14 h : 25 min</td>
</tr>
</tbody>
</table>

Runs performed on a Windows XP based PC (3 GHz Pentium IV, 1 GB RAM) using the same rSPR based heuristic and input trees for GeneTree and DupTree.

Newick or NEXUS format, is the best species tree found during the search. DupTree begins its heuristic rSPR tree search from an initial species tree, which can either be (i) generated randomly, (ii) built using an effective rooted stepwise addition algorithm or (iii) supplied by the user. To adjust thoroughness of the tree search, DupTree implements three versions of local rSPR search heuristics, including standard queue-based searching. DupTree also provides two effective search methods to identify gene tree rootings that minimize the reconciliation cost. In the most comprehensive method, DupTree can examine the reconciliation cost of every possible rooting of each gene tree (Sanderson and McMahon, 2007). Alternately, DupTree can examine the reconciliation cost of every possible rooting of each gene tree only after it reaches a local optima in the rSPR search. If rootings are found that decrease the reconciliation cost, DupTree will continue with the tree search using the new rootings. DupTree also implements weighted GTP analyses, in which the reconciliation cost of each gene tree is multiplied by a ‘weight’ between 0 and 1, and the species tree is inferred based on the overall weighted reconciliation cost.

DupTree is designed to interact smoothly with complementary phylogenetic tools. For example, there is a frequent interest in determining where gene duplications and losses may have occurred on a species tree. The species tree from DupTree can be used, together with the given gene trees, as input for existing programs that can locate duplications and losses, such as COMPONENT (Page, 1995) and GeneTree (Page, 2000).

3 CONCLUSION

With DupTree, it is now possible to perform GTP analyses on large-scale genomic datasets across many taxa. Thus, DupTree can facilitate the incorporation of new genomic data into phylogenetic inference. Future work will include implementing a fast tree search based on ‘tree bisection and reconnection (TBR)’ (Bansal and Eulenstein, 2007), a parallel version of the rSPR tree search, as well as options for incorporating gene losses into the reconciliation cost.