Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules

Thomas Fober1,†, Marco Mernberger1,2,†, Gerhard Klebe2 and Eyke Hüllermeier1,*

1Department of Mathematics and Computer Science and 2Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marburg, Germany

Received on October 30, 2008; revised on March 6, 2009; accepted on March 10, 2009

ABSTRACT

The concept of multiple graph alignment (MGA) has recently been introduced as a novel method for the structural analysis of biomolecules. Using approximate graph matching techniques, this method enables the robust identification of approximately conserved patterns in biologically related structures. In particular, MGA enables the characterization of functional protein families independent of sequence or fold homology. This article first recalls the concept of MGA and then addresses the problem of computing optimal alignments from an algorithmic point of view. In this regard, a method from the field of evolutionary algorithms is proposed and empirically compared with a hitherto existing heuristic approach. Empirically, it is shown that the former yields significantly better results than the latter, albeit at the cost of an increased runtime.

CONTACT: eyke@mathematik.uni-marburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Multiple sequence alignment is an established method for similarity analysis and the identification of residues that are conserved across many members of a gene or protein family (Bateman et al., 2004; Servant et al., 2002; Thompson et al., 1994). However, as this approach relies on evolutionary conserved sequences in DNA or protein chains, it is only capable of detecting similarities between different molecules that are based on heredity. Consequently, sequence analysis is not optimally suited for the identification of functional similarities, as functionality is more closely associated with structural than with sequential features. In fact, it is well known that structural similarity does not necessarily come along with sequence similarity (Gibrat et al., 1996).

Focusing on the identification of structural similarities, the comparison of protein structures and the identification of common 3D patterns and substructures has received considerable attention in the recent years, and a number of different approaches has been proposed for this purpose (Jambon et al., 2003; Kinoshita and Nakamura, 2005; Shasha et al., 2002; Spriggs et al., 2003; Yan et al., 2004, 2005, 2006; Zhang et al., 2007). In principle, approaches of that kind allow one to capture non-homologous molecules with similar functions as well as evolutionary conserved functional domains. Restrictively, however, it needs to be mentioned that many of the existing methods use exact matching techniques, such as subgraph isomorphism, which makes it difficult to discover biologically meaningful patterns that are only approximately conserved. Moreover, most methods are restricted to the comparison of pairs of graphs, with only a few notable exceptions that are able to compare multiple graphs simultaneously (Dror et al., 2003; Leibowitz et al., 2001; Shatsky et al., 2004, 2006). A detailed review of related work is given in the Supplementary Material.

This work draws on the concept of multiple graph alignment (MGA), which was first introduced in Weskamp et al. (2007) as a structural counterpart to multiple sequence alignment. Our special interest concerns the analysis of protein structures or, more specifically, protein binding sites, even though graph alignments can also be used for analyzing other types of biomolecules. Weskamp et al. (2007) proposed a heuristic algorithm which employs a simple greedy strategy to construct MGAs in an incremental way. Here, we present an alternative method using evolutionary algorithms (EAs). As will be shown experimentally, significant improvements in terms of the quality of alignments can thus be achieved.

The article is organized as follows: we start with a short introduction to graph-based modeling of biomolecules in Section 2. In Section 3, we introduce the concept of a MGA. The problem of computing an MGA is then addressed in Section 4, where an EA is proposed for this purpose. Section 5 is devoted to the experimental evaluation of the approach, and Section 6 concludes the article.

2 MODELING BIOMOLECULES AS GRAPHS

Single biomolecules in bio- and chemoinformatics are often modeled at an abstract level in terms of a graph \(G \) consisting of a set of (labeled) nodes \(V \) and (weighted) edges \(E \). In this article, we are especially interested in the graph-based modeling of protein binding sites. Yet, our experiments later on will also include a dataset of chemical compounds.

†To whom correspondence should be addressed.

*The author wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

†The same term is also used by Berg and Liaoq (2004). However, the problem they consider is actually more related to motif search and frequent pattern mining, which is quite different from an algorithmic point of view.
2.1 Modeling chemical compounds

In case of chemical compounds, atoms are represented as nodes labeled with their corresponding atom type, e.g. using the SYBYL atom type notation (Gasteiger and Engel, 2003). Edges between atoms can represent chemical bonds or Euclidean distances. In the former case, edges are weighted by the bond order. In the latter case, edge weights represent Euclidean distances, thereby capturing the inherent geometry of the compound.

2.2 Modeling protein binding sites

The graph-based modeling of protein binding pockets is less obvious. Our work builds upon Cavbase (Schmitt et al., 2001, 2002), a database system for the automated detection, extraction and storage of protein cavities (hypothetical binding pockets) from experimentally determined protein structures (available through the PDB). In Cavbase, graphs are used as a first approximation to describe binding pockets. The database currently contains 113,718 hypothetical binding pockets that have been extracted from 23,780 publicly available protein structures using the Ligsite algorithm of Hendlich et al. (1997).

To model a binding pocket as a graph, the geometrical arrangement of the pocket and its physicochemical properties are first represented by predefined pseudocenters—spatial points that represent the center of a particular property. The type and the spatial position of the centers depend on the amino acids that border the binding pocket and expose their functional groups. They are derived from the protein structure using a set of predefined rules (Schmitt et al., 2002). As possible types for pseudocenters, hydrogen bond donor, acceptor, mixed donor/acceptor, hydrophobic aliphatic, metal ion, pi (accounts for the hydrophobic character present above/below amide, guanidine and carboxylate planes) and aromatic properties are considered. Pseudocenters can be regarded as a compressed representation of areas on the cavity surface where certain protein–ligand interactions are experienced. Consequently, a set of pseudocenters is an approximate representation of a spatial distribution of physicochemical properties.

The assigned pseudocenters form the nodes \(v \in V \) of the graph representation, and their properties are modeled in terms of node labels \(\ell(v) \in \{P1, P2, \ldots, P7\} \), where \(P1 \) stands for donor, \(P2 \) for acceptor, etc. Two centers are connected by an edge in the graph representation if their Euclidean distance is below a certain threshold\(^2\) and each edge \(e \in E \) is labeled with the respective distance \(w(e) \in \mathbb{R} \). The edges of the graph thus represent geometrical constraints among points on the protein surface.

3 MULTIPLE GRAPH ALIGNMENT

When comparing protein cavities on a structural level, one has to deal with the same mutations that also occur on the sequence level. Corresponding mutations, in conjunction with conformational variability, strongly affect the spatial structure of a binding site as well as its physicochemical properties and, therefore, its graph descriptor. This is even more an issue when it comes to the comparison of proteins that might share a common function but lack a close hereditary relationship. Thus, one cannot expect that the graph descriptors for two functionally related binding pockets match exactly. Our approach therefore includes the following types of edit operations to account for differences between a graph \(G(V,E) \) and another graph:

1. Insertion or deletion of a node \(v \in V \): a pseudocenter can be deleted or inserted due to a mutation in sequence space. Alternatively, an insertion or deletion in the graph descriptor can result from a conformational difference that affects the exposure of a functional group toward the binding pocket.

2. Change of the label \(\ell(v) \) of a node \(v \in V \): the assigned physicochemical property of a pseudocenter can change if a mutation replaces a certain functional group by another type of group at the same position.

3. Change of the weight \(w(e) \) of an edge \(e \in E \): the distance between two pseudocenters can change due to conformational differences.

By assigning a cost value to each of these edit operations, it becomes possible to define an edit distance for a pair of graph descriptors. The edit distance of two graphs \(G1, G2 \) is defined as the cost of a cost-minimal sequence of edit operations that transforms graph \(G1 \) into \(G2 \). As in sequence analysis, this allows for defining the concept of an alignment of two (or more) graphs. The latter, however, also requires the possibility to use dummy nodes \(\perp \) that serve as placeholders for deleted nodes. They correspond to the gaps in sequence alignment (cf. Fig. 1).

DEFINITION 1. (MGA) Let \(\mathcal{G} = \{G1(V1,E1), \ldots, Gm(Vm,Em)\} \) be a set of node-labeled and edge-weighted graphs. Then \(\mathcal{A}(\{V1 \cup \{\perp\}\} \times \cdots \times \{Vm \cup \{\perp\}\}) \) is an alignment of the graphs in \(\mathcal{G} \) if and only if the following two properties hold: (i) Each node of each graph occurs exactly once in the alignment, i.e. for all \(i = 1, \ldots, m \) and for each \(v \in V \) there exists exactly one \(a = (a1, \ldots, am) \in \mathcal{A} \) such that \(v = a_i \), (ii) Each tuple of the alignment contains at least one non-dummy node, i.e. for each \(a = (a1, \ldots, am) \in \mathcal{A} \) there exists at least one \(1 \leq i \leq m \) such that \(a_i \neq \perp \).

Each \(a \in \mathcal{A} \) corresponds to a vector of mutually assigned nodes from the graphs \(G1, \ldots, Gm \). Note that, by matching nodes, a mutual assignment of edges is determined in an implicit way. Once an MGA has been established, it can be used to derive approximately conserved patterns. This can be done in different ways, for example, by extracting highly conserved subgraphs from a ‘fuzzy’ consensus graph \(\mathcal{G} \). This graph contains one node \(v = a(i) \) for each \(a \in \mathcal{A} \) that summarizes the label distribution of the mutually assigned nodes from the original graphs. Additionally, a degree of conservation \(\text{const}(v) \) is calculated, which is defined by the relative number of graphs in which this node is present. The edges of the consensus graph are defined accordingly [see Weskamp et al. (2007) for details]. For given thresholds \(\alpha, \beta \in (0,1) \), a conserved pattern can then be defined in terms of the subgraph of \(\mathcal{G} \) consisting of all nodes \(v \) with \(\text{const}(v) \geq \alpha \) and \(\text{maj}(v) \geq \beta \), where \(\text{maj}(v) \) is the relative frequency of the most frequent label in \(a \).

To assess the quality of a given alignment, a scoring function is used that corresponds to the above-mentioned edit distance (each graph alignment defines a set of edit operations that have to be performed to transform one of the aligned graphs into another graph of the alignment). Our scoring function follows a sum-of-pairs.
The ns is defined by the sum of the evaluations of the individual nodes. Thus, to evaluate a single vector of mutually assigned nodes, these nodes are considered in a pairwise manner, and three cases are distinguished: (i) the labels of two nodes are equal (match), (ii) the labels differ (mismatch) and (iii) one of the nodes is a dummy.

Comparing two edges is somewhat more difficult than comparing two nodes, as one cannot expect to observe edges of exactly the same lengths. We consider two edges as a match if their respective labels differ by at most a given threshold ϵ, and as a mismatch otherwise. The es is then given by:

\[
\text{es}(a_i, a_j) = \begin{cases}
\text{ns}(a_i), & \text{if } (a_i, a_j) \in E_k \text{ and } (a_i, a_j) \notin E_l \\
\text{ns}(a_i), & \text{if } (a_i, a_j) \notin E_k \text{ and } (a_i, a_j) \notin E_l \\
\text{es}(a_i, a_j) - \text{es}(a_j, a_i), & \text{if } (a_i, a_j) \in E_k \text{ and } (a_i, a_j) \in E_l \\
\text{es}(a_i, a_j) + \text{es}(a_j, a_i), & \text{if } (a_i, a_j) \notin E_k \text{ and } (a_i, a_j) \notin E_l \\
\text{es}(a_i, a_j), & \text{if } (a_i, a_j) \notin E_k \text{ and } (a_i, a_j) \notin E_l \\
\end{cases}
\]

Thus, to evaluate a single vector of mutually assigned nodes, these nodes are considered in a pairwise manner, and three cases are distinguished: (i) the labels of two nodes are equal (match), (ii) the labels differ (mismatch) and (iii) one of the nodes is a dummy.

Comparing two edges is somewhat more difficult than comparing two nodes, as one cannot expect to observe edges of exactly the same lengths. We consider two edges as a match if their respective lengths, a and b, differ by at most a given threshold ϵ, and as a mismatch otherwise. The es is then given by:

\[
\text{es}(a_i, a_j) = \begin{cases}
\text{ns}(a_i), & \text{if } (a_i, a_j) \in E_k \text{ and } (a_i, a_j) \notin E_l \\
\text{ns}(a_i), & \text{if } (a_i, a_j) \notin E_k \text{ and } (a_i, a_j) \notin E_l \\
\text{es}(a_i, a_j) - \text{es}(a_j, a_i), & \text{if } (a_i, a_j) \in E_k \text{ and } (a_i, a_j) \in E_l \\
\text{es}(a_i, a_j) + \text{es}(a_j, a_i), & \text{if } (a_i, a_j) \notin E_k \text{ and } (a_i, a_j) \notin E_l \\
\text{es}(a_i, a_j), & \text{if } (a_i, a_j) \notin E_k \text{ and } (a_i, a_j) \notin E_l \\
\end{cases}
\]

where \(d_{ij} = |w(a'_i, a'_j) - w(a_j, a_i)|\). The parameters (i.e., \(\text{ns}_{\text{match}}\), \(\text{ns}_{\text{mismatch}}\), \(\text{es}_{\text{match}}\), \(\text{es}_{\text{mismatch}}\)) are constants used to reward or penalize matches, mismatches, and dummies, respectively. Throughout our experiments in Section 5, we used the parameters recommended by Weskamp et al. (2007): \(\text{ns}_{\text{match}} = 1\), \(\text{ns}_{\text{mismatch}} = -5\), \(\text{es}_{\text{match}} = -2.5\), \(\text{es}_{\text{mismatch}} = 0.2\), \(\text{es}_{\text{mismatch}} = -0.1\), and \(\epsilon = 0.2\).

The problem of calculating an optimal MGA, that is, an alignment with maximal score for a given set of graphs, is provably nondeterministic polynomial (NP)-complete. In Weskamp et al. (2007), simple and effective heuristics for the MGA problem have been devised that were found to be useful for the problem instances that were examined. The main idea of these methods is to reduce the multiple alignment problem to several pairwise problems (i.e., calculating an optimal graph alignment for only two graphs) in a first step. To align a pair of graphs, an exact seed solution in the form of a subgraph isomorphism is computed and then extended to a complete alignment in a greedy manner. Resorting to the idea of star alignment, which is well known in sequence analysis, all pairwise alignments are finally merged into a multiple alignment.

In this article, we elaborate on the use of EAs as an alternative approach. On the one hand, evolutionary optimization is of course more expensive from a computational point of view. On the other hand, the hope is that this approach will be able to improve the solution quality, i.e., to produce alignments that are better than those obtained by the simple greedy strategy.

4 AN EA FOR MGA

In this section, we introduce a new algorithm for MGA called GAVEO (Graph Alignment Via Evolutionary Optimization). To this end, we resort to the class of evolution strategies. An evolution strategy is a special type of EA that seeks to optimize a fitness function, which in our case is given by the sum-of-pairs score (1).

To this end, it simulates the evolution process by repeatedly executing the following loop (Beyer and Schwefel, 2002):

1. Initially, a population consisting of μ individuals, each representing a candidate solution, is generated at random; μ specifies the population size per generation.
2. In each generation, λ = ν·μ offspring individuals are created; the parameter ν is called selective pressure. To generate a single offspring, the mating-selection operator chooses ρ parent individuals at random and submits them to the recombination operator. This operator generates an offspring by exchanging the genetic information of these individuals. The new individual is further modified by the mutation operator.
3. The offsprings are evaluated and added to the parent population. Among the individuals in this temporary population T, the selection operator chooses the best μ candidates, which form the population of the next generation.
4. Steps (2) and (3) are repeated until a stopping criterion is met.
Among the proper selection operators for evolution strategies, the matrices consisting, respectively, of the rows i_r to a uniform distribution. Then, the first column indicates a mutual assignment of the first node of graph A, the sixth node of graph B and the fourth node of graph C, while there is no matching partner other than a dummy in graph D.

In the course of optimizing an MGA, the graphs can become larger due to the insertion of dummy nodes. For the matrix representation, this means that the number of columns is in principle not known and can only be upper-bounded by $|V_i|+...+|V_m|$. This, however, will usually be too large a number and may come along with an excessive increase of the search space. From an optimization point of view, a small number of columns is hence preferable. On the other hand, by fixing a too small length of the alignment, flexibility is lost and the optimal solution is possibly excluded.

To avoid these problems, we make use of an adaptive representation: starting with a single extra column filled with dummies, more such columns can be added if required or, when becoming obsolete, again be removed (see below). Thus, our matrix scheme is initialized with m rows and $n_{\max}+1$ columns, where $n_{\max} = \max{|V_1|, |V_2|, ..., |V_m|}$. For each graph G_i, a permutation of its nodes is then inserted, with dummies replacing the index positions $j > |V_i|$. In passing, we note that dummy columns are of course excluded from scoring, i.e. the insertion or deletion of dummy columns has no influence on the fitness.

4.2 Evolutionary operators

Among the proper selection operators for evolution strategies, the deterministic plus-selection, which selects the μ best individuals from the union of the μ parents and the λ offsprings, is most convenient for our purpose. In fact, since the search space of an MGA problem is extremely large, it would be very unfortunate to lose a current best solution. This excludes other selection techniques such as fitness proportional or simulated annealing selection.

As we use a non-standard representation of individuals, namely a matrix scheme, the commonly used recombination and mutation operators are not applicable and have to be adapted correspondingly.

4.2.1 Recombination

Our recombination operator randomly selects ρ parent individuals from the current population (according to a uniform distribution). Then, $\rho-1$ random numbers $r_1, \ldots, r_{\rho-1}$ are generated, where $1 \leq r_1 < r_2 < \cdots < r_{\rho-1} < m$, and an offspring individual is constructed by combining the sub-matrices consisting, respectively, of the rows $[r_{i-1}+1 \ldots r_i]$ from the i-th parent individual (where $r_0=0$ and $r_{\rho}=m$ by definition).

Simply stitching together complete sub-matrices is not possible, however, since the nodes are not ordered in a uniform way. Therefore, in merging step i, the ordering of the r_i-th row is used as a reference. An example illustrating the recombination operator is given in the Supplementary Material. General experience has shown that recombination increases the speed of convergence, and this was also confirmed by our experiments (see Section 5).

4.2.2 Mutation

The mutation operator selects one row and two columns at random and swaps the entries in the corresponding cells. To enable large mutation steps, we have tried to repeat this procedure multiple times for each individual. As the optimal number of repetitions was unknown in the design phase of the algorithm, it was specified as a strategy component adjusted by a self-adaptation mechanism (Beyer and Schwefel, 2002). However, our experiments indicated that a simple mutation operator performing only single swaps solves the problem most effectively (see Section 5).

4.2.3 Adaptation of alignment length

To adapt the length of an MGA (number of columns in the matrix scheme), it is checked in randomly chosen intervals whether further dummy columns are needed or existing ones have become unnecessary. Three cases can occur: (i) There exists exactly one dummy column, which means that the current length is still optimal. (ii) There is more than one dummy column: apparently, a number of dummy columns are obsolete and can be removed, retaining only a single one. (iii) There is no dummy column left: the dummy column has been ‘consumed’ by mapping dummies to real nodes. Therefore, a new dummy column has to be inserted.

4.3 Combining evolutionary optimization and pairwise decomposition

The search space of an MGA problem grows exponentially with the number of graphs, which is of course problematic from an optimization point of view. One established strategy to reduce complexity is to decompose a multiple alignment problem into several pairwise problems and to merge the solutions of these presumably more simple problems into a complete solution. This strategy has already been exploited by Weskamp et al. (2007), who realized the decomposition and merging steps by means of the star alignment algorithm. In star alignment, a center structure is first determined, and this structure is aligned with each of the other $m-1$ structures. The $m-1$ pairwise alignments thus obtained are then merged by using the nodes of the center as pivot elements. As the quality of an MGA derived in this way critically depends on the choice of a suitable center structure, one often tries every structure as a center and takes the best result. In this case, all possible pairwise alignments are needed, which means that our EA must be called $\frac{1}{2}(m^2-m)$ times. As star alignment is again a purely heuristic aggregation procedure, the gain in efficiency is likely to come along with a decrease in solution quality, compared with the original EA (GAVEO). This is not necessarily the case, however. In fact, a decomposition essentially produces two opposite effects, a positive one due to a simplification of the problem and, thereby, a reduction of the search space, and a negative one due to a potentially suboptimal aggregation of the partial solutions. For a concrete problem, it is not clear in advance which among these two effects will prevail.
As a first proof-of-concept, we analyzed our algorithms on a because of an insufficient alignment length. to a relatively high value due to avoiding long times of stagnation very useful and should therefore be enabled. The probability individual. Finally, our experiments suggest that a recombination is two cells is likely to be annulled by a second swap in the same of the optimization. Thus, an improvement obtained by swapping self-adaptation mechanism is disabled and, hence, the mutation rate is set to one (only two cells are swapped by mutation). This appears reasonable, as most swaps do not yield an improvement and instead may even produce a deterioration, especially during the final phase of the optimization. Thus, an improvement obtained by swapping two cells is likely to be annulled by a second swap in the same individual. Finally, our experiments suggest that a recombination is very useful and should therefore be enabled. The probability \(\tau \) is set to a relatively high value due to avoiding long times of stagnation because of an insufficient alignment length.

5 EXPERIMENTAL RESULTS

GA VEO as outlined in the previous section has a number of exogenous parameters: \(\mu \), the population size; \(\nu \), the selective pressure; \(\rho \), the recombination parameter; \(\tau \), the probability to check for dummy columns; selfadaptation, which can assume values \{on,off\}, and enables or disables the automatic step-size control. initialsize, which defines the initial step size for the mutation. If the automatic step-size control is disabled, this parameter is ignored and a constant step size of 1 is used for the mutation.

To optimize these parameters, we have applied the sequential parameter optimization toolbox (SPOT) (Bartz-Beielstein, 2006) in combination with suitable synthetic datasets. Based on the results, the following parameter configuration appears to be well-suited for our problem class: \(\mu = 4 \), \(\nu = 15 \), selfadaptation=off, \(\rho = 4 \) and \(\tau = 0.35 \). As can be seen, a small value for the population size (only large enough to enable recombination) is enough, probably due to the fact that local optima do not cause a severe problem. On the other hand, as the search space is extremely large, a high selective pressure is necessary to create offsprings with improved fitness. The self-adaptation mechanism is disabled and, hence, the mutation rate is set to one (only two cells are swapped by mutation). This appears reasonable, as most swaps do not yield an improvement and instead may even produce a deterioration, especially during the final phase of the optimization. Thus, an improvement obtained by swapping two cells is likely to be annulled by a second swap in the same individual. Finally, our experiments suggest that a recombination is very useful and should therefore be enabled. The probability \(\tau \) is set to a relatively high value due to avoiding long times of stagnation because of an insufficient alignment length.

5.1 Mining molecular fragment data

As a first proof-of-concept, we analyzed our algorithms on a dataset consisting of 87 compounds that belong to a series of benzamidine derivatives, selective thrombin inhibitors, that were taken from a 3D-QSAR study (Bohm et al., 1999). The dataset is suitable for conducting experiments in a systematic way, as it is quite homogeneous and relatively small (the graph descriptors contain 47–100 nodes, where each node corresponds to an atom). Moreover, as the 87 compounds all share a common core fragment (which is distributed over two different regions with a variety of substituents), the dataset contains a clear and unambiguous target pattern. From this dataset, 100 subsets of 2, 4, 8, 16 and 32 compounds have been selected at random, and for each subset, an MGA has been calculated using the greedy heuristic (Greedy), our EA with optimized parametrization (GA VEO) and, as introduced in Section 4.3, in combination with a pairwise reduction and star alignment procedure (GAVEO)∗.

In a first experiment, we investigated whether or not the expense (large population, complex mutation and recombination operators) of an EA is justified at all. To this end, we compared GAVEO with a simple hill-climbing search, namely a \((1+1)\)-EA. To guarantee a fair comparison, we fixed the number of function evaluations for both algorithms. The results, summarized in the Supplementary Material, were clearly in favor of GAVEO.

The results of the main experiment, comparing the two EA-variants with the greedy strategy, are shown in Figure 3. As a measure of comparison, we derived the relative improvement of the score (1),

\[
\frac{s(A') - s(A)}{\min(|s(A'|), |s(A)|)}
\]

where \(A' \) and \(A \) denote, respectively, the alignment produced by GAVEO (or GAVEO∗) and Greedy. This measure is positive if the GAVEO solution yields a higher score than the Greedy solution; e.g. a relative improvement of 1 would mean an increase in score by a factor of 2 [note that \(s(A) = 0 \) is possible].

The results, shown in Figure 3, confirm our expectations: both EA variants significantly outperform Greedy with respect to alignment quality. The runtimes,∗ on the other hand, confirm that the greedy strategy is still the most efficient among all alternatives. A good compromise between solution quality and efficiency is achieved by GAVEO∗: Its runtime is much better than the one of GAVEO, especially for a larger number of graphs, while the alignment quality is only slightly worse, as can also be seen in Figure 3. In fact, in

\[
\text{Fig. 3. Results of the experiment on the benzamidine dataset: (a) Runtimes in seconds (mean and SD) of Greedy, GAVEO and GAVEO∗. (b) Relative improvements (boxplot) of GAVEO (each left box) and GAVEO∗ (each right box) as defined in (2) in comparison to Greedy: positive values indicate an improvement.}
\]

Intel Core 2 Duo 2.4 GHz, 2 GB memory, Windows XP SP 2 operating system.
terms of average relative improvement, it loses in the range of only 4–6% (with a tendency to increase with the number of structures).

Regarding the identification of conserved patterns among the derivatives, we were mainly interested in the retrieval of the aforementioned benzamidine core fragment, an amide derivative of benzil, which consists of 25 atoms (11 hydrogens). Upon inspection of the subgraphs that are highly conserved in the sense of satisfying \(\alpha = 1 \) and \(\beta \geq 0.9 \) (cf. Section 3), it turned out that the core fragment was retrieved by GAVEO and GAVEO* in nearly all experiments; see Table 1 for a summary of the results. Since the greedy approach is prone to local optima, it is probable to miss at least parts of this fragment, and this probability increases with the number of structures.

5.2 Mining protein binding pockets

We examined the performance of our algorithms also on a dataset consisting of 74 structures derived from the Cavbase database. Each structure represents a protein cavity belonging to the protein family of thermolysin, bacterial proteases frequently used in structural protein analysis and annotated with the E.C. number 3.4.24.27 in the ENZYME database. The dataset is suited for our purpose, as all cavities belong to the same enzyme family and, therefore, evolutionary-related, highly conserved substructures ought to be present. On the other hand, with cavities (hypothetical binding pockets) ranging from about 30 to 90 pseudocenters and not all of them being real binding pockets, the dataset is also diverse enough to present a real challenge for graph matching techniques. Again, we produced 100 graph alignments of size 2, 4, 8, 16 and 32, respectively, for randomly chosen structures, and derived the relative improvement (2) as a measure of comparison. (A visual representation of an alignment is shown in the Supplementary Material.) As thermolysin is a bacterial metalloprotease, we obviously captured the subpart of the cavity hosting the zinc ion of thermolysin. The surrounding acceptor pseudocenters probably correspond to residues interacting with the ion. Upon reconciliation with the corresponding protein structures, we could verify that these acceptor centers resembled histidine and glutamate residues that form a coordinate bond with the ion. The zinc ion is essential for the enzyme activity, as removal of the zinc abolishes enzyme function (Holmquist and Vallee, 1976). Additionally, we discovered a highly conserved mapping of acceptor centers in close proximity that resembled the residue GLU143, a key residue of the active site which is supposed to act as a ‘proton shuttle’, transferring a proton from an attacking water molecule to a nitrogen of the cleaved substrate. Some other conserved donor and acceptor pseudocenters might be required to form hydrogen bonds with the substrate. In fact, the underlying residues have been shown to interact with an inhibitor of the enzyme (Holden and Matthews, 1988). This example shows that our approach is able to retrieve relevant groups for the enzyme function and, therefore, nicely demonstrates its usefulness for the analysis of protein function.

5.3 Similarity-based classification of proteins

In a final study, we investigated the influence of the improved similarity scores on the classification accuracy on a two-class dataset. To assess the predictive power of our approach on a real-world dataset, we compiled a set of 355 protein binding pockets representing two classes of proteins that each share a certain prominent cofactor, adenosine-5′-triphosphate (ATP) and nicotine amide dinucleotide (NADH), respectively. Here, we used Cavbase to retrieve all known ATP and NADH binding pockets that were co-crystallized with the respective ligand. Subsequently, we reduced the set to one cavity per protein, thus representing the enzymes by a single binding pocket. As protein ligands adopt different conformations due to their structural flexibility, it is likely that the ligands in our dataset are bound in completely different ways, hence the corresponding binding pocket does not necessarily share much...
ATP and 48 NADH structures. For Table 2, this dataset includes only proteins with a sequence identity determined by means of a leave-one-out cross-validation.

To test the discriminative power of our approach, we calculated all possible pairwise alignments in our dataset and thus derived two similarity matrices based on the obtained similarity scores, one for the greedy approach and one for GAVEO. We then used a standard k-nearest neighbor algorithm to make a class prediction for each protein binding pocket. This approach simply predicts the class which is prevalent among the k most similar structures. The results of several leave-one-out cross-validation studies, performed for different values of k, are summarized in Table 2.

As can be seen, GAVEO again outperforms the greedy strategy, this time in terms of classification accuracy. Note that the classification accuracies can also be taken as an indicator of how well the pairwise similarity scores are in agreement with the class structure. In this regard, it is noticeable that, in the case of GAVEO, the accuracy degrees are all comparable and do not strongly depend on k. For the greedy algorithm, the results are less stable and actually deteriorate for larger values of k. This suggests that GAVEO does indeed achieve a better class separation.

To demonstrate that our structure-based approach is able to extract useful information even in cases of low sequence similarity, we repeated the experiment with an alternative ATP/NADH dataset. This dataset includes only proteins with a sequence identity below 30% (ligand similarity was neglected) and comprises 48 ATP and 48 NADH structures. For $k = 1$ (leave-one-out cross-validation), GAVEO still achieved a respectable accuracy of 67.69%, compared with 61.54% of the greedy strategy. As to be expected, a classification based on sequence alignment completely fails and yields results not better than random guessing (49.23%).

6 SUMMARY AND CONCLUSIONS

MGA has recently been introduced as a novel method for analyzing structured data, especially biomolecules. Using robust, noise-tolerant graph matching techniques, this method is able to discover approximately conserved patterns in a set of graph descriptors representing a family of evolutionarily-related biological structures. As the calculation of optimal alignments is a difficult and computationally complex problem, this article has proposed GAVEO, an EA for MGA, as an alternative to an existing greedy strategy. An implementation of this algorithm along with a user’s guide can be downloaded at www.uni-marburg.de/bi/bi2/hebi/research/.

Our experiments have shown the high potential of this approach and give rise to the following main conclusions: GAVEO significantly outperforms the greedy strategy and produces alignments that are better both in terms of their scores and in the sense of revealing conserved substructures in a more reliable way. The improved alignments also produce better (pairwise) similarity degrees, which in turn leads to better results in related performance tasks such as (nearest neighbor) classification.

On the other hand, the evolutionary optimization of graph alignments is computationally more complex than the greedy approach. Fortunately, however, a good compromise between solution quality and runtime can be achieved by a combination of evolutionary optimization with a star alignment decomposition. Finally, it is worth mentioning that GAVEO has advantages regarding space complexity. In fact, its memory requirements are significantly smaller than those of the greedy algorithm, which needs to construct and store the product of the input graphs to generate an initial solution.

The methods introduced so far compare graph structures by taking the whole molecule, respectively the whole binding pocket, into account. While this approach is reasonable for structures that strongly resemble each other, it may fail if this is not the case. In fact, ligands do not necessarily occupy the whole protein cavity in which it is bound. Thus, two cavities both hosting the same ligand may still have larger parts that are not similar to each other and, therefore, can become difficult to align. In future work, we aim at extending our methods to cope with such cases. Roughly speaking, this comes down to developing graph-based counterparts to local or semi-global sequence alignment.

Conflict of Interest: none declared.

REFERENCES

Evolutionary construction of multiple graph alignments

