Gene expression
Gradient lasso for Cox proportional hazards model

Insuk Sohn1, Jinseog Kim2, Sin-Ho Jung1 and Changyi Park3,*

1Department of Biostatistics & Bioinformatics, Duke University, NC 27705, USA, 2Department of Statistics and Information Science, Dongguk University, Gyeongju 780-714 and 3Department of Statistics, University of Seoul, Seoul 130-743, Korea

Received on February 9, 2009; revised on May 7, 2009; accepted on May 12, 2009
Advance Access publication May 15, 2009

ABSTRACT

Motivation: There has been an increasing interest in expressing a survival phenotype (e.g. time to cancer recurrence or death) or its distribution in terms of a subset of the expression data of a subset of genes. Due to high dimensionality of gene expression data, however, there is a serious problem of collinearity in fitting a prediction model, e.g. Cox’s proportional hazards model. To avoid the collinearity problem, several methods based on penalized Cox proportional hazards models have been proposed. However, those methods suffer from severe computational problems, such as slow or even failed convergence, because of high-dimensional matrix inversions required for model fitting. We propose to implement the penalized Cox regression with a lasso penalty via the gradient lasso algorithm that yields faster convergence to the global optimum than do other algorithms. Moreover, the gradient lasso algorithm is guaranteed to converge to the optimum under mild regularity conditions. Hence, our gradient lasso algorithm can be a useful tool in developing a prediction model based on high-dimensional covariates including gene expression data.

Results: Results from simulation studies showed that the prediction model by gradient lasso recovers the prognostic genes. Also results from diffuse large B-cell lymphoma datasets and Norway/Stanford breast cancer dataset indicate that our method is very competitive with respect to prediction and selectivity.

Availability: R package glcoxph is available at http://datamining.dongguk.ac.kr/R/glcoxph.

Contact: park463@uos.ac.kr

1 INTRODUCTION

DNA microarray is a biotechnology allowing simultaneous monitoring of tens of thousands of gene expression in cells (Brown and Botstein, 1999). It has important applications in pharmaceutical and clinical research, including tumor classification, molecular pathway modeling and functional genomics. The identification of genes related to survival may provide new information on pathogenesis and etiology, and may further aid in the search for new targets for drug design.

There has been an increasing interest in relating gene expression profiles to survival phenotypes such as time to cancer recurrence or death. Recent works include semi-supervised methods (Bair and Tibshirani, 2004), supervised principal components (Bair et al., 2006), a Cox regression based on threshold gradient descent (Gui and Li, 2005a), the LARS-Cox (Gui and Li, 2005b), the residual finesse (Segal, 2006) and cancer survival prediction using automatic relevance determination (Kaderali et al., 2006).

In particular, we are interested in the Cox regression (Cox, 1972) because of its popularity in the analysis of survival data with censoring. However, due to high dimensionality of gene expression data, there is a serious problem of collinearity in applying the Cox proportional hazards model directly. To avoid the collinearity problem, several methods based on penalized Cox proportional hazards models have been proposed. Fan and Li (2002) adopted the smoothly clipped absolute deviation (SCAD) penalty in the Cox model and Zou (2008) proposed a path-based variable selection method to construct an adaptive sparse shrinkage path for the Cox proportional hazards model. The LARS-Cox procedure by Gui and Li (2005b) suffers from severe computational problems in its optimization because it requires inversion of high-dimensional matrices as discussed in Segal (2006) or Goeman (2008). To remedy the computational problem of the LARS-Cox, Segal (2006) proposed a method, called the residual finesse, to speed up the computation by replacing the survival times by the deviance residuals and Goeman (2008) proposed to combine gradient descent with the Newton-Raphson algorithm.

In this article, we apply the gradient lasso algorithm proposed by Kim et al. (2008) to a Cox proportional hazards model with a lasso penalty. Unlike the algorithm in Gui and Li (2005b), the gradient lasso algorithm does not require a matrix inversion, so that it is scalable to high-dimensional data and yields faster convergence to the global optimum. Theorem 1 in Kim et al. (2008) guarantees the convergence of the gradient lasso estimator to the optimum under mild regularity conditions. Unlike other methods such as Gui and Li (2005b), Segal (2006) and Zou (2008), the gradient lasso yields a solution to the exact penalized partial likelihood, not to an approximate penalized partial likelihood. Hence, our method can be a useful alternative to those methods in building a statistical model.
to predict the patient’s survival time based on high-dimensional gene expression data.

A recent method proposed by Park and Hastie (2007) provides the entire penalization path for the Cox model in a forward stage-wise manner. Both their method and our gradient lasso act only on active sets. Because Park and Hastie (2007) require matrix inversions only on active sets, the computation is faster and more stable than other methods in the literature. Ma and Huang (2005) adopted the earlier version of the gradient lasso by Kim and Kim (2004). In this article, we adopt the refined version of Kim and Kim (2004) with a deletion step to improve the computational speed and provide more stable solutions than the earlier version. Another recent method by Goeman (2008) is a gradient algorithm with an option of switching to the Newton-Raphson algorithm to avoid slow convergence. Both our method and the algorithm by Goeman (2008) are gradient algorithms. However, our method directly solves the optimization problem of the lasso penalized Cox model in the constrained form, whereas the methods of Park and Hastie (2007) and Goeman (2008) solve the optimization problem equally in an unconstrained form using a Lagrange multiplier.

The rest of the article is organized as follows. In Section 2, we describe the Cox proportional hazards model with lasso penalty and present the gradient lasso algorithm for the model. We briefly review some algorithms that use gradient descent. Finally, we give brief discussions of our method and results.

2 METHODS

2.1 Cox model with lasso penalty

We investigate the relationship between the survival time and the covariates such as gene expression levels and clinical variables. For patient \(i = 1, \ldots, N \), we observe \((t_i, d_i, x_{i1}, \ldots, x_{ip})\), where \(d_i \) is the censoring indicator taking 1 if an event is observed and 0 otherwise, \(t_i \) is the survival time if \(d_i = 1 \) or censoring time otherwise, and \(x_i = (x_{i1}, \ldots, x_{ip})^T \) is the vector of covariates.

By the Cox’s proportional hazards model, the hazard function for patient \(i \) is given as

\[
\lambda_i(t) = \lambda_0(t) \exp(x_i^T \beta),
\]

(1)

where \(\lambda_0(t) \) is a unknown baseline hazard function and \(\beta = (\beta_1, \ldots, \beta_p)^T \) is the regression coefficient vector. Then the partial log-likelihood (Cox, 1972) is expressed as

\[
\ell(\beta) = \sum_{i=1}^N \left[\lambda_i(t_i) - \log \left(\sum_{j\in R_i} \exp(\lambda_j(t_i)) \right) \right],
\]

where \(R_i \) is the set of indices of the patients at risk at time \(t_i \).

Typically for microarray data we have \(p \gg N \), so that there exists a serious collinearity problem when applying the partial likelihood estimation to the Cox model directly. Tibshirani (1997) proposed to estimate the parameters in (1) under the \(L_1 \) constraint:

\[
\hat{\beta} = \text{arg max}_{|\beta|_1 \leq \lambda} \ell(\beta),
\]

(2)

where \(|\beta|_1 \) denotes the \(L_1 \) norm and \(\lambda > 0 \) is a positive number. The optimization problem (2) is good for dimension reduction of covariates, but it is computationally difficult because the \(L_1 \) objective function is not differentiable (Fan and Li, 2002).

The equivalent Lagrange multiplier version of (2) is

\[
\hat{\beta} = \text{arg max}_{\beta \in \mathbb{R}^p} \ell(\beta) - \lambda \frac{1}{2} \| \beta \|^2_1.
\]

(3)

for \(\lambda > 0 \). Equation (3) can be interpreted as the posterior mode of \(\beta \) for the double exponential prior with parameter \(\lambda \). The tuning parameters \(\lambda \) and \(\beta \) can be determined, for example, by cross-validated partial likelihood (CVPL) as in Guo and Li (2005b) and Segal (2006).

Tibshirani (1997) proposed an iterative procedure to solve (2). Let \(X = (x_{11}, \ldots, x_{Np}) \) denote the \(p \times N \) gene expression matrix, \(\eta = \beta^T X, \mu = -\frac{\eta}{\mu} \), \(A = -\frac{\mu}{\mu^2} \), and \(z = \eta + A \mu \), where \(A \) is a generalized inverse of \(A \). By the Taylor expansion of \(\ell(\beta) \), the partial log-likelihood is approximated by

\[
(z - q)^T A (z - q) = \lambda.
\]

(4)

Tibshirani (1997) suggested to replace \(A \) with a diagonal matrix \(D_h \) having the same diagonal elements as \(A \) and solve (4) iteratively using a quadratic programming. See Tibshirani (1997) for more details on the iterative procedure. Since the quadratic programming cannot be applied directly to the cases with \(p \gg N \), Guo and Li (2005b) applied the Choleski decomposition: \(T = A^{-1/2} \). Thus, the gradient lasso can be a useful alternative. Another recent method of Goeman (2008) is a gradient algorithm solving (3). While the gradient lasso updates a single coordinate at a time, the method in Goeman (2008) utilizes the full gradient at each step and can switch to a Newton-Raphson algorithm to speed up its convergence around the optimum. As the gradient lasso is scalable to high-dimensional data, so are the algorithms in Park and Hastie (2007) and Goeman (2008). Interested readers may see Park and Hastie (2007) and Goeman (2008) for more details on the algorithms.

2.2 Gradient lasso algorithm

Kim et al. (2008) proposed gradient lasso algorithm, which is a refined version of the early algorithm by Kim and Hastie (2004). The algorithm can be applied to general convex loss functions. Moreover the algorithm is scalable to high-dimensional data because it requires only a univariate optimization at each iteration and its convergence speed is independent of the number of input variables.

For a given convex function \(C(\beta) \) of \(\beta \in \mathbb{R}^p \), consider the minimization of \(C(\beta) \) on \(S = \{ \beta : |\beta|_1 \leq \tau \} \). Note that, with the restriction rank(\(A \))=n−1 in place, the quadratic form (4) is invariant to the choice of the generalized inverse. The LARS-Cox procedure can be solved using the LARS procedure in Efron et al. (2004). See Guo and Li (2005b) for more details.

As noted earlier, these algorithms can be very computationally intensive and sometimes may fail to converge to the optimum because they involve matrix inversions. Other methods in the literature such as Segal (2006) and Zou (2008) speed up the computation by solving approximate objective functions. The gradient lasso algorithm presented below solves the optimization problem (2) directly and does not resort to a matrix inversion.

Thus, the gradient lasso can be a useful alternative. Another recent method of Goeman (2008) is a gradient algorithm solving (3). While the gradient lasso updates a single coordinate at a time, the method in Goeman (2008) utilizes the full gradient at each step and can switch to a Newton-Raphson algorithm to speed up its convergence around the optimum. As the gradient lasso is scalable to high-dimensional data, so are the algorithms in Park and Hastie (2007) and Goeman (2008). Interested readers may see Park and Hastie (2007) and Goeman (2008) for more details on the algorithms.
Gradient lasso for Cox regression

1. Initialize: \(\beta = 0 \) and \(m = 0 \).
2. Do until convergence
 (a) Addition:
 i. Compute the gradient \(VC(\beta) \).
 ii. Find the \(j \) maximizing \(|\partial C(\beta)/\partial \beta_j| \) for \(j = 1, \ldots, p \) and \(\hat{\beta} = -s \times \text{sign}(\partial C(\beta)/\partial \beta_j) \).
 iii. Let \(v \) be a \(p \) dimensional vector such that its \(j \)-th element is \(-\hat{\beta}_j \) and the other elements are zeros.
 iv. Find \(\hat{\alpha} = \arg \min_{\alpha \in \mathbb{R}^m} C(\beta + \hat{\alpha} v) \).
 v. Update \(\beta = (1 - \alpha) \beta + \hat{\alpha} v \).
 (b) Deletion:
 i. Calculate \(h_0 \) as in (6).
 ii. Find \(\hat{\delta} \) as in (7).
 iii. Update \(\beta = \beta + \hat{\delta} h \).
3. Return \(\beta \).

Fig. 1. The gradient lasso algorithm.

The earlier version of the algorithm (Kim and Kim, 2004) consisting of only the addition step may converge slowly near the optimum. To resolve this problem, Kim et al. (2008) introduced the deletion step. The deletion step speeds up the algorithm by updating all the non-zero coordinate of \(\beta \) simultaneously. The active set \(\sigma \) is defined as \(\sigma = \{ j \mid \beta_j \neq 0 \} \). Denote the current solution and corresponding gradient of the current solution with respect to an active set as \(\beta_\sigma \) and \(VC(\beta_\sigma) \), respectively. Then we move \(\beta_\sigma \) toward the direction of \(-VC(\beta_\sigma) \). If the current solution is placed on the surface of \(S \) with redundant non-zero coefficients, such a move may not satisfy the constraint \(S \). In order to make the move to satisfy the constraint, we replace \(VC(\beta_\sigma) \) by

\[
h_0 = -VC(\beta_\sigma) + \hat{\delta}_0 VC(\beta_\sigma) \hat{\delta}_0 / |\sigma|,
\]

where \(\hat{\delta}_0 \) is the sign vector of \(\beta_\sigma \) and \(|\sigma| \) is the cardinality of \(\sigma \). Let \(U = \min_{\|h\|_0 < \infty} \{-\beta_\sigma^T h \mid h \in C \} \). Let \(P \) denote the permutation matrix that collects the non-zero elements of \(\beta_\sigma \) in the first \(|\sigma| \) elements. Then we move \(\beta_\sigma \) toward \(h \) until one of the non-zero coordinates becomes zero. That is, \(\beta \) is updated as \(\beta + \tilde{h} \), where

\[
\tilde{h} = \arg \min_{h \in C} VC(\beta + \tilde{h}) \hat{\delta}_0
\]

and \(h^T \beta_\sigma = 0 \). When \(\tilde{h} = 0 \), one of non-zero coordinates is deleted. Figure 1 summarizes the gradient lasso algorithm.

2.3 Performance measures

In the microarray survival literature, the predictive performance of a model is typically assessed as follows: (i) risk scores based on the fitted model are computed for patients in a (withheld) test dataset, (ii) strata (usually two) are created based on thresholding these scores and (iii) log-rank testing of between-strata survival differences is performed. The greater the achieved significance the more predictive the model is deemed to be. In our data analysis, the threshold value of the predictive score is set to zero for dividing patients into low- and high-risk groups. Limitations of this approach include not just the arbitrariness of the imposed stratification but, more importantly, the familiar shortcoming of P-values not necessarily capturing effect size explained variation. A more refined approach is afforded by the use of time-dependent ROC curves, proposed by Hsegerty et al. (2000) and used in the present context by Gu and Li (2005b). Let \(\ell(X) \) be the predictive model, where \(X = (X_1, \ldots, X_p) \) denotes a \(p \) dimensional random vector measuring the gene expression levels of an individual. Define time-dependent sensitivity and specificity functions at a cutoff point \(c \) as

\[
\text{sensitivity}(c, \ell(X)) = \frac{\ell(X) > c}{\Delta(t) = 1},
\]

\[
\text{specificity}(c, \ell(X)) = \frac{\ell(X) \leq c}{\Delta(t) = 0},
\]

where \(\Delta(t) \) is the event indicator at time \(t \). Throughout the article, the cutoff point \(c \) is set to zero as in Gu and Li (2005b) and Segal (2006). The corresponding time-dependent ROC curve at time \(t \), \(ROC(t(X)) \), is then just the plot of sensitivity(c, \ell(t(X)) versus 1 specificity(c, \ell(t(X)) over different values of cutoff point \(c \). We adopt the analogous area under the time-dependent ROC curve(c, denoted as AUC(\ell(t(X)) in Section 3. In order to estimate the conditional probabilities in (8) and (9) accounting for possible censoring, we employ a nearest neighbor estimator for the bivariate distribution function (Akritas, 1994) as in Hsegerty et al. (2000).

3 RESULTS

We compared the performance of a recent algorithm by Park and Hastie (2007), called the coxpath, the gradient algorithm by Goeman (2008), called the penalized, and our gradient lasso algorithm, called the gllvm. Note that the coxpath and the penalized are available in the R package glmnet and penalized, respectively. The gllvm package in R is available upon request from the authors. The glcoxph directly solves the constrained optimization problem in (2), while the coxpath and the penalized solve the equivalent unconstrained optimization (3).

Although there exists a one-to-one correspondence between the tuning parameters \(s \) in (2) and \(\lambda \) in (3), there is no closed conversion formula between them. Hence, we used different grids for tuning the coxpath and gllvm. For the coxpath and the penalized, we conducted a grid search. More specifically, we extracted the maximum value, \(\lambda_{\max} \), of \(\lambda \) after fitting the coxpath on the training dataset, obtained the 100 grid points by dividing the interval \(1 \leq \lambda \leq \lambda_{\max} \) equally in the log scale, and used those points in tuning. Note that the coefficients for \(\lambda = \lambda_{\max} \) are almost the same and thus the penalization path taken to be flat over the range of \(\lambda \) in the coxpath. For the gllvm, the grid for the tuning parameter \(s \) was 0.05, 0.1, …, 5 as available in the previous studies such as Gu and Li (2005b). We adopted 5-fold CVPL as our criterion for the selection of tuning parameter.

3.1 Real microarray data

The diffuse large B-cell lymphoma (DLBCL) dataset consists of 240 samples from patients having DLBCL with expression measurements on 7399 genes. The clinical outcome was survival time, either observed or censored. We analyzed two different sets of the DLBCL data: one from Rosenwald et al. (2002) and the other from Bair et al. (2006). Both of the datasets consist of 160 training samples and 80 test samples.

Table 1 lists the genes selected by the gllvm on the datasets from Rosenwald et al. (2002) and Bair et al. (2006). For the datasets defined in Rosenwald et al. (2002), eight genes were selected by the gllvm. Four of those genes belong to the three gene expression signature groups, including Germinal-center B-cell signature, MHC class II signature and Lymph-node signature, defined in Rosenwald et al. (2002). Note that these four genes belong to the 10 genes selected by the LARS-Cox in Gu and Li (2005b) and are in fact
The top four genes selected by the residual finesse in Segal (2006). The other four genes do not belong to the signature groups defined in Rosenwald et al. (2002). Among those four genes, AA729003, a protein coding TCL1A gene and AA760674, a COX15 homolog, were also selected by the LARS-Cox in Gui and Li (2005b). The glcoxph has selected five genes from the datasets by Bair et al. (2006). Two of those genes belong to the two gene expression signature groups, including Germinal-center B-cell signature and MHC class II signature, defined in Rosenwald et al. (2002). Table 2 summarizes the number of selected genes and the partial log-likelihood by the coxpath, glcoxph and penalized on DLBCL training datasets. For the training data from Rosenwald et al. (2002), the coxpath and the glcoxph selected 14, 8 and 16 genes, respectively, and seven genes were selected by all the methods. Only by the coxpath, glcoxph and penalized algorithms, 1, 1 and 3 genes were selected, respectively. Interestingly, all the methods selected the same five genes on the training data from Bair et al. (2006). Our method yielded a sparser model than the other methods for both of DLBCL datasets. Comparing the values of \(l(\beta) \) on the training data, we observe that the glcoxph yielded slightly larger value of \(l(\beta) \) than the other methods. The optimal values of tuning parameters on the training datasets from Rosenwald et al. (2002) were 0.8, 25.2068 and 23.1014 for the glcoxph, the coxpath and the penalized, respectively. For the second training dataset from Bair et al. (2006), the optimal values were 0.2 for the glcoxph and 31.2733 for the coxpath and the penalized. We compared the predictive performances of the methods. We stratified the test data into low- and high-risk groups. Table 3 shows the results by the log-rank test. The \(P \)-value of the glcoxph was a bit smaller than the others on both of the DLBCL datasets. Time-dependent AUC curves in Figure 2 indicate that the glcoxph outperforms the other methods over the time span and the predictive performance of the penalized and the coxpath are almost the same. Note that the curve for the coxpath and the penalized in Figure 2b are identical. In summary, for the DLBCL datasets, the glcoxph predicts the survival distribution better with a smaller number of genes than the other methods.

Table 1. Genes selected by the glcoxph on DLBCL datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GenBank ID</th>
<th>(\hat{\beta})</th>
<th>Signature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA805575</td>
<td>−0.190</td>
<td>Germ</td>
<td>Thyroxine-binding globulin precursor</td>
<td></td>
</tr>
<tr>
<td>X00452</td>
<td>−0.163</td>
<td>MHC</td>
<td>Major histocompatibility complex, class II, DQ alpha 1</td>
<td></td>
</tr>
<tr>
<td>LC_29222</td>
<td>−0.148</td>
<td>Lymph</td>
<td>T-cell leukemia/lymphoma 1A</td>
<td></td>
</tr>
<tr>
<td>X598112</td>
<td>−0.076</td>
<td>Lymph</td>
<td>Cytochrome P450, subfamily XXVIIA polypeptide 1</td>
<td></td>
</tr>
<tr>
<td>AA729003</td>
<td>−0.062</td>
<td>Mal</td>
<td>Mal, T-cell differentiation protein</td>
<td></td>
</tr>
<tr>
<td>M15860</td>
<td>−0.052</td>
<td>Immunoglobulin kappa constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA291844</td>
<td>0.011</td>
<td>Immunoglobulin kappa constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA760674</td>
<td>0.016</td>
<td>Germ</td>
<td>Thyroxine-binding globulin precursor</td>
<td></td>
</tr>
<tr>
<td>AA805575</td>
<td>−0.609</td>
<td>Germ</td>
<td>Major histocompatibility complex, class II, DR alpha</td>
<td></td>
</tr>
<tr>
<td>M81750</td>
<td>−0.117</td>
<td>Major histocompatibility complex, class II, DR alpha</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The number of genes selected and the partial log-likelihood on DLBCL training datasets

<table>
<thead>
<tr>
<th></th>
<th>Rosenwald et al. (2002)</th>
<th>Bair et al. (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coxpath</td>
<td>glcoxph</td>
</tr>
<tr>
<td>No. of genes</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>(l(\beta))</td>
<td>−391.1635</td>
<td>−383.8169</td>
</tr>
</tbody>
</table>

Table 3. Log-rank test results on DLBCL test datasets

<table>
<thead>
<tr>
<th></th>
<th>Rosenwald et al. (2002)</th>
<th>Bair et al. (2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coxpath</td>
<td>glcoxph</td>
</tr>
<tr>
<td>No. of high risk</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>Log-rank (P)-value</td>
<td>0.0005</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Kaplan–Meier curves on the DLBCL datasets are shown in Figure 3. For the first dataset, the Kaplan–Meier curves have similar patterns except that the survival probability of the coxpath for the...
high-risk patients has a longer tail than the glcoxph or the penalized. For the second dataset, the three methods show almost the same patterns for the low-risk patients. For the high-risk patients, the patterns of the methods are very similar up to 10 years. After 10 years, the survival curve for the coxpath decays very slowly, while that of the penalized drops quickly.

The experiments were implemented in a Windows R environment on a computer with 2 GHz Intel Pentium processor and 1 GB RAM. We compared the computational times on the DLBCL dataset from Rosenwald et al. (2002). It took 4449.72 s (3094.24 s in tuning and 1355.38 s in training at the optimal value of tuning parameter), 2904.53 s (2903.84 s in tuning and 0.69 s in training), and 59432.29 s (59361.04 s in tuning and 71.25 s in training) seconds for the coxpath, the glcoxph and the penalized, respectively. While glcoxph fits the model at each fixed value of tuning parameter, the coxpath computes the entire penalization path over the range of \(s \) values with a specific step size. Consequently, a direct comparison of their computing times may not be so meaningful. However, at least we can say that the glcoxph is very competitive in terms of computing time.

In order to compare the performance of these methods further, we randomly partitioned the DLBCL data and the Norway/Stanford breast cancer data from Sturlie et al. (2003). The latter consist of 115 samples from women with breast cancer with expression measurements on 549 genes. The DLBCL dataset was randomly partitioned into 160 training samples and 80 test samples, and the Norway/Stanford breast cancer dataset was partitioned into 76 training samples and 39 test samples. We compared the predictive performance of the methods over 50 random partitions. Table 4 summarizes the average performance measures (and their standard errors in the parentheses) over the chosen random partitions. In terms of the \(P \)-value and the AUC, the differences of the methods were negligible because the numbers are within the error range. However, the penalized was worse than the other methods in terms of the \(P \)-value on both datasets. The numbers of selected genes by the glcoxph and the coxpath were not much different, but fewer than that by the penalized. In summary, the glcoxph showed similar performance as the coxpath and the glcoxph outperformed the penalized in prediction and in sparsity of the resulting predictive model.

Fig. 2. AUC on DLBCL test datasets (a) Rosenwald et al. (2002) and (b) Bair et al. (2006).

Fig. 3. Kaplan–Meier curves on DLBCL test datasets (a) Rosenwald et al. (2002) and (b) Bair et al. (2006).
Table 4. Results on the DLBCL and Norway/Stanford breast cancer datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Coxph</th>
<th>Glocph</th>
<th>Penalized</th>
<th>Coxph</th>
<th>Glocph</th>
<th>Penalized</th>
<th>Coxph</th>
<th>Glocph</th>
<th>Penalized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no. of genes selected</td>
<td>P-value</td>
<td>AUC</td>
<td>no. of genes selected</td>
<td>P-value</td>
<td>AUC</td>
<td>no. of genes selected</td>
<td>P-value</td>
<td>AUC</td>
</tr>
<tr>
<td>DLBCL</td>
<td>13.30</td>
<td>13.54</td>
<td>23.12</td>
<td>0.0590</td>
<td>0.0672</td>
<td>0.1020</td>
<td>0.5917</td>
<td>0.6015</td>
<td>0.5678</td>
</tr>
<tr>
<td></td>
<td>(1.6311)</td>
<td>(1.2438)</td>
<td>(1.7976)</td>
<td>(0.0123)</td>
<td>(0.0143)</td>
<td>(0.0275)</td>
<td>(0.0185)</td>
<td>(0.0188)</td>
<td>(0.0216)</td>
</tr>
<tr>
<td>Norway/Stanford</td>
<td>9.36</td>
<td>9.12</td>
<td>13.56</td>
<td>0.0653</td>
<td>0.0474</td>
<td>0.1081</td>
<td>0.6131</td>
<td>0.6119</td>
<td>0.6120</td>
</tr>
<tr>
<td>breast cancer</td>
<td>(0.8411)</td>
<td>(0.7332)</td>
<td>(0.9652)</td>
<td>(0.0202)</td>
<td>(0.0147)</td>
<td>(0.0248)</td>
<td>(0.0098)</td>
<td>(0.0101)</td>
<td>(0.0091)</td>
</tr>
</tbody>
</table>

Table 5. Average number of genes and prognostic genes on the simulated data

<table>
<thead>
<tr>
<th>Censoring (%)</th>
<th>Coxph</th>
<th>Glocph</th>
<th>Penalized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of genes</td>
<td>No. of prognostic genes</td>
<td>Recovery rate</td>
</tr>
<tr>
<td>0</td>
<td>21.04</td>
<td>2.86</td>
<td>0.13</td>
</tr>
<tr>
<td>30</td>
<td>23.22</td>
<td>2.96</td>
<td>0.12</td>
</tr>
<tr>
<td>15</td>
<td>22.54</td>
<td>2.94</td>
<td>0.13</td>
</tr>
</tbody>
</table>

3.2 Simulated data
To evaluate the performance of the glocph empirically, we carried out a simulation study. We have modified the simulation scheme in Owzar et al. (2007) slightly. The data generation scheme is as follows. For $i = 1, \ldots, N$, we generate $\epsilon_0, \epsilon_1, \ldots, \epsilon_p$ independently from standard normal distribution and set $x_i = \sqrt{1 - \rho} + \rho \sqrt{\rho} \epsilon_i, \quad j = 1, \ldots, p$.

The gene expression data have a block exchangeable correlation structure (i.e. genes in the same block are correlated and in different blocks uncorrelated) with the correlation coefficient ρ and the block size 10. Survival times are generated from the Cox regression model (1) in the following configuration of coefficients:

$$
\beta_j = \begin{cases}
-0.7, & j = 1, \ldots, D \\
0, & j = D + 1, \ldots, p.
\end{cases}
$$

where D denotes the number of prognostic genes.

Overall the penalized selected the largest number of genes and the glocph selected the least. All the methods selected almost all the three prognostic genes. The recovery rate of glocph was the highest, the coxpath was the second and the penalized was the lowest.

Table 6 shows average P-value of the log-rank test and AUC on the simulated data with standard errors in parentheses. All three methods perform better at 15% censoring than at 30% censoring as expected. In terms of P-value, the glocph performed a bit better than the other methods. The penalized yielded slightly larger AUC values than the others. However, their differences seem to be marginal. Combined with the results reported in Table 6, we conclude that the glocph showed similar predictive performance as the other methods with a more succinct model and a shorter computing time.

4 DISCUSSION
We applied the gradient lasso algorithm by Kim et al. (2008) to the Cox proportional hazards model. Most of the algorithms for the Cox model with lasso penalty suffer from severe computational problems. Due to matrix inversions, those algorithms converge very slowly or even fail to converge to the optimum. Meanwhile, the gradient lasso algorithm is scalable to high-dimensional data because it does not require matrix inversions. Also the gradient lasso tackles the exact penalized partial likelihood directly, while many other methods solve approximated penalized partial likelihoods. We have compared the gradient lasso algorithm with recent algorithms by Park and Hastie (2007) and Goeman (2008) on DLBCL datasets from Rosenwald et al. (2002) and Bair et al. (2006), Norway/Stanford breast cancer dataset from Sorlie et al. (2003) and also on a simulated dataset. Results indicate that our gradient lasso algorithm is very competitive in analyzing high-dimensional survival data in terms of...
Table 6. Average P-values of log-rank test and AUC on the simulated data with standard errors in parentheses

<table>
<thead>
<tr>
<th>Censoring (%)</th>
<th>ρ</th>
<th>coxpath</th>
<th></th>
<th>AUC</th>
<th></th>
<th>P-value</th>
<th></th>
<th>AUC</th>
<th></th>
<th>penalized</th>
<th></th>
<th>AUC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.0183 (0.0090)</td>
<td>0.6452 (0.0132)</td>
<td>0.0113 (0.0071)</td>
<td>0.6444 (0.0052)</td>
<td>0.0232 (0.0096)</td>
<td>0.6546 (0.0018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.0038 (0.0017)</td>
<td>0.6524 (0.0110)</td>
<td>0.0039 (0.0052)</td>
<td>0.6582 (0.0046)</td>
<td>0.0028 (0.0071)</td>
<td>0.6677 (0.0136)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.0013 (0.0004)</td>
<td>0.6588 (0.0102)</td>
<td>0.0010 (0.0004)</td>
<td>0.6603 (0.0051)</td>
<td>0.0026 (0.0013)</td>
<td>0.6659 (0.0372)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.0028 (0.0008)</td>
<td>0.6525 (0.0091)</td>
<td>0.0015 (0.0007)</td>
<td>0.6768 (0.0046)</td>
<td>0.0092 (0.0064)</td>
<td>0.6685 (0.0086)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.0020 (0.0013)</td>
<td>0.6708 (0.0041)</td>
<td>0.0011 (0.0005)</td>
<td>0.6851 (0.0051)</td>
<td>0.0008 (0.0004)</td>
<td>0.6691 (0.0065)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.0002 (0.0001)</td>
<td>0.6679 (0.0092)</td>
<td>0.0005 (0.0035)</td>
<td>0.6779 (0.0046)</td>
<td>0.0005 (0.0004)</td>
<td>0.6827 (0.0061)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gradient lasso for Cox regression

sparsity of the final prediction model, predictability and computing time. Since our algorithm can yield a more stable solution to the penalized Cox model in a faster manner than other methods in the literature, it will provide an efficient tool in developing a prediction model for survival time based on high-dimensional microarray data.

There are several issues yet to be investigated. We considered relating only gene expression profiles to survival phenotypes in our study. In the Cox proportional hazards model, the incorporation of some categorical clinical variables is anticipated. One may consider borrowing ideas from the blockwise sparse regression, an extension of the group lasso in Yuan and Lin (2006) to general loss functions, proposed by Kim et al. (2006). A non-parametric extension of the penalized Cox regression is another direction of interest. Liu (2008) proposed a garrote method of feature selection in the penalized partial likelihood of additive Cox models. An advantage of the garrote method is that it can deal with continuous as well as categorical variables. However, it seems that there is room for improvement in the computational aspect of the garrote method.

ACKNOWLEDGEMENTS

The authors are grateful to Dr M. Y. Park for personal communications on coxpath.

Funding: Korea Research Foundation Grant (KRF-2008-331-C00055) by the Korean Government.

Conflict of Interest: none declared.

REFERENCES

