ABSTRACT

Motivation: Homologous protein families share highly conserved sequence and structure regions that are frequent targets for comparative analysis of related proteins and families. Many protein families, such as the curated domain families in the Conserved Domain Database (CDD), exhibit similar structural cores. To improve accuracy in aligning such protein families, we propose a profile-profile method CORAL that aligns individual core regions as gap-free units.

Results: CORAL computes optimal local alignment of two profiles with heuristics to preserve continuity within core regions. We benchmarked its performance on curated domains in CDD, which have pre-defined core regions, against COMPASS, HHalign and PSI-BLAST, using structure superpositions and comprehensive curator-optimized alignments as standards of truth. CORAL improves alignment accuracy on core regions over general profile methods, returning a balanced score of 0.57 for over 80% of all domain families, compared with the highest balanced score of 0.45 from other methods. Further, CORAL provides "I"-values to aid in detecting homologous protein families and, by respecting block boundaries, produces alignments with improved "readability" that facilitate manual refinement.

Availability: CORAL will be included in future versions of the NCBI CD/CDTree software, which can be downloaded at http://www.ncbi.nlm.nih.gov/Structure/cdtree/cdtree.shtml.

Contact: fong@ncbi.nlm.nih.gov.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Homologous protein families contain core regions that reflect conservation in molecular evolution. Many protein family alignments in Piam (Finn et al., 2006), SMART (Letunic et al., 2006) and SUPERFAMILY (Wilson et al., 2007) exhibit conserved regions including blocks, or untagged regions, within an alignment. The Conserved Domain Database (CDD) (Marchler-Bauer et al., 2009) models protein domains explicitly as series of blocks. For NCBI-curated domains, the blocks represent structural core motifs based on structure superpositions as well as conserved sequence regions and motifs. Comparative analysis of proteins and protein families through sequence alignment is invaluable for grouping homologs, subdividing diverse families into sub-families, tracing evolutionary histories and identifying conserved functional sites.

In recent years, alignment methods that compare two profiles, the statistical models that represent protein families, have been shown to improve alignment quality and homolog recognition over sequence–sequence methods such as BLAST (Altschul et al., 1997) and sequence–profile methods such as PSI-BLAST (Altschul et al., 1997; Schaffer et al., 2001). Numerous profile alignment methods have been assessed in Edgar and Sjolander (2004), Heger and Holm (2001), Oldsion and Elofsson (2005), Oldsion et al. (2004), Panchenko (2003), Rychlewski et al. (2000), Soding (2005), Yona and Levitt (2002) and others. While many alignment methods focus on detecting remote homologs in order to expand coverage of functional inference, obtaining high-quality alignments remains difficult even for closely-related families. According to structure superpositions, corresponding core regions in many homologous domains differ by fewer insertions and deletions than inferred by general alignment programs, reflecting the stability of the structural core of the protein family. To better capture this property, we propose a method CORAL (CORE ALigner) to align core regions from two protein families without indels within blocks, which we will refer to as the core constraint. CORAL is implemented through a common dynamic programming engine for optimal pair-wise alignment (Needleman and Wunsch, 1970; Smith and Waterman, 1981).

Several other algorithms to align sequence or sequence profiles to core regions have been effective for detecting similarities or assigning domains. These algorithms include a profile-profile method using Gibbs sampling (Panchenko, 2003), and SALTO (Kann et al., 2005) and GLOBAL (Kann et al., 2007) which employ additional block-based constraints. SALTO aligns a consecutive sub-set of complete blocks and GLOBAL aligns a sub-set (including full or empty set) of contiguous columns within every block. All of these methods disallow indels in alignments of blocks and exclude sequence regions outside blocks. Additionally, LAMA (Pietrokovski, 1996) and CYRCA (Kunin et al., 2001) were developed to align individual blocks that represent sequence motifs (Henikoff et al., 2000). Block shift and extension operations have also proved useful to improve multiple sequence alignments (MSAs) through REFINER (Chakrabarti et al., 2006).

Here, we present the CORAL algorithm and benchmark its performance on curated domains in CDD against other widely used profile methods COMPASS (Sadyrov and Grishin, 2003), HHAlign (Soding, 2005) and PSI-BLAST. Reference alignments are inferred from structure superpositions from the VAST database.
(Gibrat et al., 1996; Madej et al., 1995) and the SABmark benchmark set (Van Walle et al., 2005), and from a comprehensive set of expert-determined mappings, and homology in general is a crucial database relationship. In particular, CORAL outperforms all other methods in the quality of alignments. We also discuss the role of profile alignment in modeling protein families.

2 METHODS

2.1 Core regions dataset

MSAs representing protein family core regions were taken from the curated domains in CDD. Sequence regions outside the cores are not aligned in CDD and are not considered in this study. Here, we use the terms domain and protein family interchangeably. NCBI-curated domains have been organized into hierarchical domain families. A superfamily, which indicates common evolutionary descent, contains one or more domain families. We define related domains with respect to CDD to be those in the same family and unrelated domains to be those in different superfamilies, in order to minimize false positive (FP) pairs. A set of 100 domains, chosen randomly from different superfamilies, was reserved for parameter optimization (dataset ‘opt100’). Similarity between domains was estimated as the fraction identity of their common sequences with pairwise sequence alignments computed by MUSCLE 3.6 (Edgar, 2004). The consensus sequences express only protein sequences.

2.2 Reference alignments

To test alignment accuracy, we construct three benchmark datasets. The first reference set is based on superpositions of the 3D structures that annotate NCBI-curated domains. CDD domains are mapped onto the SCOP domains by MUSCLE 3.6 (Edgar, 2004). The consensus sequences express only protein sequences.

2.3 Alignment algorithm

We describe the profile alignment algorithm with core constraint in terms of required additions to the canonical algorithm for local alignment (Smith and Waterman, 1981). The problem is to align profiles \(A = a_1 \ldots a_n \) and \(B = b_1 \ldots b_m \), with \(n \) and \(m \) columns, respectively, where each profile has been subdivided into blocks. Let table \(H \) contain the maximum similarity score of two profile segments ending in \(a_i \) and \(b_j \) in entry \(H_{ij} \). Scoring functions \(S(a_i, b_j) \) to compute the similarity between profile columns \(a_i \) and \(b_j \) are described in the next paragraph. To prevent gaps within blocks, the affine gap penalty is replaced with a large negative value if the last aligned column before the gap is not a block end. To ensure that the endpoints of the optimal alignment fall on the N- and C-terminal of some blocks, \(H_{ij} \) may be re-initialized to \(S(a_i, b_j) \) (replacing initialization to 0) if \(a_i \) or \(b_j \) is the first column in its respective block and traceback through \(H_{ij} \) is required to terminate at that position. Traceback may begin from the maximum \(H_{ij} \) such that at least one of \(a_i \) and \(b_j \) is the end of its respective block. These changes preserve the \(O(nm) \) running time.

The optimal scores from \(H \) are normalized into Z-scores as follows. A large set of random alignments was simulated using all curated domains, each aligned with 100 domains from different superfamilies. Alignment scores were binned by the sum of lengths of the profiles. Regression curves were fitted for the means and SDs over the bins. The length-dependent values from the regressions were used to compute \(Z \)-score.

2.4 Scoring functions

Much of the previous work on profile–profile alignment algorithms sought advances through new scoring functions for comparing profile columns. Probabilistic methods are believed to be the most effective (Mittelman et al., 2003; von Olsen et al., 2003) and are applied in state-of-the-art aligners such as prof_sim (Yona and Levitt, 2002), COMPASS and HSearch. CORAL uses a symmetrical log-odds function similar to Picasso (Heger and Holm, 2001) and COMPASS (Sauder and Grishin, 2003):

\[
S_{LO}(a,b) = \sum_{s} Q_{as} \log(R_{as}) + \sum_{s} Q_{bs} \log(R_{bs})
\]

To compute similarity between aligned columns \(a \) and \(b \), \(Q_a \) and \(Q_b \) represent vectors of weighted observed frequencies of amino acids \(k \) in the respective columns. Likewise, \(R \) is the vector of the frequency ratios of weighted frequency for each amino acid over the background frequency of the amino acid. \(Q \) and \(R \) are defined as for PSI-BLAST (Altschul et al., 1997; Schaffer et al., 2001).

Surveys of scoring functions (Edgar and Sjölander, 2004; Mittelman et al., 2003; Panchenko et al., 2003) have suggested that probabilistic methods offer incremental improvements over simpler functions such as sums of pairs (Gotz et al., 1993), dot product and Pearson correlation coefficient. Consequently, we also test the symmetrical dot product function:

\[
S_{DP}(a,b) = Q_a \cdot R_b^T + Q_b \cdot R_a^T
\]

In Section 3, the two methods will be denoted as CORAL LO and CORAL DP, respectively. The public release of CORAL will use the better performing log-odds function.

2.5 Parameter optimization

A local alignment requires that the expected column score be negative and some column score(s) be positive. To satisfy these conditions, a constant shift value is added to each column score. To initialize the search space for potential shift values, we computed the distributions of column scores for correctly aligned columns in all related domains in CDD and for all pairs of columns in a sampling of unrelated domains. A second parameter, the gap penalty, is necessary to distinguish significant alignments. Shift values between the means of each distribution and small gap weights were tested systematically over combinations of both parameters. Performance was assessed for alignment accuracy and homology sensitivity following the testing procedures and metrics described in Section 3. Over the opt100 dataset, performance was fairly robust over a range of parameter values. We assigned shift values of \(-0.15\) and \(6.6\) for the two scoring functions, respectively, and gap weights of 0.1 and 0.5, respectively.
2.6 Statistical significance

To approximate the statistical significance of each alignment, we turn to the extreme value distribution (EVD) which has been shown empirically to fit optimal ungapped alignments of random sequences (Karlin and Altschul, 1990). It is frequently used with gapped sequences and profile alignments. Supposing that the alignment scores follow an EVD, the E-value for every alignment can be computed from the alignment score z and parameters λ and μ as $E = e^{-\lambda z - \mu}$. To determine λ and μ, normalized alignment scores from the random alignments described above were fitted to the cumulative density function $F(x) = \exp(-\exp(-\lambda(x - \mu)))$. Parameters were computed separately for each scoring function S_{LO} and S_{DP}. The goodness of fit is illustrated for CORAL LO in Supplementary Figure S1.

3 RESULTS

3.1 Alignment accuracy

The quality of CORAL alignments between CDD-curated domains was evaluated against the reference alignments described in Section 2 and compared with alignments from COMPASS 3.0, HHalign 1.5.1.1 and PSI-BLAST. COMPASS is a high-performance implementation of the standard sum-of-scores optimal local alignment and its comparison with CORAL implies a lower bound in improvement that can be attributed to the core constraint. COMPASS was run with default parameters and with reduced gap penalties. To promote longer alignments, the gap open penalty was reduced arbitrarily default from 10 to 3 and the gap extension penalty default from 1 to 0.1. HHalign was run in local and global modes using one domain alignment as query and the other as template. To compute probabilities and E-values for HHalign, each HMM was calibrated against the cal.hhm database from the download site. For every pair of domains, a PSI-BLAST alignment was computed between one domain and each sequence from the MSA of the other domain, and vice versa, using the NCBI Toolkit. The sequence-profile alignment with smallest E-value was used as the PSI-BLAST alignment. CORAL and COMPASS held a speed advantage over the other methods, requiring than a 10th of a second for most inputs. HHalign required 5–10 s, largely because of the calibration step.

The following metrics are used to evaluate alignment accuracy. To measure extent of reconstructing a reference alignment, we compute S_{dev}, the ratio of the number of perfectly aligned positions to the number of aligned columns in the reference alignment. S_{cov} is the same as the developer’s score of (Sauder et al., 2000). To measure correctness, we compute S_{mod}, the ratio of the number of correctly aligned positions to the number of aligned columns in the evaluated alignment where at least one of each two aligned columns is present in the reference alignment. This is analogous to the modeler’s score (Sauder et al., 2000), modified to include only the profile columns that can be determined to be correct or not. The two previous measures are summarized through a balanced score, $S_{balanced} = (S_{dev} + S_{mod})/2$. To more directly illustrate the trade-off between alignment accuracy and alignment length, we estimate the latter as S_{cov}, the number of aligned positions divided by the length of the shorter profile. Results from multiple structure alignments for the same domain pair are averaged over the domain pair.

First, we analyze overall performance over CDD families and SCOP superfamilies, both referred to as families for brevity. An average $S_{balanced}$ for every family is taken over its domain pairs (Fig. 1). CORAL produced high-quality alignments for more families than the other methods: 44% of domain families average $S_{balanced} \geq 0.8$ compared with 41% by the best non-CORAL method according to the VAST benchmark, 37% versus 28% according to the SABmark benchmark and 57% versus 45% by guide alignments. In nearly all of these families, the alignments with $S_{balanced} \geq 0.8$ were both accurate and complete. Under the three highest performing methods (CORAL LO, CORAL DP and HHalign global), over 96% of domain families with $S_{balanced} \geq 0.8$ both $S_{dev} \geq 0.8$ and $S_{mod} \geq 0.8$ with respect to all benchmark sets.

Comparison of $S_{balanced}$ over the domain pairs present in more than one benchmark set reveals high consistency among the reference alignments. For pair-wise comparison of the reference sets, we identified domain pairs present in both benchmark sets. $S_{balanced}$ scores for the common domain pairs, averaged over domain families, were 0.026–0.032 lower according to the different

3 RESULTS

3.1 Alignment accuracy

The quality of CORAL alignments between CDD-curated domains was evaluated against the reference alignments described in Section 2 and compared with alignments from COMPASS 3.0, HHalign 1.5.1.1 and PSI-BLAST. COMPASS is a high-performance implementation of the standard sum-of-scores optimal local alignment and its comparison with CORAL implies a lower bound in improvement that can be attributed to the core constraint. COMPASS was run with default parameters and with reduced gap penalties. To promote longer alignments, the gap open penalty was reduced arbitrarily default from 10 to 3 and the gap extension penalty default from 1 to 0.1. HHalign was run in local and global modes using one domain alignment as query and the other as template. To compute probabilities and E-values for HHalign, each HMM was calibrated against the cal.hhm database from the download site. For every pair of domains, a PSI-BLAST alignment was computed between one domain and each sequence from the MSA of the other domain, and vice versa, using the NCBI Toolkit. The sequence-profile alignment with smallest E-value was used as the PSI-BLAST alignment. CORAL and COMPASS held a speed advantage over the other methods, requiring than a 10th of a second for most inputs. HHalign required 5–10 s, largely because of the calibration step.

The following metrics are used to evaluate alignment accuracy. To measure extent of reconstructing a reference alignment, we compute S_{dev}, the ratio of the number of perfectly aligned positions to the number of aligned columns in the reference alignment. S_{cov} is the same as the developer’s score of (Sauder et al., 2000). To measure correctness, we compute S_{mod}, the ratio of the number of correctly aligned positions to the number of aligned columns in the evaluated alignment where at least one of each two aligned columns is present in the reference alignment. This is analogous to the modeler’s score (Sauder et al., 2000), modified to include only the profile columns that can be determined to be correct or not. The two previous measures are summarized through a balanced score, $S_{balanced} = (S_{dev} + S_{mod})/2$. To more directly illustrate the trade-off between alignment accuracy and alignment length, we estimate the latter as S_{cov}, the number of aligned positions divided by the length of the shorter profile. Results from multiple structure alignments for the same domain pair are averaged over the domain pair.

First, we analyze overall performance over CDD families and SCOP superfamilies, both referred to as families for brevity. An average $S_{balanced}$ for every family is taken over its domain pairs (Fig. 1). CORAL produced high-quality alignments for more families than the other methods: 44% of domain families average $S_{balanced} \geq 0.8$ compared with 41% by the best non-CORAL method according to the VAST benchmark, 37% versus 28% according to the SABmark benchmark and 57% versus 45% by guide alignments. In nearly all of these families, the alignments with $S_{balanced} \geq 0.8$ were both accurate and complete. Under the three highest performing methods (CORAL LO, CORAL DP and HHalign global), over 96% of domain families with $S_{balanced} \geq 0.8$ both $S_{dev} \geq 0.8$ and $S_{mod} \geq 0.8$ with respect to all benchmark sets.

Comparison of $S_{balanced}$ over the domain pairs present in more than one benchmark set reveals high consistency among the reference alignments. For pair-wise comparison of the reference sets, we identified domain pairs present in both benchmark sets. $S_{balanced}$ scores for the common domain pairs, averaged over domain families, were 0.026–0.032 lower according to the different
shorter alignments correlate with higher alignment accuracy (and 0.77 for the log odds and dot product functions, respectively, entire dataset, CORAL gives an average balanced score of 0.80
superfamilies.

different CDD superfamilies as well as domains from the same CDD
similar trends and are provided in Supplementary Figure S3.
alignments are provided in Figure 2 and referred to in the remainder
One example is the alignment of two Rieske domains: non-
be split to enable a completely correct CORAL alignment.
Better alignments generally came about because CORAL prevented
spurious intra-block gaps and shifted blocks that were misaligned
by COMPASS and HHalign into the right positions. The families
with most negative effect from CORAL, phosphofructokinase
(PFK) and Rieske, illustrate the case where long blocks must
be split to enable a completely correct CORAL alignment.
The higher \(S_{\text{balanced}} \) scores for both CORAL methods over the
other methods suggest that the core constraint played a significant
role in improving performance for several families. For some
families, including Macro and PDZ, all members benefited from
the core constraint. Domain families that benefited the most and
the least using CORAL are listed in Supplementary Table S1.
No correlation was observed between average similarity within
families and improvement, or lack thereof, from using CORAL.

The higher \(S_{\text{balanced}} \) scores for both CORAL methods over the
other methods suggest that the core constraint played a significant
role in improving performance for several families. For some
families, including Macro and PDZ, all members benefited from
the core constraint. Domain families that benefited the most and
the least using CORAL are listed in Supplementary Table S1.
No correlation was observed between average similarity within
families and improvement, or lack thereof, from using CORAL.
Better alignments generally came about because CORAL prevented
spurious intra-block gaps and shifted blocks that were misaligned
by COMPASS and HHalign into the right positions. The families
with most negative effect from CORAL, phosphofructokinase
(PFK) and Rieske, illustrate the case where long blocks must
be split to enable a completely correct CORAL alignment.
The higher \(S_{\text{balanced}} \) scores for both CORAL methods over the
other methods suggest that the core constraint played a significant
role in improving performance for several families. For some
families, including Macro and PDZ, all members benefited from
the core constraint. Domain families that benefited the most and
the least using CORAL are listed in Supplementary Table S1.
No correlation was observed between average similarity within
families and improvement, or lack thereof, from using CORAL.

Families such as the kinesin/myosin motor domains contain
dissimilar sub-groups such that domains within a sub-group are
aligned with much higher accuracy than domains from different
sub-groups. To account for varying difficulty, domain pairs were
grouped by sequence identity. The distribution of sequence identity
is shown in Supplementary Figure S2 with mean percent identity
29.6% and SD 10.1%. We partitioned alignments into four similarity
ranges: 0–20%, 20–30%, 30–40% and ≥ 40%. Results from guide
alignments are provided in Figure 2 and referred to in the remainder
of the section; results from VAST and SAyMark alignments illustrate
similar trends and are provided in Supplementary Figure S3. \(S_{\text{dev}} \)
and \(S_{\text{mod}} \) results within each similarity range are consistent across
most alignment methods (Fig. 2), pointing to the inherent ease or
difficulty of aligning particular domains. CORAL has highest \(S_{\text{dev}} \)
over all similarity ranges. Although HHalign local and COMPASS
with default arguments have higher \(S_{\text{mod}} \) at <30% identity, CORAL
yields higher \(S_{\text{balanced}} \) value for every similarity range. Over
the entire dataset, CORAL gives an average balanced score of 0.80
and 0.77 for the log odds and dot product functions, respectively,
compared with 0.74 for HHalign and 0.75 for COMPASS. The
shorter alignments correlate with higher alignment accuracy (\(S_{\text{mod}} \)),
but are less informative as they exclude more homologous regions.
CORAL and COMPASS parameters may be set to permit near-global
alignments using a local alignment algorithm.

PSI-BLAST performance deteriorated rapidly as sequence
similarity decreases. Almost half of all domain pairs from the
same family had no significant PSI-BLAST alignment. Aligning
the consensus sequences by pairwise BLAST led to a similar outcome,
showing that these families are not as easy to align despite the
high-reported sequence identities. The default significance cut-off
for PSI-BLAST is restrictive and many domain pairs may not satisfy
the cut-off due to low-sequence similarity or short profile lengths.
Domain pairs with no PSI-BLAST results were assigned value 0
for all metrics (following the regular definitions of \(S_{\text{dev}} \) and \(S_{\text{cov}} \),
and replacing the otherwise undefined \(S_{\text{mod}} \) term), leading to a large
number of families with low \(S_{\text{balanced}} \) score.

Fig. 2. Alignment accuracy in terms of the (A) \(S_{\text{dev}} \); (B) \(S_{\text{mod}} \); and (C) \(S_{\text{cov}} \) metrics based on curator-optimized (guide) reference alignments. These metrics indicate completeness in reconstructing the reference alignment, accuracy over the computed alignment and the local-global trade-off in the resulting alignment, respectively.
The problem of aligning conserved core regions was conceived between the distribution of ROC100 values for HHalign local, the for HHalign global. There was a statistically significant difference global (all pair-wise 0.01–0.02), but not between the CORAL methods and HHalign and CORAL according to the Wilcoxon signed-rank test (highest curve in Figure 3, from the closest methods HHalign global for CORAL DP, 0.966 ± 0.008 for CORAL LO, 0.963 ± 0.008 for CORAL DP, 0.966 ± 0.008 for HHalign local and 0.957 ± 0.011 for HHalign global. There was a statistically significant difference between the distribution of ROC100 values for HHalign local, the highest curve in Figure 3, from the closest methods HHalignglobal and CORAL according to the Wilcoxon signed-rank test (P-values 0.01–0.02), but not between the CORAL methods and HHalign global (all pair-wise P-values > 0.05).

3.2 Homology recognition

Next, we evaluated the accuracy of CORAL and its E-values at detecting related domains. Although we do not propose to identify homologous protein families from core regions alone, given the evolutionary signal present in the more variable loop regions, a scoring system helps to distinguish more similar and better-aligned core regions. Related and unrelated domains are defined with respect to CDD families/superfamilies, as described in Section 2. A test set of 100 domains was taken from different superfamilies. Each domain is aligned with all domains within the same family (with a minimum of two related domains) and with 100 randomly selected unrelated domains, using the alignment methods described in the previous section. PSI-BLAST was omitted to avoid handling missing data. The distribution of sequence identity between related domains in this test set is similar to the distribution over the entire CDD (Supplementary Fig. S2).

Figure 3 shows performance measured as the fraction of true relationships (true positive, TP) that score higher than the i-th highest scoring false relationship (FP), averaged over the test set. Scores refer to the E-values for CORAL and COMPASS and probabilities for HHAlign, which performed much better than its E-values. To assess sensitivity, we measure the area under curve (AUC), ROCiso = ∑i=1n−1P(1−P) for each sample domain where ti is the fraction of TPs before the i-th FP. Standard error over ROCi values is computed as SE = σ/√n. ROC curves and AUC values reveal that the CORAL and HHAlign methods detect homologs from core regions at similar rates, and better than COMPASS. Average ROC100 and SE ranges overlapped for all CORAL and HHAlign methods and were: 0.962 ± 0.009 for CORAL LO, 0.963 ± 0.008 for CORAL DP, 0.966 ± 0.008 for HHAlign local and 0.957 ± 0.011 for HHAlign global. There was a statistically significant difference between the distribution of ROC100 values for HHAlign local, the highest curve in Figure 3, from the closest methods HHAlign global and CORAL according to the Wilcoxon signed-rank test (P-values 0.01–0.02), but not between the CORAL methods and HHAlign global (all pair-wise P-values > 0.05).

3.3 Alignment in protein family modeling

The problem of aligning conserved core regions was conceived by the need to automate domain curation and develop tools for analyzing individual families. Many domain families contain diverse members that are difficult to align. Sequence similarity, for example via characteristic motifs, can make it clear that sequence fragments are related by common descent. More powerful tools are needed to obtain an accurate alignment across the full domain model and to determine domain boundaries.

In defining diverse domain families, two important and interrelated tasks for each domain are step 1: to build a MSA and step 2: to split off sub-families when applicable for increasing functional specificity, starting with a less-diverse sub-set of sequences from the current domain. These tasks are common to many approaches to subfamily identification (see e.g. Brown et al., 2007), although, here we describe steps in the CDD curation pipeline. Typically, the higher degree of conservation in child models allows curators to extend blocks and/or define additional blocks beyond the base core structure of their parent. Aligning the child and parent domains requires the selection of a representative sequence to provide the guide alignment between a new sub-family and its parent domain. A badly aligned representative compromises the overall alignment of the child with respect to the parent, which may amplify noise present in the parent and misrepresent evolutionary distance and diversity within the superfamly. Cleaning up the child model by itself further propagates overall error, which may be difficult to detect. By iterating steps 1 and 2, the child alignment is refined, its core structure may be extended or revised, and realigning the child and parent may help to refine the core structure of the parent as well.

When subfamilies are covered by 3D structure, structure superposition helps to provide high-quality guide alignments. Profile alignments augment this information and may substitute for superpositions when structures are not known. The structure alignment may differ markedly from the guide alignment, as in the alignment of the eukaryotic translation factor 5A domain and the Hex1/S1-like RNA-binding domain (Fig. 4). In this case, CORAL validates the structural alignment and extends the aligned region.

A third major step in CDD curation is annotating domain models with function and functional sites following the literature and analysis of 3D structures. The alignment of related protein families helps to confirm the locations of functional sites, which may be placed at nearby positions in parent and child domains as shown in Figure 4 for RNA-binding sites.

4 DISCUSSION

Here, we showed that profile-profile alignment with well-structured alignment constraints can achieve high- alignment accuracy and work well in detecting homologous relationships between conserved core regions of domain families. The core constraint exploits relationships between profile columns, prohibiting insertions or deletions within blocks, rather than pursuing improvements through refinement of the column scoring function. Our proposed method is a simple interpretation of a framework in which gap penalties vary according to local conservation, requiring only two different gap penalties. The core constraint may be incorporated into other alignment algorithms as well.

We benchmarked CORAL on core regions from NCBI-curated domains in CDD. Blocks in curated domains reflect sequence and structural conservation and approximate the structural core of the family. However, curators may define blocks to be longer or shorter than in structure alignments, and merge, split or delete the blocks suggested by structure alignments. They may also introduce
Constructing high-quality alignments between well-defined core regions, in contrast, benefits tremendously from the core constraint. CORAL aligns more families with high-balanced score, produces better alignments with respect to the balanced score than COMPASS or HHalign across all similarity ranges, and returns higher developer’s score for almost all groups of data. Possibly even more importantly, by respecting block boundaries, it produces alignments that may be easier to revise. Automated alignments of sequences or profiles with low similarity often require manual correction to produce optimal results. Reducing error to a small number of block shifts simplifies manual analysis. Although the core constraint reduces the space of possible alignment solutions, it does not necessarily constrain the alignment to only one good solution. Our results demonstrate that weak sequence similarity between corresponding core regions increases errors in all methods. Additionally, even in the more constrained setting of global alignment, differences in profile and block lengths permit more than one possible alignment between many blocks.

The clear shortcoming of the core constraint is that at some level of divergence, core regions cannot be aligned correctly without insertions or deletions, hence methods without the core constraint are more suited to remote homolog recognition and alignment. One solution to ameliorate shift errors is to split long blocks into shorter units, randomly or by inspecting the block structure or preliminary alignments of core regions. The curated domain models already contain breaks within blocks where the sequences naturally split. In unreported experiments, we have aligned the curated domains using this alternative block definition with similar and slightly worse overall performance. Further development of this algorithm will allow for cases where additional blocks have been inserted into a sub-family model relative to its parent.

CORAL will be made available to the public as an alignment tool bundled into a future release of the NCBI Cn3D/CDTree software. This user-friendly implementation will provide fast and accurate alignment of core regions, along with access to protein family alignments from CDD. While we only tested alignments between pre-computed protein family models, core regions may be inferred from the continuous regions of any protein family alignment. However, the effective use of CORAL requires high overlap between the conserved regions of two families, for example, in the case of a common structural core, and additional processing may be needed to identify putative conserved core regions. The core constraint may also be incorporated into profile alignment algorithms with more sophisticated scoring methods to improve on both CORAL and the original method for aligning conserved cores.

ACKNOWLEDGEMENTS

We thank Anna Panchenko and John Spouge for helpful discussions.

Funding: Intramural Research Program of the National Institutes of Health, National Library of Medicine.

Conflict of Interest: none declared.

REFERENCES

