The studied process of differentiation. Here, we apply our modelling approach to the well-studied process of C. elegans vulval development. We show that our model correctly reproduces a large set of in vivo experiments with statistical accuracy. It also generates gene expression time series in accordance with recent biological evidence. Finally, we modelled the role of microRNA mir-61 during vulval development and predict its contribution in stabilizing cell pattern formation.

1 INTRODUCTION

Many efforts have been undertaken to elucidate how cells are able to coordinate different and sometimes conflicting signals, producing a precise phenotype during the animal organogenesis (Sternberg, 2005). Caenorhabditis elegans vulval development provides an elegant and relatively well-charted model to study how multiple pathways, in multiple cells, interact to produce developmental patterns.

The C. elegans hermaphrodite vulva develops from three of the six vulval precursor cells (VPCs), consecutively numbered from P3.p to P8.p in Figure 1. Each VPC is competent to respond to intercellular signals, and is potentially able to adopt either of the three cell fates: 1◦, 2◦ or 3◦. Each fate corresponds to a specific cell division pattern. The 1◦ and 2◦ fate cell lineages constitute the vulva, generating eight and seven progeny cells, respectively. The 3◦ fate lineage becomes a constituent of the hyp7 hypodermal syncytium, a large cell-like structure with many nuclei enveloping the developing nematode.

*To whom correspondence should be addressed.

Abundant evidence points to different signalling pathways which pattern formation is a central problem of developmental biology, and is an open and challenging problem.

Results: Previously, we proposed a coarse-grained, quantitative approach based on the basic Petri net formalism, to mimic the behaviour of the biological processes during multicellular differentiation. Here, we apply our modelling approach to the well-studied process of C. elegans vulval development. We show that our model correctly reproduces a large set of in vivo experiments with statistical accuracy. It also generates gene expression time series in accordance with recent biological evidence. Finally, we modelled the role of microRNA mir-61 during vulval development and predict its contribution in stabilizing cell pattern formation.

Contact: feenstra@few.vu.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

Fig. 1. Vulval development in the wild-type C. elegans, showing the AC, the VPCs (P3.p-P8.p) and the hyp7. The inductive signal from the AC promotes the 1◦ fate in P6.p, and stimulates the production of the lateral signal near the flank ing cells, promoting the 2◦ fate in P5.p and P7.p. The 3◦ fate lineage becomes a constituent of the hyp7.

In the wild-type hermaphrodite, the six VPCs adopt an invariant 3◦-3◦-2◦-1◦-2◦-3◦ pattern (Sternberg and Horvitz, 1986), shown in Figure 1. This precise fate distribution is the result of the interplay between two competing signals: the spatially graded inductive signal produced by the anchor cell (AC), and the lateral signal originating from a presumptive 1◦ fate cell.

During this cell-cell interaction, the inductive epidermal growth-factor signal is produced by the AC and transported to the three nearest precursor cells. The signal is encoded by the protein LIN-3 and transduced by the receptor LET-23 into the Ras/MAPK pathway.

The first diagrammatic model, describing the regulatory network underlying VPC determination, was proposed by Sternberg and Horvitz (1989). Since then, global understanding of the biological network has improved greatly. The first computational model, proposed by Kam et al. (2003), combined multiple experimental "scenarios" from Sternberg and Horvitz (1986) into a single model, using Live Sequence Charts (LSCs). Afterwards, in two landmark
papers, Fisher et al. (2005, 2007) suggested two state-based mechanistic models. The first (Fisher et al., 2005) used statecharts to represent internal states of components, and LSCs to execute actions between them. They formalized Sternberg's model (Sternberg and Horvitz, 1989), but did not incorporate any additional data. A more recent approach (Fisher et al., 2007) was based on Reactive Modules, with modelling principles akin to the previous paper. In contrast to the model presented in the current article, the three listed models build on representing rules that the system adheres to, rather than modelling the underlying biological processes. Two other insightful models of *C.elegans* vulval development have been published. Giurumescu et al. (2006) proposed a partial model based on ODEs, while Sun and Hong (2007) developed a model based on automatically learned dynamic Bayesian networks with discrete states. Independent from us, Li et al. (2009) recently modelled part of *C.elegans* vulval development using hybrid functional Petri nets with extensions. While they focused on model validation, we additionally generated new insightful predictions.

In this article, we apply our approach (Krepska et al., 2008), which is discrete, non-deterministic and based on Petri nets to *C.elegans* vulval development. Petri nets are a convenient formalism to represent biological networks. This formalism models process synchronization, asynchronous events, conflicts and in general concurrent systems in a natural way. Moreover, Petri nets offer direct insights into causal relationships, and allow a graphical visualization that resembles the diagrams used to describe biological knowledge. The reader may find recent survey papers concerning modelling of biological systems with Petri nets in Koch and Heiner (2008), Chaouiya (2007), Matsuno et al. (2006) and Peleg et al. (2005).

Several adaptations of the Petri net formalism have been introduced in the context of modelling biological systems. On the one hand, qualitative Petri nets (Gilbert et al., 2007) can be used for structural and invariant analysis, but they greatly abstract from the biological system. On the other hand, stochastic Petri nets (Gross and Pecoud, 1998) incorporate kinetic constants, but these are mostly unknown or approximate. Hybrid Petri nets (Matsuno et al., 2000) and their extensions on which Cell Illustrator (Matsuno et al., 2006) is based, are rich and expressive, but model understanding and causal backtracking are impeded by the complexity of the formalism. In our model, we have chosen to preserve the simplicity of the original Petri net formalism. Our modelling approach is aimed to mimic the underlying biological mechanisms as much as possible, and not only to reproduce the expected phenotype according to a specific set of mutations. To achieve this, we apply a principle of maximal parallelism (Burkhard, 1980), and bounded execution with overshooting (Krepska et al., 2008). Using this simple framework, we identify different modules, each corresponding to different biological functions. Thus, combining functional modules into cells, and joining such cells together, we iteratively developed the whole network. Unlike the aforementioned works on formal modelling of *C.elegans* vulval development, the ability of our model to capture biological functions into small building blocks allows these to be reused in new case studies on multi-cellular signalling and regulation modelling.

We show that our model, encoding biological hypotheses from the literature (Shaye and Greenwald, 2002; Yoo and Greenwald, 2005), is able to reproduce *in silico* a set of *in vivo* experiments, providing the necessary statistical data to establish a more detailed comparison with biological observations than was previously possible. To the best of our knowledge, we are the first to model microRNA interactions during *C.elegans* vulval development. Furthermore, we predict a possible 'tuning' role played by the mir-61 microRNA gene, in ensuring stability of the fate pattern.

2 METHODS

2.1 Biological interpretation of quantitative Petri nets

A Petri net (Petri, 1962, Reisig and Rozenberg, 1998) is a bipartite-directed graph consisting of two kinds of nodes: places that indicate the local availability of resources, and transitions which are active components that can change the state of the resources. Each place can hold one or more tokens. Weighted arcs connect places and transitions.

In our model, we interpret this number in two ways. For genes as a Boolean value, 0 means not present and 1 present. For proteins, we use abstract concentration levels 0–6 going from not present, via low, medium and high concentration to saturated level. The rationale behind this approach is to abstract away from unknown absolute molecule concentration levels, as we intend to represent relative concentrations. We choose to use seven concentration levels in order to stay in between a simple Boolean level and a complex ODE model, and because seven concentration levels sufficed to express the biological knowledge from the literature on *C.elegans* vulva development in a satisfactory fashion. If desired, a modeller could fine-tune the granularity of the model by adjusting the number of available concentration levels.

Biological systems are highly concurrent, as in cells all reactions can happen in parallel and most are independent of each other. Therefore, we apply a principle of maximal parallelism (Burkhard, 1980). A fully asynchronous approach would allow one part of the network to deploy prolonged activity, while another part of the network shows no activity at all. In real life, all parts can progress at roughly the same speed (Fisher et al., 2008). Maximal parallelism promotes activity throughout the network, so that values on arcs really capture relative speed and concentration levels, as corroborated by our experiments. The maximal parallel execution semantics can be summarized informally as execute greedily as many transitions as possible in one step. A step S is a multi-set of transitions, i.e. a transition can occur multiple times in S. A maximally parallel step is a step that leaves no enabled transitions in the net, and in principle should be developed in such a way that it corresponds to one time step in the evolution of the biological system. This is possible because the modeller can capture relative speeds using appropriate weights on arcs. Typically, if in one time unit a protein A is produced four times more than a protein B, then the transition that captures production of A should have a weight that is four times as large as the weight of the one that captures B production. In case more than one maximally parallel step is possible, one is selected randomly. In short, implementing a pure maximally parallel semantics requires to generate all possible partitions of tokens, and select one randomly, uniformly. However, with the growth of the network, this procedure becomes prohibitively slow. Therefore, we approximated it by building a maximally parallel step incrementally, selecting one transition after another, randomly, until all enabled transitions have been exhausted, as explained in Krepska et al. (2008).

Unrestricted production of proteins is usually not realistic, as in nature the cell would saturate with the product, and the reaction would slow down or stop. Therefore, to mimic this behaviour, each place has a predefined...
We developed an executable Petri net model for cell fate determination in *C. elegans* vulval induction. This large network can be visualized on the web page of our project (http://www.cs.unc.edu/~concel). A schematic representation is given in Figure 2. The entire network comprises 600 nodes (places and transitions) and 1000 arcs. Nevertheless, the simplicity of the formalism, and its graphical representation, helps us to identify different modules. These correspond to different biological functions, such as gene expression, protein activation and protein degradation. It is possible to reuse modules corresponding to a function, like small building blocks, to compose more complex modules, and eventually build a full cell. The cell itself is a module that can be reused. Applying these principles, we have built the VPC network out of six interconnected cells as identical modules of a multi-level net in which each transition can fire only one entry arc at a time. Each module (at different levels) can be reused throughout the model, or for different purposes.

2.2 Model construction

We developed an executable Petri net model for cell fate determination during *C. elegans* vulval induction. This large network can be visualized on the web page of our project (http://www.cs.unc.edu/~concel). A schematic representation is given in Figure 2. The entire network comprises 600 nodes (places and transitions) and 1000 arcs. Nevertheless, the simplicity of the formalism, and its graphical representation, helps us to identify different modules. These correspond to different biological functions, such as gene expression, protein activation and protein degradation. It is possible to reuse modules corresponding to a function, like small building blocks, to compose more complex modules, and eventually build a full cell. The cell itself is a module that can be reused. Applying these principles, we have built the VPC network out of six interconnected cells as identical modules of a multi-level net in which each transition can fire only one entry arc at a time. Each module (at different levels) can be reused throughout the model, or for different purposes.

2.2 Model construction

We developed an executable Petri net model for cell fate determination during *C. elegans* vulval induction. This large network can be visualized on the web page of our project (http://www.cs.unc.edu/~concel). A schematic representation is given in Figure 2. The entire network comprises 600 nodes (places and transitions) and 1000 arcs. Nevertheless, the simplicity of the formalism, and its graphical representation, helps us to identify different modules. These correspond to different biological functions, such as gene expression, protein activation and protein degradation. It is possible to reuse modules corresponding to a function, like small building blocks, to compose more complex modules, and eventually build a full cell. The cell itself is a module that can be reused. Applying these principles, we have built the VPC network out of six interconnected cells as identical modules of a multi-level net in which each transition can fire only one entry arc at a time. Each module (at different levels) can be reused throughout the model, or for different purposes.

The maximum capacity $N_t = 6$. To guarantee that the highest concentration level can be attained, we introduced bounded execution with overshooting. A transition can only fire if each output place holds fewer than N_t tokens. Since each transition can possibly move more than one token at once into its output places, each transition can overshoot the pre-given capacity N_t at most once. Therefore, the network is bounded with a finite bound $k \geq N_t$.

Figure 2 shows selected examples of how to represent biological modules as a Petri net. Figure 2a illustrates VAV-1 down-regulation by decreasing the translation rate of the gene vav-1. Figure 2b depicts two connected basic modules, a gene expression and the Ras/MAPK cascade leading to the transcription of a hitherto unknown gene. The network is bounded with a finite bound $k \geq N_t$. The possibility to divide the entire graph into simple, small and meaningful modules has three main advantages: (i) the modelling process becomes easier, (ii) the resulting network is homogeneous, and (iii) modules (at different levels) can be reused throughout the model, or for modelling other organisms.

2.2.1 Protein interactions.

In Figure 2a, the gene production was reduced. An alternative way to represent vav-1 down-regulation by decreasing the translation rate of the gene vav-1. Figure 2b depicts two connected basic modules, a gene expression and the Ras/MAPK cascade leading to the transcription of a hitherto unknown gene. The network is bounded with a finite bound $k \geq N_t$. The possibility to divide the entire graph into simple, small and meaningful modules has three main advantages: (i) the modelling process becomes easier, (ii) the resulting network is homogeneous, and (iii) modules (at different levels) can be reused throughout the model, or for modelling other organisms.

2.2.2 Pathways.

In Figure 2a, the gene production was reduced. An alternative way to represent vav-1 down-regulation by decreasing the translation rate of the gene vav-1. Figure 2b depicts two connected basic modules, a gene expression and the Ras/MAPK cascade leading to the transcription of a hitherto unknown gene. The network is bounded with a finite bound $k \geq N_t$. The possibility to divide the entire graph into simple, small and meaningful modules has three main advantages: (i) the modelling process becomes easier, (ii) the resulting network is homogeneous, and (iii) modules (at different levels) can be reused throughout the model, or for modelling other organisms.

2.2.3 Protein interactions.

In Figure 2a, the gene production was reduced. An alternative way to represent vav-1 down-regulation by decreasing the translation rate of the gene vav-1. Figure 2b depicts two connected basic modules, a gene expression and the Ras/MAPK cascade leading to the transcription of a hitherto unknown gene. The network is bounded with a finite bound $k \geq N_t$. The possibility to divide the entire graph into simple, small and meaningful modules has three main advantages: (i) the modelling process becomes easier, (ii) the resulting network is homogeneous, and (iii) modules (at different levels) can be reused throughout the model, or for modelling other organisms.

2.2.4 Pathways.

In Figure 2a, the gene production was reduced. An alternative way to represent vav-1 down-regulation by decreasing the translation rate of the gene vav-1. Figure 2b depicts two connected basic modules, a gene expression and the Ras/MAPK cascade leading to the transcription of a hitherto unknown gene. The network is bounded with a finite bound $k \geq N_t$. The possibility to divide the entire graph into simple, small and meaningful modules has three main advantages: (i) the modelling process becomes easier, (ii) the resulting network is homogeneous, and (iii) modules (at different levels) can be reused throughout the model, or for modelling other organisms.

Table 1. Description of modules constituting the model of *C. elegans* vulval development depicted in Figures 4 and 5.

<table>
<thead>
<tr>
<th>Module</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM-5</td>
<td>Production of SEM-5 from gene sem-5(wt).</td>
</tr>
<tr>
<td>LET-60</td>
<td>Production and activation of LET-60 from gene let-60(wt).</td>
</tr>
<tr>
<td>LIN-3</td>
<td>Reception of LIN-3 from AC and hyp?.</td>
</tr>
<tr>
<td>LET-23</td>
<td>Production and activation of LET-23 from gene let-23(wt).</td>
</tr>
<tr>
<td>LST</td>
<td>Down-regulation of LSTs from let-1(wt), let-2(wt) and let-4(wt) genes.</td>
</tr>
<tr>
<td>MIR-61</td>
<td>Production of miR-61 microRNA.</td>
</tr>
<tr>
<td>DSL</td>
<td>Production of DSL signal.</td>
</tr>
<tr>
<td>LATERAL</td>
<td>Transport of lateral signal (DSL) to adjacent cells.</td>
</tr>
<tr>
<td>DPY-23</td>
<td>Production of DPY-23 from dpy-23(wt) gene, promoted by LIN-12*.</td>
</tr>
<tr>
<td>LIN-12</td>
<td>Production of LIN-12 from lin-12(wt) gene.</td>
</tr>
<tr>
<td>VAV-1</td>
<td>Production of vav-1(wt) gene.</td>
</tr>
<tr>
<td>MIR-61</td>
<td>Production of miR-61 microRNA.</td>
</tr>
<tr>
<td>hyp?</td>
<td>Production of LIN-3 and diffusion to all VPCs.</td>
</tr>
</tbody>
</table>

Note: Constitutive degradation of various proteins.

Protein names followed by a ‘*’ stand for the active proteins.

blocks. In our experience, the procedure of building a modular biological Petri net can be split into five phases:

1. **Level 1: basic biological functions.**

 - We created six basic modules representing the basic biological functions used to encode the reaction scheme related to *C. elegans* vulva development: protein production, protein activation, down-regulation, up-regulation, signalling and constitutive degradation.

2. **Level 2: protein interactions.**

 - Combining basic modules, we built more complex blocks, each modelling the interactions of one protein. The division into protein interaction modules is presented in Table 1. Figure 5 shows an example of how basic biological functions are combined to build protein interaction modules.

3. **Level 3: pathways.**

 - In Figure 4, modules LIN-3, LET-23, SEM-5, LET-60, MIR-61 and DSL constitute the Ras/MAPK pathway, and modules LIN-12, VAV-1, MIR-61, DPY-23 and LST constitute the competing Notch/LIN-12 pathway.

4. **Level 4: cells.**

 - Figure 4 presents the Petri net model of a single VPC cell with four links to the environment.

5. **Level 5: multi-cellular interactions.**

 - In Figure 5, we show how the six VPCs, AC and hyp? modules are connected. Adjacent cells are linked with each other, the hyp? connects to all six cells, and the AC can directly influence cells P5.p, P6.p and P7.p.

Figure 3 highlights the top-left portion of the VPC model depicted in Figure 4. One can see how basic biological functions are reused in different protein interaction modules, where the links describe the interactions between different modules. For instance, in Figure 3, the LET-23 module is connected to LIN-3, which is connected to SEM-5, which in turn interacts with LET-60. The biological mechanisms underlying these interactions...
are found in the literature and encoded by the basic biological functions mentioned. The network shown in Figure 3 models the first steps during signal transduction within the Ras/MAPK cascade, where the transmembrane receptor LET-23 is activated by the ligand LIN-3. The resulting activated complex then activates the core Ras protein LET-60, by signalling through SEM-5.

2.3 Modelling genetic perturbations

For each genetic background, each gene can be in wild-type form (wt, i.e. the most common form of a gene as it occurs in nature) or in one of the following mutated forms: loss-of-function (lf, e.g. the gene is deleted or dysfunctional) or gain-of-function (gf, e.g. the gene transcription is over-stimulated). It is possible to derive an initial configuration corresponding to a given genetic perturbation placing a token in one of the two different places used to represent gain-of-function and wild-type for each gene in the genetic background. Loss-of-function mutation is represented by token removal. It is therefore possible to initiate the network in an appropriate initial configuration by simply placing or removing tokens in opportune places.

Figure 6a depicts an example of a typical gene transcription. The transition LIN-12 PRO(wt) produces LIN-12 proteins when the wild-type gene lin-12(wt) is present. When the gene is not present [i.e. lin-12(wt) holds no token], the event does not take place. Figure 6b and c depicts two different genetic backgrounds, corresponding respectively, to the loss-of-function and gain-of-function of the lin-12 gene.

2.4 Model calibration

We started off with assuming that initially proteins are expressed at low basal levels and reactions require high protein concentration levels. Therefore, we set the initial concentration levels for proteins to zero and we assigned high requirements and low-level production to all transitions, respectively, arc weights five and one (see the Supplementary Material for an example).

We subsequently simulated the 22 in vivo experiments in our calibration set (Table 2). We identified mismatches between the simulation results and the expected phenotypes, and back-tracked the problem (e.g. an overly strong or weak down-regulation) following the causal chain from one module to the other (i.e. from products, to transitions, up to their requirements). For selected modules, arc weights and occasionally initial protein concentration levels were fine-tuned to recover the expected behaviour.

This manual calibration process iteratively converged upon a stable and fixed set of parameters that we used for all further simulations. During the process, we noticed that only in very few cases single parameter adjustments were able to sensibly change the simulation results, whereas
more often combinations of parameters were changed to approach the expected behaviour. This suggests a ‘spectrum of sensitivities’ as discussed in Gutenkunst et al. (2007) that should allow the modellers to focus on predictions rather than on parameters.

2.5 Simulation procedure

In experimental biology, experimental replicates are necessary to overcome the variability intrinsic to biological systems. In our modelling approach, which is non-deterministic, we interpret the outcome of a simulation run as the variability intrinsic to biological systems. In our modelling approach, we determine the fate adopted by each cell by measuring and different random seeds, each for 1000 maximally parallel steps. To facilitate parameter adjustments during calibration, we also implemented three scoring functions (one for each cell fate) as sigmoids, in order to obtain a continuous curve instead of the discrete and discontinuous profile of a piecewise function. Such a continuous score was very useful during calibration to guide recovery of the expected behaviour by comparing slight changes in the scores produced by different adjustments.

Each scoring function rewards (i.e. score tends to 1) concentration levels that match the corresponding description. In the scoring functions, more than four tokens corresponds to high and less than two corresponds to low, while intermediate numbers of tokens (in between 4 and 2) produce the S-shaped gradient peculiar to sigmoids. In our experience, slight changes in the shape of the functions (e.g. steepness) do not significantly change the results. Consequently, each scoring function, using the simulated LIN-12* and MPK-1* concentration levels as variables, computes a score in the interval [0, 1] that measures how closely a simulated cell reproduces the fate description captured by the scoring function. For each cell, we calculate three scores (one for each function), and assign to the cell the fate corresponding to the function that returns the highest score. The analytic form of these functions can be found in the Supplementary Material.

The intersection of the three scoring functions generates a landscape (Fig. 7), which can be compared with the discrete representation of the piecewise function and resembles the fate plane proposed by Giurumescu et al. (2006), in which the quadrants identify cell fates.

3 RESULTS

3.1 Model validation

To determine the capability of our model to reproduce and predict the biological behaviour, we simulated 64 different experimental conditions. Twenty-two experiments (Table 2) previously selected in Fisher et al. (2005) were used for model calibration. Thirty perturbations were used for validation: 26 (see the Supplementary Material) from Fisher et al. (2005), three (Table 3) from Sternberg (2005), and one (Exp. 52, Table 4) from Yoo and Greenwald (2005). Particularly, experiment 51 (Table 3) was never simulated in any previous work that we are aware of. The remaining 12 simulations constitute new predictions. Of these, the most remarkable ones (Table 4) are discussed in Section 3.2. Statistical details for all simulations and a short animation displaying a typical single run are available in the Supplementary Material.

Our model reliably reproduces all the mutant combinations, except for the double mutant lin-12(gf);lin-15(lf) (Table 2, Exp. 21 and 45), even if in these cases, a fraction of the predictions matches the expected pattern. The noticeable differences of biological
Table 4. Selection of microRNA experiment outcomes predicted by our model. mir-61(ce) stands for constitutive expression of mir-61.

<table>
<thead>
<tr>
<th>Exp.</th>
<th>AC Genotype</th>
<th>Fate pattern</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 + ce</td>
<td>2 2 2 2 2 2 2 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 – ce</td>
<td>2 2 2 2 2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54 + ce</td>
<td>2 2 2 2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 + ce</td>
<td>2 2 1 1 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 + if</td>
<td>3 2 1 1 1 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

k: Yoo and Greenwald (2005).

Table 5. Detailed statistical results for the 5000 simulation of in vivo Experiment 5, Table 2 (lin-15(fl))

<table>
<thead>
<tr>
<th>Exp. Fate pattern</th>
<th>Occurrences</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Combinations matching the commonly observed pattern: 86.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Three or more adjacent 2° fate cells: 4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Two adjacent 1° fate cells: 2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 8. Comparison between photomicrographs of gene activity by fluorescently labelled gene products, and simulation results. (a) Photomicrographs of the graded expression of the inductive signal adapted from Yoo et al. (2004), Science Magazine ©2004, AAAS. (b) Time series plot generated by our model, showing the graded expression of the inductive signal, initially faintly present in P5.p and P6.p. A running average over 50 steps is used for clarity of presentation. Concentration levels are on the vertical axis, while maximally parallel steps on the horizontal. One can correlate photomicrographs a and b with point a and b in the time series.

Ras/MAPK pathway as EGL-17 is faintly expressed in P5.p and P7.p. Subsequently, expression in P5.p and P7.p disappears, and MPK-1* remains at a high level only in P6.p, in accordance with the fluorescent photomicrographs of Figure 8a. We note that the concentration levels at the end of the simulation are approximately constant, indicating a steady state. In a related experiment, Yoo et al. (2004) divided lst genes into two groups: pattern A which contains dpy-23 and lst-3, and pattern B to which lst-1, lst-2 and lst-4 belong. Each group has its own characteristic temporal expression pattern that corresponds closely to the time series generated by our simulation (see the Supplementary Material).

3.2 mir-61: developmental switch and modulator

Our computational model, besides reproducing well-known biological experiments, encodes and unifies different published hypotheses and conjectures, shedding light on the vulval development process. The two hypotheses described next are observations from different labs, and the few worms examined in vivo do not help to establish a trustworthy expected outcome.
related to LIN-12 down-regulation, which is essential during vulval organogenesis (Shaye and Greenwald, 2002; Yoo et al., 2004), and link the microRNA mir-61 to the vulva development process.

Shaye and Greenwald (2002) propose that, besides the degree of constitutive internalization displayed by LIN-12, Ras activation leads to transcription of an unknown factor that enhances the rate of internalization, promoting the endocytic routing of LIN-12. In Figure 9 one can see how we captured this hypothesis in our model. Activation of Ras enables the transcription of the unknown gene, which down-regulates LIN-12 post-translationally. Notably, changing the model of LIN-12 down-regulation from post- to pre-translation disrupts this behaviour and significantly alters our results.

Yoo and Greenwald (2005) identified mir-61 as a direct transcriptional target of the LIN-12/Notch pathway. The gene mir-61 encodes a microRNA which blocks expression of the mRNA encoding VAV-1, a protein involved in LIN-12 down-regulation, possibly promoting LIN-12 endocytosis. They therefore proposed that activation of mir-61 by LIN-12 and the consequent down-regulation of VAV-1 constitute a positive-feedback loop that promotes LIN-12 activity in the presumptive 2° fate VPCs. Although the unknown factor conjectured by Shaye and Greenwald does not seem to be required for the initial internalization of LIN-12, VAV-1 is necessary for the constitutive internalization of LIN-12. Notice that VAV-1 is involved in both constitutive and enhanced post-translation (endocytosis mediated) down-regulation of LIN-12.

Modelling these hypotheses (Fig 9) and capturing their behaviour has proven to be necessary to obtain the expected results during in silico experiments. Moreover, we simulated several perturbations of the mir-61 microRNA gene, obtaining the outcomes shown in Table 4. This appropriately confirms the role of the positive-feedback loop proposed by Yoo and Greenwald (2005). All experiments of Table 4, as far as we know, have not been tested in vivo (with the exception of experiment 52, which is described in Yoo and Greenwald, 2005).

Table 6. Detailed statistics for the simulation of Experiment 2 (lst(lf)), Table 2 and 56 (mir-61(lf);lst(lf)), Table 4

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Fate pattern</th>
<th>Occurrences</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Outcomes below 0.1% are omitted.

Experiments 52, 53, 54 and 55 confirm the specific role of mir-61 in influencing the cell fate decision, as determined by Yoo and Greenwald. Experiment 56 suggests a possible secondary role. This is a double mutant mir-61(lf);lst(lf) variation of the lst(lf) Experiment 2, Table 2. Although the single mutant lst(lf) expresses a stable VPC fate pattern, the loss-of-function of mir-61 in the double mutant disrupts the stability of the pattern, as can be seen in the statistical breakdown of Table 6. Based on this observation, we suggest that besides acting as developmental switch, mir-61 plays a ‘tuning’ role (Karp and Ambros, 2005) to ensure the stability of the cell fate pattern formation.

To the best of our knowledge, we are the first to model in silico microRNA interactions during C.elegans vulval induction, supporting the conjecture formulated in Yoo and Greenwald (2005), which lin-12, mir-61 and vav-1 form a feedback loop that helps to maximize lin-12 activity in the presumptive 2° VPCs.

4 DISCUSSION

Modelling and analysing developmental processes is a challenging task, as these biological processes often encompass several cells and evolve over the course of several hours. Moreover, the current lack of precise quantitative parameters at molecular level and the descriptive form of this biological knowledge welcome research on different modelling approaches able to reach the sweet spot in between abstraction and biological significance. In the work presented here, we abstracted the descriptive knowledge into a simple formal model that suitably mimics the underlying biological mechanisms and retains an adequate predictive power.

The Petri net used in our approach has a rather simple formalism, but the network designed by us is fairly large. Although several tools able to build extensive Petri nets with modular support exist (CPN Tools, 1999; Peccoud et al., 2007), they are often quite complex in order to support much richer formalisms than the one we used, or they do not scale to the size of our Petri net model. Furthermore, the lack of a Petri net tool with a robust and efficient implementation of the maximal parallel execution semantics led us to build our own simulation tool (available on the web page of our project).

In conclusion, we applied our Petri net approach to C.elegans vulval development, reproducing several in vivo experiments. We generated insightful and testable predictions involving the microRNA mir-61. Our model is a suitable but partial representation of the whole intricate developmental process that leads to the
formation of the C.elegans vulva. New understanding of the process, supported by further experimental analysis, can be conveniently integrated in our model taking advantage of its modular fashion.

Funding: This work was supported in part by ENFIN, a Network of Excellence funded by the European Commission within its FP6 Program, under the thematic area “Life Sciences, genomics and biotechnology for health”, contract number LSHG-CT-2005-518254.

Conflict of Interest: none declared.

REFERENCES

