Gene expression

An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems

Chuan Lu and Ross D. King∗

Department of Computer Science, Aberystwyth University, Ceredigion SY23 3DB, UK

Received on February 25, 2009; revised on May 20, 2009; accepted on June 5, 2009
Advance Access publication June 17, 2009
Associate Editor: Ivo Hofacker

ABSTRACT

Motivation: Distribution analysis is one of the most basic forms of statistical analysis. Thanks to improved analytical methods, accurate and extensive quantitative measurements can be made of the key classes of dynamic intercellular molecules: mRNAs, protein and metabolite from biological systems. Here, we report a large-scale analysis of the population abundance distributions of the transcriptomes, proteomes and metabolomes from varied biological systems.

Results: We compared the observed empirical distributions with a number of distributions: power law, lognormal, loglogistic, loggamma, right Pareto-lognormal (PLN) and double PLN (dPLN). The best-fit for mRNA, protein and metabolite population abundance distributions was found to be the dPLN. This distribution behaves like a lognormal distribution around the centre, and like a power law distribution in the tails. To better understand the cause of this observed distribution, we explored a simple stochastic model based on geometric Brownian motion. The distribution indicates that multiplicative effects are causally dominant in biological systems. We speculate that these effects arise from chemical reactions: the central-limit theorem then explains the central lognormal, and a multiplicative effects are causally dominant in biological systems.

We speculate that these effects arise from chemical reactions: the central-limit theorem then explains the central lognormal, and a multiplicative effects are causally dominant in biological systems. Many of the components in the central lognormal parts of the empirical distributions are unidentified and/or have unknown function. This indicates that much more biology awaits discovery.

Contact: rdk@aber.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

A central goal of science is to find patterns in nature. Improved analytical methods now mean that extensive and accurate quantitative measurements can be made of the key classes of dynamic intercellular molecules: mRNAs (Lockhart and Winzeler, 2000; Schulze and Downward, 2001), proteins (Cravatt et al., 2007; Tyers and Mann, 2003) and metabolites (Fiehn, 2002; Kell, 2004). The question that we address in this article is whether, despite the extreme complexity of the specific interactions involved, there is any pattern in the observed quantities of these molecules in living systems. The existence of any such pattern would provide valuable insight into living systems, provide constraints on Systems Biology models and aid the parametrization of analysis methods.

There are several reasons which make the existence of pattern(s) in the observed population abundance distributions plausible.

(1) All living systems are both evolutionarily related and homeostatic. This implies that some structure is preserved both between species and during different growth states.

(2) It has been empirically found that there are general patterns in the distribution of connections between components in living systems (Arritt, 2005; Barabási and Albert, 1999; Jeong et al., 2001; Tong et al., 2004).

(3) Initial work has been reported on the distribution of the observed population abundances of mRNA species. Ueda et al. (2004) and Kuznetsov et al. (2002) reported power law (or its variant) distributions, while Konishi (2004) reported a three-parameter lognormal distribution, and Hoyle et al. (2002) reported a mixing behaviour of central lognormal with a power law tail. What is significant about these reports is that similar distributions were observed across a wide variety of species and technologies.

1.1 Omics measurement technology

An ideal analytical measurement experiment would measure with complete fidelity the quantity of every component in the cell.

Current ‘omic’ experiments are still far from approaching this ideal due to limitations in: measurement technologies, experimental techniques, preprocessing procedures, etc. In addition, what is observed and modelled are only samples of the underlying distributions.

In discussing omics experiments, we will use the statistical measures of: coverage, bias and accuracy. Arguably the most important of these is coverage, by this we mean what proportion of the total number of components of a system are actually observed. This property applies to both qualitative and quantitative...
measurement technologies. If the coverage of an omics technology is
not complete then the concept of measurement bias is important.
By an unbiased measurement technology, we mean one where
the measurement accuracy is independent of the attributes of
the components (e.g. quantity, size, hydrophobicity, etc.). The
most important attribute we are concerned with is quantity. Basic
information theory suggests that it is much easier to determine the
presence of a molecular species present in large quantities than in
small quantities. Thus, most omic measurement technologies are
biased, and errors are most probable for low-abundance components.
High-abundance components may also be wrongly measured due
to machine saturation. As we are concerned with quantitative
measurement of cellular components, it is desirable that a measuring
technology should make accurate measurements. The concept of
measurement bias is also applicable to quantitative measurements.

One important issue relevant to the experimental strategies is most
current omic experiments only measure the average value of gene,
protein or metabolite expression levels for a population of cells,
rather than that of individual cells. This means that, for example,
intermediate gene expression levels could result from a mixture of
individual cells with high or low states.

The most successful omic technology is probably transcriptomics.
A vast amount of biological knowledge has been generated using
these techniques (Bertone et al., 2004; Lockhart and Winzeler, 2000;
Schulze and Downward, 2001). It is also the omics technology
that approaches the ideal most closely. Until recently microarrays
have been the dominant transcriptomics technology, but this may
be about to change with lower costs for sequencing (Nagalakshmi
et al., 2008; Wilhelm et al., 2008). Given a known genome, it is now
reasonable to expect that the coverage of mRNA components is high.
However, it is noteworthy, that tiling arrays and direct sequencing
have made it clear that many more DNA sequences are transcribed in
small quantities than previously expected (Wilhelm et al., 2008), and
that standard microarrays do not have a 100% coverage. A recent
large-scale comparison of microarrays with other techniques has
shown that microarrays have good accuracy (Canale et al., 2006).
However, the same study also highlighted that their accuracy was
much poorer with low-copy number mRNA transcripts, i.e. they are
biased towards high-abundance components. This means that
any conclusions that can be made about the distribution of low-
abundance mRNAs are less secure than those of high-abundance ones.

A vast amount of research has also gone into proteomic research
(Ishihama et al., 2008; Tyers and Mann, 2003). Due to the
greater heterogeneity of proteins and their post-processing,
the state-of-the-art in proteomics is less advanced than that of
transcriptomics (Bantscheff and Schirle, 2007; Cravatt et al., 2007).
Within proteomics the ‘naming of the parts’ is still far from
complete even for the model organisms; and it is generally not
possible to measure the amount (or even the presence) of all the
proteins in a moderately complex biological system. However,
there are now datasets available that report on the observation
of thousands of proteins, and proteomic technology has greatly
improved recently (Ishihama et al., 2008; Newman et al., 2006).
The quantification of proteomic observations is also more difficult
than that for transcriptomics. Proxies for protein amount may
be required, such as ion intensities, the number of peptides
observed, the amount of luminosity, etc. (Bantscheff and Schirle,
2007). As with transcriptomics uncertainties can be mitigated
against by use of multiple technologies, e.g. two-dimensional gel
electrophoresis (2DE) or liquid chromatography (LC) and mass
spectrometry (MS).

Metabolomics research is also a large and growing research
field (Fiehn, 2002; Kell, 2004; Wishart et al., 2007). Metabolomics
faces similar difficulties to proteomics. Metabolites are even more
heterogeneous than proteins, which means that different approaches
may need to be used for different classes of metabolites, causing
bias. However, metabolomics does have the advantages of there
being typically far fewer metabolites than proteins (order of 1000
in simple microorganisms), and that many metabolites are shared
between species, enabling standard techniques. It is hard to estimate
the coverage of metabolomics techniques. For simpler systems this
may be high, but for more complicated organisms, especially plants,
this coverage is much lower.

Many methods have been developed to preprocess omics data
so as to reduce the data limitations resulting from the utilized
techniques. For example, there is a lot of research on development
of models and algorithms for microarrays that exploit hybridization
theory in order to correct the data from noise, non-specified
hybridization and saturation effect (Chua et al., 2006; Kolli
and Weingarten-Baror, 2008; Marcelino et al., 2006; Wu and Irizarry,
2005). These models for measurement data preprocessing are very
important for analysing the distributions for cellular component
abundances, but are not the focus of this study. Therefore in this
work, we have selected particular datasets that have already been
preprocessed to represent relative abundances; and it is assumed that
the noise or saturation effect in measurement have been corrected
to a certain extent. In our analysis, we were aware of the potential
bias resulting from the preprocessing steps in the original study, e.g.
removal of non-significant low-abundant components, or imputation
of the missing values.

In conclusion, although existing omic technologies are far from
ideal, they are now capable of generating high-quality quantitative
data on population abundance distributions, and there appears to be
little reason to believe that conclusions drawn from existing data are
unreliable—except perhaps at the low end of the dynamic range.

1.2 The power law and lognormal distributions

The most commonly reported distribution in cellular systems
are power law (scale-free) ones (Arita, 2005). Such distributions
of node connections have been reported in metabolic networks
(Jeong et al., 2000), protein–protein interaction (Jeong et al.,
2001), gene interactions (Tong et al., 2004), etc. Although, these
findings have been challenged on both empirical (Khanin and
Wit, 2006; Stumpf et al., 2005b) and theoretical grounds (Stumpf
et al., 2005a). Lognormal distributions have also been reported for
evolutionary connections, and are ubiquitous (Limpert et al.,
2001).

A non-negative random variable X has a power law distribution
if its probability density function can be expressed as f(x)=Cxγ−1.
A common power law distribution is the Pareto distribution which
satisfies P(X≥x)=(x−k)−γ for some γ>1, k>0 and X≥k.
Two general classes of argument have been used to explain power
laws in biology: it is a result of how the system developed over
time (Miziaenmacher, 2004); or it has been selected through natural
selection for robustness (Jeong et al., 2000). The most common
proposed models for power laws are based around preferential
attachment mechanisms (‘the rich get richer’). The first proposed
generative mechanism for a power law in biology was that of
(Yule, 1925), who used it to explain the distribution of species in
genera. A random variable has a lognormal distribution if the
random variable $Y = \log(X)$ has a normal distribution. Lognormal
distributions are generally generated by proportionate effect
processes. More generally, the central-limit theorem states that the
sum of many independent, identically distributed random variables
with a finite mean and finite variance converges to a normal
distribution asymptotically. Similarly, the product of many positive
random variables will approach a normal distribution (Limpert et al., 2001). Sinnott (1937) was the first to provide evidence for
the importance of the lognormal distribution in genetics in the
phenotypes of plants.

The lognormal and power law distributions are closely related:
they are both skewed, can be generated by similar multiplicative
mechanisms, and may be hard to distinguish empirically. Power
law distributions may arise from lognormal distributions from small
changes to the generative model: where the sampling time is not
uniform, or when a lower boundary is put into effect during a
geometric random walk (Mitenmacher, 2004).

1.3 The Pareto-lognormal distribution

Interestingly, there are distributional forms that behave like a
lognormal distributions near the centre and like power law
distributions in the tails. The double Pareto-lognormal (dPLN)
distribution, first introduced by Reed (Reed, 2003; Reed and
Jørgensen, 2004), has this property, and has been shown to fit
some empirical data better than either the power law or lognormal
distributions.

A random variable X follows a dPLN distribution if $\log(X)$
follows the normal-Laplace distribution, which can be represented
as a convolution of independent normal and Laplace components.

Taking the exponential form of a normal-Laplace random variable
results in the dPLN distribution, which can be represented as $X = UQ$
where U, Q are independent, with U lognormally distributed
$\log(U) \sim N(\mu_1, \sigma_1^2)$ and $Q \sim DP(\alpha, \beta)$ following the double Pareto
distributions. The density function of the double Pareto distribution
can be expressed as

$$ f(q) = \frac{\sigma}{\sigma^2 + \beta^2} q^{-\alpha} \left(\frac{\sigma}{\sigma^2 + \beta^2} \right)^{\beta - 1}, \quad \text{for } 0 < q \leq 1; $$

$$ f(q) = \frac{\sigma}{\sigma^2 + \beta^2} q^{-\alpha} \left(\frac{\sigma}{\sigma^2 + \beta^2} \right)^{\beta - 1}, \quad \text{for } q > 1. $$

(1)

where $\alpha > 0$, $\beta > 0$.

The parameters of the dPLN distribution can be used to describe the
features of the corresponding probability density function (Reed and
Jørgensen, 2004). The parameter τ is the SD for the lognormal
component, as $\tau \rightarrow 0$, the distribution tends
to a double Pareto distribution. The parameter α and β
determine the behaviour in the right and left tails, respectively: the smaller the value is, the heavier the
corresponding tail is. When both α, $\beta \rightarrow \infty$, the distribution tends
to be a lognormal distribution; if only $\beta \rightarrow \infty$, the distribution has
a fatter tail only in the right; if only $\alpha \rightarrow \infty$, the distribution has
a fatter tail only in the lower end. When $\alpha = \beta$, it is symmetric and bell-shaped, if plotted in a log scale. Therefore, the lognormal,
right/left PLN and double Pareto distributions can be considered as
special cases for the dPLN model, which can be regarded as a form
of nested model.

An interesting feature of the dPLN distribution is that it can be
derived from a simple stochastic model (Reed, 2003). Consider a
geometric Brownian motion defined by the Ito stochastic differential
equation

$$ dx = \mu X dt + \sigma X dw $$

(2)

with initial state $X(0) = X_0$ distributed lognormally, $\log(X_0) \sim
N(\mu_0, \sigma_0^2)$. After T time units the state $X(T)$ can be expressed as

$$ X(T) = X_0 \exp \left(\mu \frac{\sigma^2}{2} T + \sigma \sqrt{T} \right) $$

(3)

where $w \sim N(0, 1)$ is a standard normal distributed random variable.
The distribution for $X(T)$ is then also lognormal and can be expressed as

$$ \log(X(T)) \sim N(\mu + \frac{\sigma^2}{2} T, \tau^2 + \sigma^2 T) $$

(4)

Suppose the time T at which the process is ended is an
exponentially distributed random variable with density $f_T(t) = \lambda e^{-\lambda t}, t > 0$. The distribution of the state $X(T)$ is then a mixture
of lognormal random variable (4) with mixing parameter T, and this
can be proved to be the dPLN distribution (Reed and Jørgensen,
2004).

2 APPROACH

In this work, we have extended the investigation of the population
abundance distribution for transcriptomic data to other omic datasets
using stringent statistical tests. To do this, 22 preprocessed omics
datasets have been selected and fitted to a series of highly skewed
distribution models. The fitted models have been compared using
various statistical criteria such as Bayesian information criteria (BIC).
Hypotheses for these models have been further tested using
parametric bootstrap goodness-of-fit tests.

The best-fit for these cellular component population abundance
distributions was found to be the dPLN. The geometric Brownian
motion (GBM) models that generate the fitted dPLN distributions
were then explored to seek links of the abundance distribution to
the underlying mechanisms in biology. Furthermore, we conducted
a functional analysis for the cellular components, in particular to
compare the functional categories for the components found in the
high-abundance tail with those in the lognormal mode.

For our analysis, we selected a set of datasets from quantitative
transcriptomic, proteomic and metabolomic experiments. These
datasets were selected for their high quality (high coverage and
accuracy, and low bias), and for diversity of organism and
technology. They include 10 transcriptomic datasets, 7 proteomic
datasets and 5 metabolomic datasets (as summarized in
supplementary Table S1). An ID was given to each dataset, starting with ‘mRNA-’, ‘prot-’ or ‘metab-’ depending on the omics
technology used, followed by the name of the organism. To
distinguish multiple datasets from the same organism, extra words
were added to the end of the ID providing information such as
measurement techniques, original experimental design or references. The datasets were checked and preprocessed before distributional analysis. Detailed explanation of the dataset preparation is also given in Supplementary Material.

3 STATISTICAL DISTRIBUTION TESTS

To estimate the population abundance distributions, we plotted log–log histograms (Fig. 1). These were generated using logarithmic binning for either individual samples or the median samples. Superimposed on the data points are the fitted density functions for lognormal and dPLN distributions. Examination of these indicates that: the data do not follow a power law distribution, and that a lognormal distribution fits the central part of the distribution with a power law distributions in most of the tail(s). The dPLN model seems to fit reasonably well to these distributions of different shapes: some exhibiting heavy tails in both sides (e.g. mRNA-Ecoli, mRNA-Celegans and metab-YeastPho), some not (e.g. mRNA-MouseCodeLink and mRNA-HumanBrain seem to fit well with a lognormal distribution).

To confirm this analysis we carried out goodness-of-fit tests using a set of distributions: Pareto, lognormal, loggamma, loglogistic, right Pareto-lognormal and dPLN (see Supplementary Table S2 for the relevant functional forms and parameters). The composite parametric bootstrap goodness-of-fit tests for all six distributions were done using R scripts. Our distributional goodness-of-fit tests consisted of two basic steps. In the first step, the parameters of the distributions were estimated using maximum likelihood. Then goodness-of-fit tests were conducted to compare the probability models with the experimental data. We applied both the Kolmogorov–Smirnov (K-S) and Anderson–Darling (A-D) tests (Stephens, 1974). The K-S test is based on a statistic that measures the deviation of the observed empirical cumulative distribution function (i.e. the cumulative histogram) from the hypothesized cumulative distribution function (Stephens, 1974).

The A-D test is a modified version of the K-S test, which uses a slightly different statistic defined by $D_{AD} = \max_i \left(F(x(i)) - \hat{F}(x(i)) \right) + \left(1 - F(x(i)) \right) \left(1 - \hat{F}(x(i)) \right)$, where $x(i)$ is the i-th order statistic of the sample, $\hat{F}(x(i))$ and $F(x(i))$ are the empirical and theoretical cumulative distribution functions, respectively. The A-D test is more sensitive to the difference between the theoretical distribution and the hypothesized distribution at the tails than the K-S test.

Table 1 reports the statistics D_{AD} of the A-D tests and the P-values estimated from the parametric bootstrap A-D tests (with 1000 bootstrap replicates). The results of parametric bootstrap K-S tests are given in Supplementary Table S3.

The relatively small statistics D_{AD} or D_{KS} for the dPLN distribution provide evidence that the dPLN consistently gives the best fit to the abundance data in most of the datasets. It is the only distribution that is not rejected (at significance level of 0.05) by the parametric bootstrap A-D or K-S tests for all examined datasets.

Notice that the number of parameters for the different distribution models vary: two for the power law, lognormal and loglogistic, three for the loggamma and right PLN and four for the dPLN distribution. Therefore, besides model likelihood, D_{AD} and D_{KS}, information criteria such as the Akaike information criterion (AIC) and BIC have also been calculated to compare the models by taking both the model
fit and the model complexity into account (see Supplementary Table S4).

The preferred model is that with the lowest AIC/BIC value. As
number of data points for each sample is large in this case of omics
data, BIC is more appropriate than AIC for model comparison.
Table S4 indicate that even when the extra parameters are taken
into account the dPLN model still fits the empirical data the best
for most of the cases.

Table S6 reports the parameter estimates, bias and standard errors
from the bootstrap tests for power law, dPLN/right PLN distribution.

The dPLN variance components: for random variable \(X \sim dPLN(\tau, 2, \alpha, \beta)\), the variance of log(\(X\)) can be decomposed into
three parts: \(\sigma^2_{dPLN} + \sigma^2_{LN} + \sigma^2_{PLN} = \tau^2 + (1/\alpha)^2 + (1/\beta)^2\), corresponding
to the variance from the central lognormal component, the right-
sided and left-sided Pareto component, respectively (Reed and
Jorgensen, 2004).

To check the dependency of the parameters on the omics
technologies, the variances estimated using dPLN models have been
compared for yeast (see Supplementary Fig. S1). The average \(\sigma^2_{dPLN}\)
and \(\sigma^2_{PLN}\) are smaller for transcriptomics and metabolomics data than
for proteomics data, although the differences among the three types
of omics technologies are not really significant according to the
ANOVA tests. Note that only two yeast datasets were used here
for transcriptomics and three for metabolomics; also there are large
variances in the parameters for proteomics data, which seem to
originate in the diversity in analysis techniques and data preprocess/
integration methods. In the case of Escherichia coli \(\sigma^2_{dPLN}\) and \(\sigma^2_{PLN}\)
are also larger for proteomics than for transcriptomics. This implies
that the omics techniques somehow play a role in the dPLN variance
components. The relationship between the variance components and
the number of genes in genome for transcriptomics data has also been
checked (see Supplementary Fig. S2). A weak positive correlation
\((R^2=0.42)\) was observed between \(\sigma^2_{dPLN}\) and the number of genes in
genome. This correlation seems to be consistent with, although
not as strong as, the one for the variance of log data in Hoyle et al.
(2002). Moreover, the total variation from the Pareto components in
both tails \(\sigma^2_{PLN}\) and \(\sigma^2_{dPLN}\) was observed to be negatively correlated
\((R^2=0.42)\) with the number genes in the genome. One could expect
that these correlations would be much stronger if more datasets were
used.

4 Dynamic Models Linking to Abundance Population Distributions

As noted above, the PLN distribution can be generated by a
simple stochastic dynamic model: GBM. To explore the biological
relevance of this generative approach, and to investigate the

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Power law</th>
<th>Lognormal</th>
<th>Loglogistic</th>
<th>Loggamma</th>
<th>dPLN</th>
<th>RightPLN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(D_{AD})</td>
<td>(P)-value</td>
<td>(D_{AD})</td>
<td>(P)-value</td>
<td>(D_{AD})</td>
<td>(P)-value</td>
</tr>
<tr>
<td>Transcriptomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRNA-Ecoli</td>
<td>Inf</td>
<td>NA</td>
<td>27.52</td>
<td>11.11</td>
<td>37.37</td>
<td>0.39</td>
</tr>
<tr>
<td>mRNA-YeastMetabolism</td>
<td>Inf</td>
<td>NA</td>
<td>25.29</td>
<td>13.09</td>
<td>12.73</td>
<td>1.08</td>
</tr>
<tr>
<td>mRNA-YeastDegradeliR</td>
<td>Inf</td>
<td>NA</td>
<td>54.20</td>
<td>17.58</td>
<td>75.92</td>
<td>2.71</td>
</tr>
<tr>
<td>mRNA-Arabidopsis</td>
<td>Inf</td>
<td>NA</td>
<td>6.71</td>
<td>8.87</td>
<td>10.02</td>
<td>0.001</td>
</tr>
<tr>
<td>mRNA-Drosophila</td>
<td>Inf</td>
<td>NA</td>
<td>11.52</td>
<td>11.92</td>
<td>14.39</td>
<td>0.08</td>
</tr>
<tr>
<td>mRNA-Celegans</td>
<td>Inf</td>
<td>NA</td>
<td>264.09</td>
<td>60.96</td>
<td>225.61</td>
<td>5.73</td>
</tr>
<tr>
<td>mRNA-MouseCodeLink</td>
<td>Inf</td>
<td>NA</td>
<td>16.29</td>
<td>28.50</td>
<td>22.92</td>
<td>16.08</td>
</tr>
<tr>
<td>mRNA-MouseAglenDNA</td>
<td>Inf</td>
<td>NA</td>
<td>44.50</td>
<td>54.77</td>
<td>30.34</td>
<td>40.80</td>
</tr>
<tr>
<td>mRNA-MouseAglenMigo</td>
<td>Inf</td>
<td>NA</td>
<td>98.00</td>
<td>94.86</td>
<td>23.05</td>
<td>51.47</td>
</tr>
<tr>
<td>mRNA-HumanBrain</td>
<td>NA</td>
<td>NA</td>
<td>20.22</td>
<td>35.80</td>
<td>28.47</td>
<td>17.77</td>
</tr>
<tr>
<td>Proteomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prot-EcoliCytosol</td>
<td>0</td>
<td>78.02</td>
<td>40.67</td>
<td>20.93</td>
<td>4.003</td>
<td>1.159</td>
</tr>
<tr>
<td>prot-EcoliCytometry</td>
<td>Inf</td>
<td>NA</td>
<td>48.08</td>
<td>35.09</td>
<td>3.28</td>
<td>11.06</td>
</tr>
<tr>
<td>prot-Escherichia</td>
<td>251.3</td>
<td>0</td>
<td>3.818</td>
<td>2.209</td>
<td>7.051</td>
<td>2.046</td>
</tr>
<tr>
<td>prot-EscherichiaGaminghami</td>
<td>NA</td>
<td>12.00</td>
<td>5.187</td>
<td>4.144</td>
<td>2.098</td>
<td>0.078</td>
</tr>
<tr>
<td>prot-EscherichiaGreenbaum</td>
<td>Inf</td>
<td>39.76</td>
<td>33.96</td>
<td>45.98</td>
<td>26.36</td>
<td>0.014</td>
</tr>
<tr>
<td>prot-EscherichiaBeycr</td>
<td>NA</td>
<td>10.15</td>
<td>3.543</td>
<td>9.083</td>
<td>5.566</td>
<td>6.695</td>
</tr>
<tr>
<td>prot-EscherichiaBrockmann</td>
<td>Inf</td>
<td>5.3214</td>
<td>2.965</td>
<td>5.790</td>
<td>4.589</td>
<td>0.530</td>
</tr>
<tr>
<td>Metabolomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metab-PotatoOctof</td>
<td>27.91</td>
<td>0</td>
<td>2.28</td>
<td>1.83</td>
<td>0.36</td>
<td>0.316</td>
</tr>
<tr>
<td>metab-PotatoGms</td>
<td>2.44</td>
<td>0.008</td>
<td>2.08</td>
<td>1.86</td>
<td>0.40</td>
<td>0.399</td>
</tr>
<tr>
<td>metab-PotatoGms</td>
<td>2.44</td>
<td>0.008</td>
<td>2.08</td>
<td>1.86</td>
<td>0.40</td>
<td>0.399</td>
</tr>
<tr>
<td>metab-YeastGlu</td>
<td>Inf</td>
<td>NA</td>
<td>6.683</td>
<td>3.894</td>
<td>7.940</td>
<td>0.2331</td>
</tr>
<tr>
<td>metab-YeastPro</td>
<td>Inf</td>
<td>NA</td>
<td>7.986</td>
<td>4.619</td>
<td>9.831</td>
<td>1.995</td>
</tr>
</tbody>
</table>
levels of abstractions and different assumptions. the cellular dynamics to population distributions, but with different interesting that similar theoretical framework can be used to link a system which we have analysed in this work. However, it is still the population distribution for various cellular components within species from the population of genetically identical cells, rather than is long enough.

derived for the population abundance levels—if the evolving time distributed life time for the components, a dPLN distribution is distribution of the component-level abundances, and an exponential described in the Section 1, including lognormality of the initial in Equation (2). From this, by using the same assumptions as which is exactly the same stochastic model as that for GBM given emergence of the Black–Scholes model (originally from economics), a gamma distribution in the steady state via approximation for the mean number of protein molecules produced per burst, they derived two parameters: the mean number of bursts per cell cycle, and the protein concentration, considering that protein production occurs to reconcile the time resolved and population measurements for 1 metabolism as well (Elf et al., 2003). These models may explain some phenomena in nature, but they are inconsistent with our empirical observations of omic data.

5 FUNCTIONAL ANALYSIS OF THE CELLULAR CONSTITUENTS

To gain insight into the biological meaning of the observed distributions, we compared the molecular species found in the high-abundance tail with those in the lognormal mode. The most abundant 5% of mRNA metabolites/proteins were taken, along with the 10% close to the median (adjacent to the mode) and the functions of these two subsets were compared.

For the mRNA abundance data, their Gene Ontology (The GO consortium, 2000) annotations were used to obtain the annotation classes, which were then mapped to a set (128) of generic GO slim terms (Fig. 2). Some generic terms that are not commonly shared by all the organisms have been excluded from this analysis. Only the annotated gene products were used for further comparison. GO annotations were obtained for the gene products in eight transcriptomic datasets (the two mouse datasets measured with Agilent techniques were excluded) as were the genes from the yeast cytometry proteomic dataset.

Functional differences between the two component subsets (the right tail and the mode) were checked using χ²-tests for the 128 GO classes and for eight individual datasets. To summarize the comparison of the functional classes over different transcriptomic datasets, the variance-based weighted odds ratios across different datasets were computed (Kenneth and Sander, 1998). The significantly different GO classes, which have an odds ratio of >1.5 or <0.7, were then plotted.

For example, positive feedback or autocatalysis in general increases also might be partially explained by the volatility of the GBM model. Fluctuations and variations may be cancelled out by averaging, and also might be partially explained by the volatility of the GBM model. For example, positive feedback or autocatalysis in general increases the sensitivity to internal or external signals and hence increase the variance of the fluctuation; and negative feedback or product inhibition dampens the noise and rejects perturbations (Hornung and Barkai, 2008; Stelling et al., 2004).

Similar dynamic models have been applied to explain the pattern in the population abundance in living systems in varied research areas. We review some of the relevant work here and describe the links between these models. Ochiai et al. (2004) proposed a constructive approach to a probability model for gene dynamics from a gene expression instantaneous transition probability (ITP) model for individual genes by assuming the gene expression level is described by a stochastic process with Markov property. And the ITP model used was obtained experimentally and fitted well to the yeast ITP data as shown in Ueda et al. (2004). This leads to emergence of the Black–Scholes model (originally from economics), which is exactly the same stochastic model as that for GBM given in Equation (2). From this, by using the same assumptions as described in the Section 1, including lognormality of the initial distribution of the component-level abundances, and an exponential distributed life time for the components, a dPLN distribution is derived for the population abundance levels—if the evolving time is long enough.

Friedman et al. (2006) have also presented a theoretical model to reconcile the time resolved and population measurements for model concentration levels of metabolites as well (Elf et al., 2003).

Note that the population distributions described by Ochiai et al. Friedman et al. and Paulsson are ones of a particular chemical species from the population of genetically identical cells, rather than the population distribution for various cellular components within a system which we have analysed in this work. However, it is still interesting that similar theoretical framework can be used to link the cellular dynamics to population distributions, but with different levels of abstractions and different assumptions.

There have also been some other attempts to understand the mechanisms explaining the population distribution for general average over all chemical species within an intracellular network (Furusawa and Kaneko, 2003; Tokita, 2006). These models may explain some phenomena in nature, but they are inconsistent with our empirical observations of omic data.

Fig. 2. Comparison of GO functional classes for the gene products with the highest expression levels and with modal expression levels across the transcriptomic datasets. The two coloured bars correspond to the percentages of genes that are associated to a particular GO class at the high-end tail and at the lognormal mode (approximately with abundance level of median range), respectively.
The classes that are over-represented in the modal region are:

- The left tail—low-abundance components: the least well-understood

A single distributional form

et al. direct sequencing (Nagalakshmi et al., 2004)

as poisons are compounds that have adverse affects at low dosage.

This is the hardest part to empirically measure. The consistent with our results.

The results of the analysis for the yeast cytometry proteomics data using GO is shown in Figure S4. One feature consistent between mRNAs, proteins, and metabolites is that the components in the mode are generally less well characterized (many unknown metabolites and gene products of unknown function/process/component) than the high-abundance tail. These largely uncharacterized modal regions in the proteome and metabolome hint at a large amount of undiscovered biology.

For metabolomics, we examined the potato GC-ToT MS profiling data (Catchpole et al., 2005). The most abundant metabolites are amino acids and sugars (see Supplementary Table S5). This is consistent with these being the core products of metabolism. In contrast, the metabolites present in the mode are generally not well characterized. We confirmed these observations by analysis of another GC-MS potato dataset.

6 DISCUSSION

A single distributional form: the results described in this article show that a dPLN model fits well the observed population abundance distributions in the datasets we have examined. We hypothesize that this will be a general observation for transcriptomic, proteomic and metabolomic data. If this general hypothesis is true then it would be of significant biological and technological interest. In biology, it would require us to seek an explanation for such distributions in the statistical mechanics of living systems. For technology, the expectation of observing a specific distribution would enable omic measurement techniques to be better parameterized, resulting in better empirical measurements.

The left tail—low-abundance components: the least well-understood part of population abundance distributions is the low abundance—left tail. This is the hardest part to empirically measure. The biological relevance of the left tail is most important to toxicology, as poisons are compounds that have adverse affects at low dosage.

Transcriptomics has made the greatest progress in measuring the left tail. Recent work using tiling arrays (Bertoncini et al., 2004) and direct sequencing (Nagalakshmi et al., 2008; Wilhelm et al., 2008) have made it clear that many more DNA sequences are transcribed in very small quantities than previously expected. Likewise, it seems reasonable to postulate that cells contain small numbers of very rare chemical compounds (Jaynes, 2005).

However, long left tails were not observed in some of the omic datasets. In some cases the explanation for this is understood, for example, that of prot- Yeastocyteometry where the data were preprocessed before publication to remove the tail. In other cases, it may be due to the great difficulties in measuring such low-abundance molecules. It is of course also possible that the dPLN model does not generally fit biological systems in the left tail. Time will tell.

Possible explanations for the common pattern in population abundance within cellular systems: what mechanisms could explain the observation of a common pattern of population distribution in mRNA, protein and metabolite distributions? First, note that lognormal and power law distributions are generated by multiplicative effects. Probably the most straightforward causative mechanism is that it is the result of the involvement of chemical reactions (Limpert et al., 2001). Chemical kinetics clearly has a central role in determining the concentrations of metabolites, and reflection also makes it clear that it also has a key role in transcription and translation factor binding, translation and protein binding, i.e. all the processes that control the abundances of mRNAs and proteins.

Given that populations of chemical reactions are expected to produce multiplicative distributions, it is then reasonable to expect from the central-limit theorem that the observed abundances would follow a lognormal distribution, as the product of many independent, positive random variables forms a lognormal distribution (Limpert et al., 2001). As we observe a dPLN distribution and not a lognormal distribution, we conclude that chemical pathways are not fully independent.

It is less clear what could cause the observed long tails. There are a number of plausible explanations: positive feedback, a network-topology effect, a lower boundary effect, etc. Cellular systems are not random chemical soups, they are under cybernetic control (Milo et al., 2002; Monod, 1971). A key element of this is cybernetic control of positive feedback: the rich-get-richer mechanism typical of power laws. An alternative, but related explanation, is that it is the topology of the network that causes the long tails. For example, considering metabolism: if the pathway node distribution has a dPLN distribution then the abundances may also reasonably be expected to have the same distribution given random movement through the network (we have confirmed this through simulation); or if the topology of metabolism is tree-like then this might also produce a dPLN distribution as this produces an exponential distribution of path lengths.

Life is an auto-catalytic process. We therefore hypothesize that a non-living complex chemical mixture would produce a lognormal distribution, and that power law tails is a signature of a living system. This hypothesis could be easily tested by observing what happens to mRNA, protein and metabolite distributions after death, and in complex non-living chemical systems such as those designed to create conditions on the early earth (Rasmussen et al., 2004).

To conclude, we observe a common distribution for the population abundances of mRNAs, proteins and metabolites in biological systems: with behaviour like a lognormal distribution around the centre and power law distributions in the tails(s). The existence of common distribution provides insight into the statistical mechanics of living systems, constraints on systems biology cellular models and aids the parametrization of analysis methods.
ACKNOWLEDGEMENTS

We thank J. Draper and L. Scott for access to their metabolomics data, and D. B. Kell, S. G. Oliver and T. Dix for their help and advice.

Funding: BBSRC McTRO project; EU project UNICELSYS (FP7-Health-2011-42).

Conflict of Interest: none declared.

REFERENCES

