Structural bioinformatics

Understanding hydrogen-bond patterns in proteins using network motifs

Ofer Rahat1, Uri Alon2, Yaakov Levy3, and Gideon Schreiber1,.*

1Department of Biological Chemistry, 2Department of Molecular Cell Biology and 3Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel

Received on January 25, 2009; revised on September 8, 2009; accepted on September 10, 2009

ABSTRACT

Summary: Protein structures can be viewed as networks of contacts (edges) between amino-acid residues (nodes). Here we dissect proteins into sub-graphs consisting of six nodes and their corresponding edges, with an edge being either a backbone hydrogen bond (H-bond) or a covalent interaction. Six thousand three hundred and twenty-two such sub-graphs were found in a large non-redundant dataset of high-resolution structures, from which 35 occur much more frequently than in a random model. Many of these significant sub-graphs (also called network motifs) correspond to sub-structures of α helices and β-sheets, as expected. However, others correspond to more exotic sub-structures such as 3_10 helix, Schellman motif and motifs that were not defined previously. This topological characterization of patterns is very useful for producing a detailed differences map to compare protein structures. Here we analyzed in details the differences between NMR, molecular dynamics (MD) simulations and X-ray structures for Lysozyme, SH3 and the lambda repressor. In these cases, the same structures solved by NMR and simulated by MD showed small but consistent differences in their motif composition from the crystal structures, despite a very small root mean square deviation (RMSD) between them. This may be due to differences in the pair-wise energy functions used and the dynamic nature of these proteins.

Availability: A web-based tool to calculate network motifs is available at http://bioinfo.weizmann.ac.il/promot/. Contact: gideon.schreiber@weizmann.ac.il; koby.levy@weizmann.ac.il.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Proteins are made out of hundreds of amino acids folded to a well-defined structure that is stabilized by thousands of interactions. Discretization of the 3D structure of proteins can be done in many ways. Bystroff and Baker (1998) constructed a library of sequence-structure motifs, which was the base for the Bayesian separation of the total energy score into components that describe the likelihood of a particular structure. Unger et al. (1989) as well as others (de Brevern et al., 2000; Kolodny et al., 2002; Micheletti et al., 2000; Oliva et al., 1997; Wintjens et al., 1996) analyzed short oligopeptides and showed that their structure tends to concentrate in specific clusters rather than to vary continuously. A discrete repertoire of standard structural building blocks taken from these clusters was suggested as representative of all folds, and is often referred to as ‘fold motifs’. High resolution data of a protein can be represented as a contiguous stretch of 3D points, or alternatively as a mathematical graph based on the atomic contact map in which a contact is defined based on a predetermined threshold (typically of 8–10 Å between non-adjacent Cα atoms). Doudna et al. (2002) used the graph connectivity to predict folding probability. Huan et al. (2004, 2006) developed a frequent subgraph mining algorithm, and applied it to the contact map. The authors defined a subgraph as frequent, if it occurs in some predefined fraction of the studied proteins. The algorithm facilitates automated annotation of structures with unknown function. Later, the same methodology proved successful in mining RNA tertiary motifs (Wang et al., 2007).

Contact maps discretize at the level of interatomic contacts, enabling a refinement of the contact map definition by discrimination of interactions according to their chemical nature (e.g. H-bonds, electrostatics). For comparing structures, this gives the overlay of contact maps a clear advantage over the RMSD of distance. The advantage here is the possibility of rationally choosing thresholds, by studying the contact chemical properties. Using such a refined contact map definition, we previously found that contact maps encapsulate the information necessary to detect the secondary structure (Raveh et al., 2007). In another study we used the refined contact map definition to establish a novel notion of modularity in proteins interfaces (Reichmann et al., 2005), and further used this scheme to study the evolution of protein interfaces (Rahat et al., 2008).

A widely used scheme of systems biology suggests that networks are made up of a small set of recurring patterns, called network motifs. These are frequent subgraphs, where a probability is assigned to each subgraph individually, based on some background model of a random network. Furthermore, analysis of the significance profile (SP) of these motifs is suggested as a device to identify the networks design principles (Milo et al., 2004). An SP is the vector of occurrences of the network motifs, which can be thought of as a fingerprint of a network. SP is fruitful mostly when it reveals novel, non-trivial design principles of the underlying network.

In this work we studied the architecture of protein folds as represented in the network of backbone H-bonds (hence other types
of interactions were omitted). We compiled a representative dataset of non-redundant proteins with high-resolution crystal structures. For each structure, we calculated all the backbone H-bonds and searched for significant network motifs. The motifs found include the known fold motifs (α-helix, β-sheet, 310 helix, etc.) as well as novel ones. To understand motifs dynamics, we performed MD simulations on a number of proteins. We found that the trajectories preserved both the number of H-bonds, and the major organization of the α-helices and the β-sheets. Yet, we observed differences in motifs that form the surroundings of both the α-helix and the β-sheet. Finally, we provide examples of how the motifs may help to analyze protein structures.

2 METHODS

2.1 H-Bonds definition
Each structure is enriched with backbone H-bonds by using BindAt version 1.6 (http://kemage.biochemistry.duke.edu/software/bindat.php). The critical step is to correctly position the backbone hydrogen atoms. For this purpose Reduse is used (Word et al., 1999). The accuracy of various methods for positioning hydrogen atoms in protein structures was assessed previously by Forrest and Honig (2005), based on ultra-high resolution structures in which hydrogen positions are determined experimentally (over 1000 hydrogen atoms from seven different structures) Nearly 100% of the tetrahedral NH-type and the planar pN-type hydrogen atoms were placed within 0.2 Å of the respective experimental atomic positions by most methods, including Reduce. Once the hydrogen atoms are positioned, bonds are assigned efficiently using a spherical probe that is rolled around the van der Waals surface of each atom, and leaves a dot when the probe touches another ‘not-covalently-bonded’ atom (we used default parameters: probe radius=0. radius scale factor=1, C=O carbon VDW scaled by 0.943 to a radius of 1.65 Å).

2.2 Graphs of proteins
Each protein structure (solved by X-ray crystallography) was embedded in a mathematical graph $G=(V,E,C)$ in which the amino acid residues are the vertices V, the backbone interactions are the edges E and C is the edges (bonds) colors: 'black' for a covalent bond, ‘thin red’ for a single H-bond and ‘thick red’ for a double H-bond (see examples in Fig. 1). Note, that the ‘thick red’ here is considered a different color than the ‘thin red’. The analysis was performed on a representative set of 2521 protein structures (see 'Methods' section), for which we calculated the contact map, and further furnished the set of contacts (edges) with colors, to distinguish between covalent interactions of the polypeptide chain (‘black’ edges), and H-bonds (‘red’, Fig. 1A).

2.3 Network motifs
A graph $H=(W,F,D)$ is a subgraph of $G=(V,E,C)$, if $W \subset V, F \subset E, \text{and } D \subset C$. It is defined as an induced subgraph, if in addition it preserves the following property of the structure of G: $F=E(W \times W)$ (i.e. if an edge of G connects nodes of the subgraph H, the edge itself also exists in the subgraph H). For each network, all the edge-colored induced subgraphs of six nodes were enumerated by the FANMOD algorithm (Wernicke and Rasche, 2006) using full enumeration. Two subgraphs with different edge colors are considered different (see for example motifs β-sheet S10 and S27 in Figure 1, three different motifs which differ only in the ‘thick’ versus ‘thin red color’). FANMOD enumerates the subgraphs by iterating the vertices, and at each step extending on to include subgraphs which were not enumerated earlier. To calculate the probability that a subgraph is a recurrent motif, we use a novel random model described below.

2.4 The random model
To capture the uniqueness of protein graphs, we developed the following random network generator algorithm, given a real protein P_{real}. We first create a 3D self-avoiding random walk on grid points, with a shape of an ellipsoid and the minimal size that envelopes P_{real}. For each protein, the procedure is repeated until a self-avoiding walk is obtained. Each point of the walk is a node in the random protein P_{random}, and we furnish P_{random} with edges in three steps. First, a ‘black’ color (which corresponds to a covalent bond in P_{real}) is automatically added for each two neighboring nodes on the random walk that is, nodes n and $n+1$. Second, for two nodes of P_{random} with distance d in the 3D space, a ‘thin red’ color is added at random using a biased coin with a probability R, where R is the probability that two nodes in P_{real} with distance d have a ‘red’ edge (using normal fit for the edge-distance distribution). Third, we pick at random T ‘thin red’ edges of P_{real} and convert their color to ‘thick red’, where T is the number of ‘thick red’ edges in P_{real}. We use this procedure to create one random network per real protein, that preserves the number of nodes, edges, degree distribution, radius of gyration and community structure.

For each subgraph M, we check the null hypothesis that the distribution of M occurrence in real proteins is the same as the distribution of M occurrence in random proteins, using the Kolmogorov-Smirnov test for two samples (explained e.g. in DeGroot, 1975). The probability $P(M)$ with which we can reject the null hypothesis is approximated from the statistic by the implementation of matlab version 7.3.0.267 (R2008b). The occurrence of M is defined as $<M>=(# residues in which M occurs)/N, where N is the total number of residues=852,561. Note, that we ignore motifs which contain leaves, that is, vertices with at most one edge. The probability P of only eight subgraphs, namely subgraphs #36–#43, is such that $6.2 \times 10^{-10} \leq P \leq 0.05$. These subgraphs were ignored for subgraphs #44 and on, $P>0.05$. The 35 motifs analyzed here have a $P < 6.2 \times 10^{-10}$ and thus a statistical fit for multiple comparisons such as False Discovery Rate, has been omitted herein.

2.5 MD simulations
The dynamics of motifs were studied by simulating three proteins for 4 ns using molecular dynamics simulations. The selected proteins were: Lysozyme (pdb 1lyz), SH3 domain (pdb 1shl) and the 434 repressor (pdb 1r69). The simulations were performed at room temperature using the CHARMM (Brooks et al., 1983) package using the charmm27 force field and time step of 2 fs. To explore the sensitivity of the motif stabilities to the details of the force field, each protein system was simulated using explicit and implicit solvent models. Initially, each protein was minimized using 200 steepest-descent steps and 400 adopted basis Newton-Raphson. The studied protein was then placed in a TIP3 water box with a water layer of 20 Å surrounding the proteins and were minimized for additional 500 adopted basis Newton-Raphson. The temperature was equilibrated using 50 ps MD simulation to reach a temperature of 300 K. Constant temperature simulation was collected for 5 ns with dielectric constant of 1 and a 14 Å energy cutoff. The implicit solvent simulations were performed using the Generalized-Born (GB) models. For each trajectory we calculated the number of H-bonds, and the RMSD from the native structure.

3 RESULTS
We compiled a list of 2521 protein structures (see 'Methods' section), for which we calculated the contact map, and further furnished the set of contacts (edges) with colors, to distinguish between covalent interactions of the polypeptide chain (‘black’ edges), and H-bonds (‘red’, Fig. 1A). We then retrieved all the subgraphs of six nodes (see 'Discussion' section). To evaluate the statistical significance of each subgraph, we developed a novel random model (detailed in the 'Methods' section). Next, we searched for subgraphs in the random graphs, and calculated the
Understanding hydrogen-bond patterns in proteins

Fig. 1. Proteins described as mathematical graphs. (A) Various presentations of the standard motifs: α-helix (H9, top row, capturing a non-countiguous six residues motif, see also Supplementary Fig. S1), 3_10 Helix (H18) explained by an H-bond of residues n and n + 3. The ‘10’ stands for the distances in backbone atoms in the chain nitrogen–carbon–carbon (NCC). The standard α-helix is H9. Below: β-sheet (anti-parallel, S3, S10 and S27) and parallel (S15). A covalent interaction in black, a single H-bond in normal red, and a double H-bond in thick red. See Supplementary Figure S1 for a visualization of all the motifs. (B) Examples of a 4-helix bundle (pdb 1tqg, top) and a β-barrel (GFP, pdb 1oxe, bottom) proteins. The left column depicts the contact map as a matrix with covalent bonds and backbone H-bonds. The middle column shows the contact map planar drawing with vertices positions based on the observed motifs. Helices are represented by the box-shaped motif number 9 (called H9, ‘H’ for helix and the number 9 is the position when sorted by probabilities). The same motif is also captured by H6 (see Supplementary Fig. S1). Anti-parallel β-sheet sub-categorizes into S3, S10 and S27 with 4, 3 and 2 H-bonds, respectively (see Fig. 1A, the ‘S’ stand for Sheet). It is interesting to note the inverse correlation between the number of H-bonds in these motifs and the probability to observe them at random, suggesting that unsaturated H-bonds are rare in our dataset, and so the structures used are of high quality. Examples for contact maps of two proteins with mostly helical and sheet structures are given in Figure 1B using both the adjacency matrix and the alternative planar drawing, based on the observed motifs (see ‘Discussion’ section). A graphical representation of all the motifs is given in Supplementary Figure S1, while the motifs probabilities are depicted...
in Figure 2. Sorted by their probability, a clear distinction can be made between the first ten motifs ($P < 10^{-345}$) and the next 25 motifs. The first 10 motifs overlap with the standard α-helix and anti-parallel β-sheet, while the next 25 motifs include other known secondary structure motifs as well as novel ones. For example, motif number 14 (M14) is the Schellman motif (Schellman, 1980). This motif is found in many C-caps of helices (see Fig. 3A for a typical example). Using network motifs analysis, we found that the same motif connects an α-helix and a β-sheet (Fig. 3B), or two β-strands to a sheet (Fig. 3C). S15 and S21 are two alternative representations of the parallel β-sheet. H18 is the 310 helix with occurrence $P = 0.96\%$. Many novel fold motifs were found, including H13, T17 and H22 which are prevalent in helix caps. Figure 3D and 3E visualize H13, called here the B10 helix, a bifurcated 310-like helix. Another set of motifs, namely T2, T7, T17 and T29, appear as a part of a turn, which is found in various surroundings. For example, a turn might connect two beta-strands or two loops. Each one of these four novel motifs represents a different surrounding of a turn, and is also prevalent in helix caps.

To visualize the motifs on protein structures, and compare between different structures in an interactive manner, we created a web tool, protmot (http://bioinfo.weizmann.ac.il/protmot/). In addition to the graphical interface, protmot provides also textual information on the location of all the motifs for further analysis. In Supplementary Figure S2, we provide a case study of how the motif composition of different p21-activated kinases teaches us about the differences between these similar apo and holo enzyme structures. Supplementary Figure S3 shows the apo versus the holo structures of Sir2, which apparently have a RMSD of 12 Å, but show high structural and SP similarity.

SP of homologues protein structures is expected to be similar. Therefore, we were surprised to see that the SP of Deer Hemoglobin (structure solved to 1.98 Å resolution) is highly different from all other mammalian Hemoglobins (Supplementary Fig. S4, compared to Human, Maned wolf and Horse), while the RMSD relative to human is only 0.9 Å (Supplementary Fig. S4A). This suggests that the structure of Deer hemoglobin has local dissimilarities from all the others. Interestingly, a high percentage of this structure is out of the Ramachandran allowed region [Supplementary Fig. S4C, see also Morris et al. (1992)]. Apparently, the reason for the discrepancy is a strained backbone of this old structure, resulting in incorrect H-bonds parameters (distance and angle), and hence the motifs are not found although realistically they must be. These examples show that SP reveals local differences between structures even when globally the structures seem to be identical.

3.1 SP as a fingerprint of a protein structure

Proteins are dynamic in nature, as is evident by comparing multiple NMR or X-ray solutions of the same structure. SP is a natural tool to analyze these differences, as well as following the time evolution of SP in atomistic MD. The SP is studied globally (count of each motif in the entire protein). Although localization may relate some helical motifs to sequence properties, we are more interested in the global architecture. We followed the pattern of the motifs as a function of time and compared their average population along the trajectories to those found in X-ray and NMR structures for three model proteins: Lysozyme, SH3 and the amino terminal domain of the 434 repressor (Fig. 4). We simulated each protein along 4 ns at room temperature, starting from the crystal structure. During this time frame the global fold did not change. To observe high-resolution variation, we constructed the SP (i.e. the motifs' occurrences vector).

To examine the effect of the force-field on the SP, we simulated the proteins using two different water models, Generalized-Born (GB), and explicit solvent. The SP obtained when simulating the
proteins using the GB and the explicit solvent models were within the standard deviation for most motifs (Fig. 4), and therefore we focus hereafter on GB.

The first system studied, Lysozyme, is a helical protein of 129 amino acids (Figs 4A, 5C and 6), in which many motifs are observed beside the α helix, including the 310 helix and the Schellman motif. Moreover, the wealth of available structural data for Lysozyme makes it possible to calculate motif conservation in different crystal forms, as well as to compare them to NMR. Figure 4A shows the SP occurrence in the crystal structures (minimum and maximum of seven crystal structures) versus the MD trajectory (100 conformations sampled along the 4 ns trajectory) and NMR structures (50 minimized models). A high correlation is observed for the first 10 motifs; however, a significant deviation between the three methods is observed for motif number 11 and on. Furthermore, motifs that show a high average correlation do vibrate significantly over time; see for example the α-helix (H5) in Supplementary Figure S5. The second system studied is the SH3 domain, a small β-sheets protein domain that served as a model for numerous structural studies. As can be seen in Figure 4B, H16, T29 and M33 are underrepresented in the MD versus the X-ray structure. These motifs disappeared in the initial minimization step of the simulation. Furthermore, the motifs show a possible cooperativity between them (see 'Discussion' section and Fig. 4B, inset).

The third system studied is the 434 repressor, a small protein domain of 69 residues, which consists of five short α-helices (H5, red in Fig. 5B). Two of the helices end with the Schellman motif (M14, yellow), and H16 is found in the short 2-turns helix. The average number of H-bonds along the trajectory is similar to that in the X-ray structure (Fig. 4C, inset) and only a small change in the RMSD is observed during the simulation. Furthermore, Figure 4C
Abstraction of structural data through the use of fold motifs as
Fig. S6).

occurrence in comparison to the crystal structure (Supplementary
times (\(<\sim1\) ns) and their population significantly fluctuates in the
room temperature simulations. This results in an averaged lower
occurrence in comparison to the crystal structure (Supplementary
Fig. S6).

4 DISCUSSION

Abstraction of structural data through the use of fold motifs as
building blocks is common. These methods use clustering algorithms
that are applied to the continuous space of folds. While impressive
results were achieved using these approaches, it relies on proper
clustering, a process which is not easy to assess (Unger et al.,
1989). Moreover, the positions of the protein atoms are in many
cases less robust than the interactions they induce. Therefore, inter-
residue contact maps (or networks) are likely to be informative by
capturing cooperative elements that maintain complex biological
architectures.

Networks can be represented either as an adjacency matrix or
alternatively as a planar drawing (Fig. 1). Note that the planar
drawing is not unique, as the position of each point does not
reflect the actual 3D position of the amino acid it represents. Huan et al.
(2004, 2006) developed and applied an algorithm to
draw subgraphs of bio-molecules contact maps (represented as a
mathematical graphs). In this manner, the question of defining the
boundaries between clusters is reduced to the definition of an
interaction, defined on a base size of 0.1 A between non-
adjacent Cx atoms. The authors further binned the interactions
according to the distance.

Here, we focus on networks of backbone–backbone H-bonds in
proteins, and their network motifs (which can be assigned accurately
from the structure: see ‘Methods’ section, Forrest and Honig, 2005).
Inter backbone H-bonds are included in the first bin of the previous
contact map definitions. However, we suggest that by focusing on
validated backbone–backbone H-bonds we can study the general
architecture of a protein, and obtain unambiguous raw data (see
Fig. 1, and the sharp probability threshold in Fig. 2). The method
can be adapted to side chains as well. Here, however, we explore how
much only an analysis of backbone hydrogen bonding can elucidate
in and between protein structures.

For self-consistency, we limit the motifs to a fixed number
of nodes. At least six nodes are needed to capture both \(\alpha\)-helix and
\(\beta\)-sheet motifs (H9 and S3). More than six nodes may better
distinguish between certain turn conformations, such as helical and
non-helical turns. However, to raise the number of nodes would
significantly increase the complexity of the results.

To check if a certain motif is family-specific, Huan et al.
(2006) calculated the probability with which they can reject
the null hypothesis that the motif is prevalent in two distinct
families of structural homology. The randomized entity here is the
assignment of structures to families. Here, based on the assumption
that important subgraphs occur in high numbers, we draw a
different null hypothesis: that a specific subgraph occurs in similar
numbers in proteins with experimentally solved structures, and in
random, i.e. we check if a motif is overrepresented in proteins
structures. To calculate the probability with which we can reject
the null hypothesis, we developed a novel random model for
proteins. Moreover, we used an algorithm that count exactly all the
occurrences of each motif in each network (see ‘Methods’ section).
This is unlike the previous work, which only finds motifs occurring
in a high portion of the networks, and hence may overlook motifs
which occur in a high number but are limited to a narrow family
of proteins. Network motifs can simplify the task of planar drawing,
as is demonstrated in Figure 1B. Still, one should be aware that
network motifs are the fingerprints of a fold, and it is possible for
two different network motifs to co-exist in the same fold motif, as
is the case for S15 and S21 (parallel \(\beta\)-sheet).

A major strength of the method presented here is the ability
to characterize sequence propensity of novel fold motifs, which
are otherwise classified as a random coil. In this context, the 35
network motifs found here (Fig. 2 and Supplementary Fig. S1),
which include all the known motifs and some novel ones can be
studied individually. Surprisingly, analyzing these network motifs
using DSSP (Kabsch and Sander, 1983) shows that all the motifs
include a high percentage of ordered secondary structure (\(\alpha\)-helix or
\(\beta\)-sheet or both, see Fig. 2) in addition to some percentage of coil.
In other words, every H-bonds network motif has the potential to be
embedded in an \(\alpha\)-helix or in a \(\beta\)-sheet, and no motif is exclusively
related to a random coil. This suggests that knowledge of the local
H-bonding pattern is not enough to determine the local fold. Indeed,
for certain sequences the secondary structure depends on the global
fold and not on its H-bond pattern (Minor and Kim, 1996). It should
be noted that some of the random coil (according to DSSP) has no
motif attached to it, as their occurrence is not higher than in random.

The helix cap is an extensively studied structure identified from
sequence-structure relations as a fold motif (for a review, see Aurora
and Rose, 1998). We suggest that network motif analysis provides
a way to define helices caps using backbone–backbone hydrogen
bonds, which has not been done previously. Harper and Rose (1993)
suggested that complete understanding of the fold motifs requires
analysis of side-chains. Richardson and Richardson (1998) gave a
geometrical definition for helices caps, asserting that a backbone-
H-bonds-based definition would be too sensitive to small perturbations.
They observed a 33% Glycine propensity at the C-cap of a helix.
In fact, C-caps have a few possible forms: 23% are the Schellman
motif (Fig. 3A–C) while the rest are 31 helix, the novel B10 helix
(Fig. 3D–E, see below), and others. While helices ending with the
Schellman motif have a Glycine propensity of 66% in position 5
(Fig. 3D–E, see below), and others. While helices ending with the
Schellman motif have a Glycine propensity of 66% in position 5
of the motif, the rest of the helices have a Glycine propensity of as
low as 10% (see also Nagarajaram et al., 1993). The high Glycine
propensity in this motif was shown recently to be due to the ability
of Glycine to adopt a positive \(\phi\psi\) conformation, rather than the
enhanced solvation related with the lack of a side chain in Glycine
(Bang et al., 2006). We also found that the Schellman network motif
is prevalent in the surroundings of \(\beta\)-sheets (see Fig. 3A–C).

H18 is the 311 helix (see Fig. 2), which is observed for about 1% of
the amino acid residues, and always consists of \(\sim2\) helical turns.
Should this motif be considered as another variant of helix kink,
or as a special, though rare sort of a helix? Comparing H18 with
other motifs such as B10 (Fig. 3D–E, a more prevalent motif that
was not documented as a distinct helix type previously, possibly due to its less elegant H-bonding pattern) suggests that α-helices have various fold motifs coexisting at helices caps and kinks. The variation is driven by a bifurcated H-bond between the carbonyl oxygen of residue i and the nitrogens of residues i+3, i+4, giving rise to motifs such as H13, M14, H18 and others. While bifurcated H-bonds have been previously observed in helices (Nimura, 2001; Richardson, 1981, 2004–2006), their high prevalence shown here is unforeseen.

SP is a powerful tool to compare structures of high similarity. RMSD of 0.5 Å is usually considered to be within the experimental fluctuations of X-ray structures. However, a distance change of 0.5 Å causes an H-bond to break. Unlike RMSD, SP analysis makes it possible to distinguish between concerted movements that do not affect bond patterning and specific movements that do. For example, Figure 4C shows that the Schellman motif (M14) is poorly populated in the MD simulation of the 434 repressor. Figure 5D reveals that the short life time of this motif is due to the break of a single H-bond occurring close to the start of the MD simulation, in a place which otherwise seems to be identical to the X-ray structure. In a second example, a snapshot at 1.6 ns of the MD simulation of Lysozyme shows a structure that is almost identical to the X-ray structure (Fig. 5C). However, the deviation in the SP (Fig. 4A, M14 and H10) is explained by the break of a small number of H-bonds in significant positions. Figure 6 compares the crystal structure of Lysozyme (A), to a snapshot from the MD at 1.6 ns (B). Although the major fold is conserved (reflected by a small RMSD of 1.2 Å), the elimination of some H-bonds results in the disappearance of a few motifs. Another inherent problem of comparing proteins using RMSD relates to the global nature of this method, which causes a hinge movement to have a tremendous effect. Although SP is presented here globally, we calculate the motifs occurrence locally and find that motifs are highly significant, appearing in the proximity of standard potentials. The deviation is predominantly in motifs 11 and on, from that of the different NMR datasets (Fig. 4A, motifs number 1, SP of crystal structures shows high self-consistency (among various trajectories, where a large number of snapshots have to be compared. Furthermore, the method can be used to track protein folding through the development of native motifs. For example, one may use this method to investigate which motifs are formed already during the early stages of folding, and how folding is being developed.

ACKNOWLEDGEMENTS
The authors are grateful to Merav Parter and Dr Nadav Kashlan for the development and implementation of the random model; Dr Avi Mayo, Dr Maria Krisc, Dr Yaki Setty and Eli Steinberger for critical reading of the manuscript; Prof. Eytan Domany and Prof. Avigdor Scherz and Dr Orly Dym for helpful discussions.

Funding: Kimmelman Center for Macromolecular Assemblies and the Center for Complexity Science [to Y.L.]; and MINERVA [8525]. Y.L. is the incumbent of the Lilian and George Lylett Career Development Chair.

Conflict of Interest: none declared.

REFERENCES

O.Rahat et al.

