Phylogenetics

webMGR: an online tool for the multiple genome rearrangement problem

Chi Ho Lin1, Hao Zhao1, Sean Harry Lowcay2, Atif Shahab1, and Guillaume Bourque1,*

1Genome Institute of Singapore, 60 Biopolis Street, #02-01, Genome, Singapore 138672 and 2Experimental Therapeutics Centre, 31 Biopolis Way, Nanos Level 3, Singapore 138669

Received on September 18, 2009; revised on November 30, 2009; accepted on December 9, 2009
Advance Access publication December 18, 2009
Associate Editor: Alex Bateman

ABSTRACT

Summary: The algorithm MGR enables the reconstruction of rearrangement phylogenies based on gene or synteny block order in multiple genomes. Although MGR has been successfully applied to study the evolution of different sets of species, its utilization has been hampered by the prohibitive running time for some applications. In the current work, we have designed new heuristics that significantly speed up the tool without compromising its accuracy. Moreover, we have developed a web server (webMGR) that includes elaborate web output to facilitate navigation through the results.

Availability: webMGR can be accessed via http://www.gis.a-star.edu.sg/~bourque. The source code of the improved standalone version of MGR is also freely available from the web site.

Contact: bourque@gis.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

In recent years, the continuous flow of new genome sequences has enabled a number of rearrangement studies that have looked at the large-scale genomic organization of various species. An important and challenging problem associated with these studies is the Multiple Genome Rearrangement Problem. This problem aims to recover the phylogeny T and the most parsimonious rearrangement scenario that can explain a set of extant genomes. Formally, the problem can be described as follows: given the block orders of a set of m genomes, each represented by a signed permutation, the goal is to reconstruct an unrooted tree T over all the edges of which is minimized.

Here, d(A, B) is the genomic distance on an edge (A, B) which is defined as the minimum number of rearrangement operations necessary to transform genome A into genome B. When m = 3, this problem is called the Median Problem. When the genomes are unichromosomal, the operations permitted are restricted to reversals (also called inversions). Such operations invert the order of a set of consecutive blocks. When the genomes are multi-chromosomal, reversals, translocations, fissions/fusions are considered.

Although the genomic distance between two genomes can be computed efficiently (Bader and Moret, 2001; Tesler, 2002a), the multiple genome rearrangement problem is computationally challenging. Specifically, it was proved that the median problem with reversals is NP hard (non-deterministic polynomial-time hard; Caprara, 1999). In Bourque and Pevzner (2002), the algorithm MGR was proposed to tackle the median problem using heuristics. When m > 3, MGR handles the problem by iteratively solving a sequence of median problems. MGR has been applied to reconstruct rearrangement evolutionary scenarios for various sets of genomes (Lin et al., 2008; Murphy et al., 2005; Xia et al., 2007) and these reconstructions have shed new light on the forces shaping the genome of these species.

MGR solves the median problem by iteratively performing rearrangement events that bring the extant genomes closer to each other. In the current work, we present two complementary strategies that can greatly reduce the running time of the algorithm without compromising the quality of the solutions obtained. The first improvement involves the systematic ‘condensing’ and ‘uncondensing’ of the permutations being evaluated, whereas the second improvement involves simplifying rules in the selection of the rearrangement events that bring the extant genomes closer to the unknown ancestor. At any given step, there is often a variety of good reversals to choose from. For such cases, the original heuristic said to be good if performing it on G1 reduces the distance to both G2 and G3. The idea behind this is that a reversal that brings G1 closer to both G2 and G3 is also likely to bring it closer to the unknown ancestor A. At any given step, there is often a variety of good reversals to choose from. For such cases, the original heuristic that was implemented involved calculating, for every reversal r, the
number of good reversals n_r that would be available after performing the reversal and selecting the reversal with the largest n_r. MGR is slow for large genomes because the number of candidate good reversals to evaluate is correlated with the size of the permutations.

The first improvement we propose is based on the concept of strips. A strip is a maximal segment of two or more blocks that are in the exact same order in all the genomes being considered. For instance, if $G_1 = 1 2 3 4 5 6 7 8 9$, $G_2 = 135 2 4 7 9 8 6$, and $G_3 = 1 2 3 7 8 9 6 5 4 9$, there will be three strips: $1 2 3 4 5 6$ and $7 8 9$. These strips display coherent gene orders and it has been shown that there exists an optimal phylogeny tree T of the genomes such that every strip appears in the ancestral nodes of T (Tesler, 2002b). Intuitively, any good reversal will not break these strips, thus allowing us to replace the strips by single blocks in a new alphabet. In the example above, G_1, G_2 and G_3 will be ‘condensed’ and transformed into $G'_1 = 1 2 3 4 5 6 7 8 9$, $G'_2 = 1 3 5 2 4 7 9 8 6$, and $G'_3 = 1 2 3 7 8 9 6 5 4 9$. This will have a significant impact on the running time of MGR because the size of the genomes being tracked will be greatly reduced. The strips will also be uncondensed before the output is generated, so the whole process will actually be seamless.

In the second improvement, we propose two heuristics H1 and H2 to simplify the rule of selecting a good reversal at a given step when we have a list of such reversals: (H1) pick the first good reversal, or (H2) based on a simple assumption that short reversals represent a more common evolutionary event as compared with translocation, fusions and fissions (Sankoff, 2002), we select the ‘shortest’ good reversal. Note that in both of these heuristics we no longer need to calculate n_r for all good reversals r.

When the input genomes are multi-chromosomal, the good rearrangements that are selected and performed also include translocations and fissions/fusions. Based on an observation that reversals are more common than the other operations in the evolution, at each step we always select and perform good reversals first, and then good translocations and fusions/fissions if we run out of good reversals. This is done as in Bourque and Pevzner (2002).

We use simulated trees with 7 genomes and 100 genes to test the impact of these ideas on the running time and the reconstruction accuracy. The evolutionary rate m (average number of events on an edge) for the trees varies from 2.5 to 12.5 and the trees are generated as in Zhao and Bourque (2009) (see Supplementary Materials). Figure 1A shows that the condensing strategy and the two heuristics significantly reduce the running time. Since we seek to reconstruct a most parsimonious tree, we use the total number of predicted events to measure the reconstruction quality. Figure 1B shows that MGR recovers trees with sometimes even fewer events as compared with the real trees (especially when $m > 2.5$) and that the improved MGR returns trees with nearly identical number of events as before (see Supplementary Materials). Thus, our improvements on MGR greatly enhance the efficiency without negatively affecting the reconstruction quality.

3 MGR WEB TOOL

We have implemented these changes in MGR and built a web server called webMGR using the Ruby on Rails technology. The interface offers a number of customizable options to determine how MGR will be executed. The web page is partitioned in three sections:

1. (1) the input genomes can be either uni- or multi-chromosomal;
 (2) options to condense the genomes, to use either of the two heuristics (H1 and H2) and to decide if the reconstruction should be restricted to a fixed phylogenetic tree;
 (3) output options.

The output from webMGR is provided in html format and includes:

1. (1) ASCII representation of the unrooted tree recovered with clickable edges to display the possible optimal rearrangement events via the GRIMM web server (Tesler, 2002a).
 (2) Pairwise distance matrix of the input genome and offers clickable pairwise scenarios.
 (3) Signed permutations of the input genome as well as the ancestors recovered.

To illustrate the use of webMGR, we have applied it to the 2435 gene orthologs from Lin et al. (2008) (see Supplementary Materials).

ACKNOWLEDGEMENTS

We thank Glenn Tesler for his help with both GRIMM and MGR.

Funding: Agency for Science, Technology and Research of Singapore.

Conflict of Interest: none declared.

REFERENCES