A sub-pathway-based approach for identifying drug response principal network

Xiujie Chen1,∗,†, Jiankai Xu1,2,†, Bangqing Huang1,†, Jin Li1, Xin Wu3, Ling Ma1, Xiaodong Jia1, Xiuseen Bian1, Fujian Tan1, Lei Liu1, Sheng Chen1 and Xia Li1,∗

1College of Bioinformatics Science and Technology, 2Department of Pharmacology and 3The Third Affiliated Hospital, Harbin Medical University, Harbin, China

ABSTRACT

Motivation: The high redundancy of and high degree of cross-talk between biological pathways hint that a sub-pathway may respond more effectively or sensitively than the whole pathway. However, few current pathway enrichment analysis methods account for the sub-pathways or structures of the tested pathways. We present a sub-pathway-based enrichment approach for identifying a drug response principal network, which takes into consideration the quantitative structures of the pathways.

Result: We validated this new approach on a microarray experiment that captures the transcriptional profile of dexamethasone (DEX)-treated human prostate cancer PC3 cells. Compared with GeneTrail and DAVID, our approach is more sensitive to the DEX response pathways. Specifically, not only pathways but also the principal components of sub-pathways and networks related to prostate cancer and DEX response could be identified and verified by literature retrieval.

Contact: chenxiujie@ems.hrbmu.edu.cn; lixia@hrbmu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

Received on June 13, 2010; revised on December 14, 2010; accepted on December 17, 2010

1 INTRODUCTION

It is increasingly important to understand the effects of treatment drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investigate the expression of thousands of drugs on cellular pathways and networks. Microarrays provide a novel way to investi...
2 METHODS

2.1 Data description, preprocessing and normalization

Our DEX response dataset contained seven cell intensity files (CEL) downloaded from CMAP (Lamb, 2007) (Instance ID 2079), one derived from PC3 cell lines treated with 9.2 μM DEX and the other six derived from dimethyl sulfoxide (DMSO)-treated PC3 cell lines. The raw data were scaled using the R RMA package. For each sample, the expression values of all probes for a given gene were reduced to a single value by taking the maximum expression value. For the DMSO-treated samples, the expression value for a given gene was the average of the six samples, effectively reducing these samples to a single DMSO-treated sample.

2.2 Obtainment of sub-pathways by parsing the KEGG pathway

Each pathway map stored in KEGG can be downloaded in its own XML format (named KGML), which contains information about nodes in the map, such as their relationships, their coordinates, and what genes or compounds exist in the nodes. The pathway maps describe the combination of ordered linear sequences of protein direct/indirect interactions or metabolic reactions from biologically meaningful start-points (membrane receptors or their ligands) to end-points (transcriptional factors or their immediate targets). In such a map, the start-points have no parent nodes and the end-points have no descendant nodes. The sub-pathway is defined by an individual path from a start-point to an end-point in a pathway map. For a given KEGG pathway, the sub-pathways were obtained by searching all possible paths between start-points and end-points in the adjacency matrix generated by node relationships extracted from KGML files.

2.3 Identification of significant drug–response principal sub-pathways

To identify significant principal sub-pathways responding to a drug, a two-stage test is employed (Lin, 2006; Nguyen et al., 2009; Skol et al., 2007, Wang et al., 2006). The first test is to define a subset of candidate sub-pathways, from which the second can capture the principal sub-pathways.

In the first-stage test, the sub-pathway state is represented by a vector $\mathbf{p}_j = [p_{i1}, p_{i2}, \ldots, p_{ik}]$, where p_i is the expression value of gene i in sub-pathway j. Here, we employ Euclidean distance $d_j = \sqrt{\sum_{i=1}^{k} (p_{ij}' - p_{ij})^2}$ to describe the state change of each sub-pathway, where p_{ij}' and p_{ij} represent the states of sub-pathway j after and before drug treatment, respectively. A larger distance corresponds to greater sensitivity of the sub-pathway to the drug. When there are several genes in a sub-pathway node, the maximum expression-fold-change gene is chosen for the node. To identify significant drug response sub-pathways, we take the statistic for all sub-pathways and draw 100 000 random gene sets of the same size from all the genes to represent the background distribution. The P-value is calculated as the fraction of re-sampled gene set statistic that exceeds the observed value (P-value cutoff 0.05).

The second-stage test focuses on the key genes (PCS) that drive the drug response sub-pathways. Our goal is to develop an approach that would identify PCSs and their networks most influenced by drugs. First, we selected the top n genes that gave cumulative contribution at least up to 80% to significant sub-pathway state change and designated these PCS. The contribution was calculated by

$$I_j = \sum_{i=1}^{B} \left(\frac{(p_{ij} - g_i)^2}{\sum_{i=1}^{B} (g_i - \bar{g})^2} \right)$$

where g_i and q_i are the expression values of gene i in the presence or absence of drugs, respectively, k is the rank of gene i contribution and n is the size of sub-pathway j. Next, the significance of PCSs were assessed by the same method used to identify significant drug response sub-pathways (cf. the first stage test in the above paragraph), and the P-value was adjusted by false discovery rate (FDR, cutoff 0.05) (Benjamini and Hochberg, 1995). Thus, the significant PCS is the sub-pathway since this PCS dominates the state change of the sub-pathways. Effectively, the sub-pathways containing the significant PCSs represent significant responses to a drug. To prioritize these PCSs with respect to DEX response in PC3 cell lines, the PCS were scored by

$$S_i = \frac{\sum_{j=1}^{w} f_{qj}}{\sum_{j=1}^{w} \sum_{k=1}^{w} f_{qk}}$$

where f_{qj} is the frequency of gene q in PCS c (composed of u genes) appearing in w PCSs.

2.4 Construction and analyses of principal network to drug

From the identified PCSs and their structures (key gene relationships) maintained from their original sub-pathways, we constructed a principal drug response network and analyzed its topological properties using NetworkAnalyzer (Assenov et al., 2008).

3 RESULTS

3.1 General information of sub-pathway

The 201 pathway XML files were downloaded from KEGG, and 169 pathways involving metabolism, genetic information processing, environmental information processing, cellular processes and human diseases were used for further analyses after excluding the pathways lacking node relationships. In total, 87 732 sub-pathways were generated from the 169 KEGG pathway maps by the depth-first search algorithm. These contained 4179 genes and were highly redundant since each gene participated in approximately 20 sub-pathways. The maximum number of sub-pathways (16 154) was identified for the glycosphingolipid biosynthesis-lacto and neolacto series pathways, while several pathway maps, such as the tetrachloroethene degradation pathway, were parsed into only one sub-pathway (Supplementary Table 1).

3.2 Significant response sub-pathway to DEX in first-stage test

A total of 8252 sub-pathways containing 825 genes were significantly identified ($P < 0.05$), indicating that the response genes were highly shared, or cross-talked, between the sub-pathways or pathways. Significant sub-pathway lengths, derived from 92 KEGG pathways (Supplementary Table 2), ranged from 2 to 18, with an average of 9 (Fig. 1).

Fig. 1. The length distribution of (significant) sub-pathways. The blue bar is for the whole sub-pathways parsed from 169 pathways and the red bar is for the significant sub-pathways.
Fig. 2. The rate distribution of cumulative contribution of the top \(n \) genes up to 80% for the different length of significant sub-pathways. At most, six genes could represent the majority of sub-pathways, with only three sub-pathways requiring more key genes (i.e. only three sub-pathways could not be utilized under our specified conditions).

The proportions of significant sub-pathways varied for different pathways. For example, in the Circadian rhythm pathway, all sub-pathways were significant, whereas the proportion of significant sub-pathways in the Arachidonic acid metabolism pathway was only 0.063%.

The state changes in these significant sub-pathways were determined by the genes within them. However, these genes affected their sub-pathway states to different extents. The expression level changes of these genes dominated the whole sub-pathway, thus their cumulative contributions were scored by the statistic (Supplementary Figure 1). More than 90% of sub-pathways containing less than nine genes and more than 85% of sub-pathways containing 9–18 genes, were controlled by 2–3 genes and by 4–6 genes, respectively (Supplementary Figure 1). This implies that only a few genes (PCSs) regulate the drug response sub-pathways. Therefore, focusing on PCS genes might provide an economical way of elucidating the molecular mechanisms of drug response.

3.3 PCSs to DEX

As described above, the entire sub-pathway seems to be governed by only a few genes. It is therefore necessary to know which genes dominate the sub-pathway response state and the maximum number of these genes required. Therefore, we ranked the genes by their contributions to the state change of sub-pathway from high to low, and defined PCS standing for the sub-pathway by the cumulative contribution of the top \(n \) genes up to 80%. We then calculated the proportions of different length PCSs to different length sub-pathways (Fig. 2). We obtained 555 PCSs (FDR < 0.05) covering 213 genes, and found not only that one or several genes were highly shared in more than two PCSs, but also that the PCSs were highly shared by sub-pathways; indeed, one PCS could represent an average of 16 sub-pathways. These PCSs represented the principal states of DEX response pathways/sub-pathways. In addition, as shown in Figure 2, at most six genes can represent one sub-pathway. As they were highly shared, it could be inferred that shorter sub-pathways are linked in longer sub-pathways, consistent with the idea that signal cascades choose the most economical path in vivo.

Conventionally, the next step is to select the most important PCSs in the drug response sub-pathway. To this end, we applied the Sc statistic to evaluate the priorities of PCSs to DEX in PC3 cell lines (Supplementary Table 3). However, it was difficult to determine the optimal PCS since the PCSs were too highly cross-talked. For example, the top 10 PCSs contained eight genes, with four genes in common and with no gene additions from the top third to the top tenth PCS (Fig. 3). This indicates that the first 10 PCSs are strongly related. This trend was apparent throughout the PCS list; the appearance of a new gene in a PCS signified that no new genes would appear in the next several PCSs (Fig. 3; Supplementary Table 3).

Therefore, we used the gene direct/indirect connections from their original sub-pathways to merge the first 10 PCSs into a single sub-pathway (Fig. 4). The new sub-pathway reveals the basic molecular mechanisms and effects of DEX in PC3 cell lines.

3.4 The principal response network to DEX

To reveal the comprehensive molecular mechanisms of DEX in PC3 cell lines, we merged all PCSs and constructed a DEX response principal network, since, as described above, PCSs for the significant sub-pathways are highly cross-talked (Fig. 4). The correlation coefficient of node degree distribution between the principal network and the network merging of all significant sub-pathways was 0.69 \((P < 0.01)\), implying that the principal network had inherited the main structure of the latter. The top 10 genes with degree and betweenness centrality are shown in Supplementary Table 4. These signify important genes through which DEX exerts its complex effects in PC3 cell lines. In addition, there exist several isolated
When the fold change cutoff was 2, 28 genes were differentially expressed. To identify drug response sub-pathways, it was a direct and simple way to identify the direct drug response sub-pathways. Therefore, we considered the sub-pathway as a whole and hinted at strong links between the top 10 PCSs and DEX-treated prostate cancer cell lines, which effectively ranked PCSs to DEX in PC3 cell lines. We found that the standing degrees of those genes were on average higher than those of non-PCS genes in the sub-pathway-based network. In contrast, our methods identified 52 significant pathways (Supplementary Table 7), of which a subset was unequivocally associated with DEX response and prostate cancer (as determined by the number of significant sub-pathways containing significant PCSs in the pathways, evaluated by the hypergeometric test). Many pathways detected were triggered directly by DEX, and there was evidence of high cross-talk among the pathways. When a sub-pathway responds, its pathway must respond also, rendering further tests unnecessary. Combined, our results suggest that the sub-pathway based strategy is more sensitive to drug response than whole-pathway approaches.

A total of 825 genes were associated with 832 significant sub-pathways, with an average of one gene participating in 10 sub-pathways, revealing high cross-talk between the genes. We hypothesize that the important genes change their expression often in the sub-pathways and have a high degree of standing in the sub-pathway network, since they are stimulated by multiple signals. To test this idea, we extracted 555 PCSs according to their contributions to the sub-pathway state changes, and found that the standing degrees of those genes were on average higher (t-test, $P = 5.59E-08$) than those of non-PCS genes in the sub-pathway-based network. Afterwards, we designed the statistic to evaluate the priorities of these PCSs to DEX in PC3 cell lines, which effectively ranked PCSs and hinted at strong links between the top 10 PCSs and DEX-treated prostate cancer cell lines.
prostate cancer cells (Fig. 4). In addition, the cross-talking among sub-pathways could supplement existing pathway knowledge. For example, inspired by Rhee et al. (1995), we deduced that CCND3 influences proliferation of CCND1-expressing cells in the prostate cancer pathway (Fig. 4).

From supplementary Figure 2, we found that, at first stage, only 2–3 genes contributed >90% (median) to the significant sub-pathways containing less than 9 genes, and that 4–6 genes contributed >85% (median) to the sub-pathways containing 9–18 genes. As already mentioned, this implies that the response sub-pathways are mainly caused or represented by a few genes only (the PCSs). We defined six as the default number of genes in a PCS. PCSs with size less than six might not represent all significant sub-pathways in the first stage, since their contribution might not reach 80%. A further instance 2079 and 5797, evaluated by G-SESAME (Du et al., 2009), were 0.837 and 0.864, significantly greater (P < 0.01) than that of random gene set pairs of the same size. Moreover, a dataset of 90 samples, DEX-treated myeloma cells (GEO ID: GSE8546) was analyzed. The DEX response principal network (composed of 274 genes) in Myeloma, were significantly identified. Most genes (approximately 1/2) are associated with DEX, Myeloma or cancer (Supplementary Table 8). The functional similarity of GO terms enriched in the principal DEX response network from GSE8546, compared with those from instance 2079. The low reproducibility of significant sub-pathways indicates that they perform specific functions, again consistent with the results of microarray studies, which are more reproducible at functional level (Gong et al., 2010). In addition, the functional similarity of the Gene Ontology (GO) terms enriched in the two PCS sets, evaluated by G-SESAME (Du et al., 2009) was 0.88, significantly greater (P < 0.01) than that of random gene set pairs of the same size. These results show that our sub-pathway-based approach can potentially detect stable drug response principal network at the functional level.

ACKNOWLEDGEMENTS

We thank Associate Editor John Quackenbush and the three reviewers for their suggestions and comments.

Funding: The Scientific and Technological Project of Heilongjiang Province (GQTC337 and ZD200804-01); Provincial Education Department Project of Heilongjiang (11541121); National Natural Science Foundation of China (30871394, 30972538 and 30772238); the National High Tech Development Project of China, the 863 Program (2007AA02Z309); the key national S&T Program-Major New Drug Development (2009ZX09103-380); The Innovation Manpower Fund of Harbin Science and Technology Bureau (2010RFXS0053); Master Innovation Funds of Harbin Medical University (HCX200908 and HCXS2010007).

Conflict of Interest: none declared.
REFERENCES

