The Beowulf-class computing cluster was a breakthrough in cluster computing because it enabled parallel computing to be performed utilizing low-cost commodity hardware and standard software components compared to other supercomputing solutions (Sterling et al., 1995). Typical requirements for building a Beowulf-class cluster involve setting up the number of desired personal computers (PCs) and interconnecting them on the same Local Area Network (LAN), preferably using gigabit ethernet. A similar operating system (OS) and software are then installed on each PC (node) and make install.

OS and software installations are simplified by using the Linux Live CD method. A Live CD, or its image, can be booted on any PC without affecting the existing users' previously installed OS or data. Several Live CD distributions are currently available with Knoppix (Knopper, 2000) arguably being the most well known. Although early versions of Live CDs were intended for use on a single PC, recent distributions, such as PelicanHPC (successor to ParallelKnoppix (Creel, 2008) and ClusterKnoppix (clusterknoppix.sw.be)) introduced parallel computing capability. Encouraged by the Live CD’s simplicity, a number of bioinformatics-based Linux distributions were developed, including Viggayna (www.viggayna.cd.org), Bioslax (www.bioslax.com), BioLinux, Quantian (Eddelbuettel, 2003), Open Discovery and DNALinux (Field et al., 2006; Rana and Foscarini, 2009). The bioinformatics software included in these distributions are GROMACS (version 3.2.1 in Vigyaan, version 3.2.2 in Quantian and version 3.3 in Open Discovery v2) (Lindahl et al., 2006), NCBI’s BLAST, ClustalW and others. Only a few bioinformatics-based programs are provided in a Live CD format and are parallel-computing ready, namely Quantian, OpenDiscovery v3 and Knoppix for InterProScan 4.1 High-Throughput Edition (Konishi et al., 2006). Open Discovery v2 supports parallel computing but only in the context of a single machine with a multicore processor. However, Quantian supports parallel computing on multiple machines by means of an obsolete OpenMosix kernel. While Open Discovery v3 now provides parallel computing capability, it is not freely available.

We present birgHPC, a Live CD distribution with updated versions of GROMACS, NAMD (Phillips et al., 2005), mpiBLAST (Darling et al., 2003) and ClustalW-MPI (Li, 2003) that implements a parallel computing capability using OpenMPI and MPICH2, a feature missing from most bioinformatics-based Live CDs.

Our release, birgHPC, is an improved version of PelicanHPC, a Live CD that provides Octave parallel computing capability (Cree, 2008). PelicanHPC implements only OpenMPI and requires users to manually define the number of machine slots to utilize the nodes fully, which is time consuming because it requires the user to work with Media Access Control (MAC) addresses in a heterogeneous hardware environment. birgHPC accounts for these shortcomings by including a job submission interface, automatic slot detection and a MPICH2 parallel environment capability.

ABSTRACT
Summary: birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware.

Availability: The birgHPC Live CD and relevant user guide are available for free at http://birg1.1bb.utm.my/birghpc.

Contacts: shahir@utm.my; teonghan@gmail.com

Received on October 21, 2010; revised on January 25, 2011; accepted on February 23, 2011

1 INTRODUCTION
The Beowulf-class computing cluster was a breakthrough in cluster computing because it enabled parallel computing to be performed utilizing low-cost commodity hardware and standard software components compared to other supercomputing solutions (Sterling et al., 1995). Typical requirements for building a Beowulf-class cluster involve setting up the number of desired personal computers (PCs) and interconnecting them on the same Local Area Network (LAN), preferably using gigabit ethernet. A similar operating system (OS) and software are then installed on each PC (node) and make install.

OS and software installations are simplified by using the Linux Live CD method. A Live CD, or its image, can be booted on any PC without affecting the existing users’ previously installed OS or data. Several Live CD distributions are currently available with Knoppix (Knopper, 2000) arguably being the most well known. Although early versions of Live CDs were intended for use on a single PC, recent distributions, such as PelicanHPC (successor to ParallelKnoppix (Creel, 2008) and ClusterKnoppix (clusterknoppix.sw.be)) introduced parallel computing capability. Encouraged by the Live CD’s simplicity, a number of bioinformatics-based Linux distributions were developed, including Viggayna (www.viggayna.cd.org), Bioslax (www.bioslax.com), BioLinux, Quantian (Eddelbuettel, 2003), Open Discovery and DNALinux (Field et al., 2006; Rana and Foscarini, 2009). The bioinformatics software included in these distributions are GROMACS (version 3.2.1 in Vigyaan, version 3.2.2 in Quantian and version 3.3 in Open Discovery v2) (Lindahl et al., 2006), NCBI’s BLAST, ClustalW and others. Only a few bioinformatics-based programs are provided in a Live CD format and are parallel-computing ready, namely Quantian, OpenDiscovery v3 and Knoppix for InterProScan 4.1 High-Throughput Edition (Konishi et al., 2006). Open Discovery v2 supports parallel computing but only in the context of a single machine with a multicore processor. However, Quantian supports parallel computing on multiple machines by means of an obsolete OpenMosix kernel. While Open Discovery v3 now provides parallel computing capability, it is not freely available.

We present birgHPC, a Live CD distribution with updated versions of GROMACS, NAMD (Phillips et al., 2005), mpiBLAST (Darling et al., 2003) and ClustalW-MPI (Li, 2003) that implements a parallel computing capability using OpenMPI and MPICH2, a feature missing from most bioinformatics-based Live CDs.

Our release, birgHPC, is an improved version of PelicanHPC, a Live CD that provides Octave parallel computing capability (Cree, 2008). PelicanHPC implements only OpenMPI and requires users to manually define the number of machine slots to utilize the nodes fully, which is time consuming because it requires the user to work with Media Access Control (MAC) addresses in a heterogeneous hardware environment. birgHPC accounts for these shortcomings by including a job submission interface, automatic slot detection and a MPICH2 parallel environment capability.
The Linux Live CD, birgHPC, is an improvement over PelicanHPC. It was augmented with automatic slot detection capabilities and with the ability to make modifications to the host name in order to accommodate the MPICH2 environment. We also included installations of PyMol and Grame from the Debian repository, in addition to allowing manual installations of the latest VMD, fftw libraries, GROMACS, NAMD, mpiBLAST, ClustalW-MPI, OpenMPI and MPICH2 versions from their respective web sites. Some of the original PelicanHPC scripts were incorporated unchanged into birgHPC, such as the cluster configuration script and the netboot image generation script.

The main feature of birgHPC is its ability to convert PCs on the same LAN into a high-performance computing cluster. PCs in computer labs are often found idle after office hours and during holidays. These untapped resources can be converted within minutes into a computing cluster by booting birgHPC and following the general cluster creation work flow (i.e. setup the head node then the computing nodes). For a PC to act as the head node, it must be able to boot from a CD (birgHPC image) and have a monitor, a mouse and a keyboard. To act as computing nodes, the other PCs need to be bootable from the network. The birgHPE_setup script is executed upon the first cluster configuration. When additional nodes are added or removed from the existing cluster, the birg_restart_hpc script is executed. Node statuses can be monitored using the included Ganglia Monitoring System. After the final configuration, users are able to run jobs by placing their files in the /home/user directory, which is shared across the nodes using the network file system (NFS). birgHPC includes a job submission script (/usr/bin/job.sh), which provides users with an interface to run GROMACS, NAMD, mpiBLAST and ClustalW-MPI jobs.

The amount of RAM available is a concern because everything is loaded into RAM. While all the files in the /home/user/ folder are erased from RAM when the head node is rebooted (as is common with many Live CDs), a solution has been implemented in birgHPC which automatically detects and mounts an external storage device at /home (e.g. a flash drive formatted in ext3 with a BIRG label). Testing of birgHPC has been conducted with standard benchmark files and its performance is on par with the normal hard disk-installed computing clusters (Table 1).

2 METHODS

The scripts used to build PelicanHPC were modified to build birgHPC. Some of the original PelicanHPC scripts were incorporated unchanged into birgHPC, such as the cluster configuration script and the netboot image generation script.

3 DISCUSSION

The main feature of birgHPC is its ability to convert PCs on the same LAN into a high-performance computing cluster. PCs in computer labs are often found idle after office hours and during holidays. These untapped resources can be converted within minutes into a computing cluster by booting birgHPC and following the general cluster creation work flow (i.e. setup the head node then the computing nodes). For a PC to act as the head node, it must be able to boot from a CD (birgHPC image) and have a monitor, a mouse and a keyboard. To act as computing nodes, the other PCs need to be bootable from the network. The birgHPE_setup script is executed upon the first cluster configuration. When additional nodes are added or removed from the existing cluster, the birg_restart_hpc script is executed. Node statuses can be monitored using the included Ganglia Monitoring System. After the final configuration, users are able to run jobs by placing their files in the /home/user directory, which is shared across the nodes using the network file system (NFS). birgHPC includes a job submission script (/usr/bin/job.sh), which provides users with an interface to run GROMACS, NAMD, mpiBLAST and ClustalW-MPI jobs.

The amount of RAM available is a concern because everything is loaded into RAM. While all the files in the /home/user/ folder are erased from RAM when the head node is rebooted (as is common with many Live CDs), a solution has been implemented in birgHPC which automatically detects and mounts an external storage device at /home (e.g. a flash drive formatted in ext3 with a BIRG label). Testing of birgHPC has been conducted with standard benchmark files and its performance is on par with the normal hard disk-installed computing clusters (Table 1).

4 CONCLUSION

The Linux Live CD, birgHPC, is an improvement over PelicanHPC and Debian Live because birgHPC incorporates capabilities for automatic slot detection, the use of a MPICH2 environment and a job submission interface. The ability of birgHPC to convert LAN-connected PCs into a high-performance computing cluster allows researchers to instantly utilize otherwise idle PCs in laboratories to conduct bioinformatics and molecular dynamics studies with minimal effort. birgHPC is the only freely available, parallel computing-enabled Live CD with the latest versions of GROMACS and NAMD for molecular dynamics simulations.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Universiti Teknologi Malaysia for the facilities provided. Special thanks to Michael Creel for the feedback through PelicanHPC forum.

Funding: Malaysian Government (MOHE FRGS 78531).

Conflict of Interest: none declared.

REFERENCES

Table 1. A performance comparison between a permanent cluster (1ubuntu) and a birgHPC temporary cluster having identical hardware configurations based on the GROMACS with DPCC and Villin benchmarks

<table>
<thead>
<tr>
<th>Number of processes</th>
<th>Permanent cluster</th>
<th>birgHPC temporary cluster</th>
<th>Permanent cluster</th>
<th>birgHPC temporary cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.727</td>
<td>0.723</td>
<td>29.799</td>
<td>28.806</td>
</tr>
<tr>
<td>4</td>
<td>1.410</td>
<td>1.410</td>
<td>48.010</td>
<td>50.854</td>
</tr>
<tr>
<td>6</td>
<td>2.053</td>
<td>2.043</td>
<td>61.727</td>
<td>57.612</td>
</tr>
<tr>
<td>8</td>
<td>2.684</td>
<td>2.692</td>
<td>66.745</td>
<td>72.014</td>
</tr>
<tr>
<td>10</td>
<td>3.311</td>
<td>3.311</td>
<td>66.475</td>
<td>72.014</td>
</tr>
<tr>
<td>12</td>
<td>3.964</td>
<td>3.964</td>
<td>72.014</td>
<td>78.561</td>
</tr>
</tbody>
</table>