Multiple-rule bias in the comparison of classification rules

Mohammadmahdi R. Yousefi1, Jianping Hua2 and Edward R. Dougherty1,2,3,*

1Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, 2Computational Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 and 3Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA

ABSTRACT

Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule.

Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators.

Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included.

Contact: edward@ece.tamu.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

Received on February 19, 2011; revised on April 9, 2011; accepted on April 15, 2011

1 INTRODUCTION

Three recent articles in Bioinformatics have lamented the difficulty in establishing performance advantages for proposed classification rules (Boulesteix, 2010; Jelizarow et al., 2010; Rocke et al., 2009). Two statistically grounded sources of overoptimism have been highlighted. One considers applying a classification rule to numerous datasets and then reporting only the results on the dataset for which the designed classifier possesses the lowest estimated error. The optimistic bias from this kind of dataset picking is quantitatively analyzed in Yousefi et al. (2010), where it is termed ‘reporting bias’ and where this bias is characterized as a function of the number of considered datasets. A second kind of overoptimism concerns the comparison of a collection of classification rules by applying the classification rules to a dataset and comparing them according to the estimated errors of the designed classifiers. This kind of bias, which we will call ‘multiple-rule bias’, has been considered in Boulesteix and Strobl (2009) by applying a battery of classification rules to colon cancer and prostate cancer datasets and then examining the effects of choosing classification rules having minimum cross-validation error estimates.

Whereas the thrust of Boulesteix and Strobl (2009) is to compare the sources of multiple-rule bias in classification rules, namely, gene selection, parameter selection and classifier function construction, our interest is in studying multiple-rule bias as a function of the number of rules being considered. In particular, we are interested in the joint distribution, as a function of the number of compared rules, between the minimum estimated error among a collection of classification rules and the true error for the classification rule having minimum estimated error, as well as certain moments associated with this joint distribution. Although different with regard to distributional specifics, this approach is analogous to the approach taken in Yousefi et al. (2010), where the joint distribution involved the minimum estimated error of the designed classifier over a collection of datasets and the true error of the designed classifier on the population corresponding to the dataset resulting in minimum estimated error. This is a natural way to proceed because any bias ultimately results from inaccuracy in error estimation, so that the behavior of the joint distribution of interest and its moments are consequent to the joint distribution of the error estimator and the true error. Owing to the methodology in Boulesteix and Strobl (2009), it would have been impossible for them to study this joint distribution because they never concern themselves with true errors, only cross-validation estimates. Hence, when they compare a minimal error to a baseline error to arrive at a measure of optimistic bias, they are comparing cross-validation estimates.

In characterizing multiple-rule bias, we begin with a more general framework than the one just described; rather than simply considering multiple classification rules, we consider multiple classifier rule models, so that there are not only multiple classification rules, but also multiple error estimation rules being employed. We define a classifier rule model as a pair (Ψ, Ξ), where Ψ is a classification rule, including feature selection if feature selection is employed, and Ξ is an error estimation rule (Dougherty and Braga-Neto, 2006). The scenario in the preceding paragraph results where there is only a single error estimation rule.

*To whom correspondence should be addressed.
2 SYSTEMS AND METHODS

We consider r classification rules, $\Phi_1, \Phi_2, \ldots, \Phi_r$, and s error estimation rules, S_1, S_2, \ldots, S_s, on a feature-label distribution F. These are combined to form $m=r$s classifier rule models: $(\Phi_1, S_1), (\Phi_2, S_2), \ldots, (\Phi_r, S_s), (\Phi_r, S_s)$, and $(\Phi_1, S_s), (\Phi_2, S_s), \ldots, (\Phi_r, S_s)$. Given a random sample S_0 of size n drawn from F, the classification rules yield r designed classifiers: $\psi_i = \Psi_\Phi (\psi_i | X \neq F)$, where (X, F) is a feature-label pair. For $i = 1, 2, \ldots, r$, S_0 provides an error estimate ϵ_{est}^i for ψ_i. Since the classification rules are not identical, neither are the distributions of $\epsilon_{\text{est}}^1, \epsilon_{\text{est}}^2, \ldots, \epsilon_{\text{est}}^r$. All true-error and estimated-error distributions are functions of the random sample S_0.

From the generic arguments made thus far, we can state two properties of ϵ_{est} as an estimator of ϵ_{true}:

1. **Optimism**: $\text{Bias}(\epsilon_{\text{est}}) \leq 0$. In the case of leave-one-out cross-validation, that is slightly (pessimistically) biased and $\text{Bias}(\epsilon_{\text{est}}) = 0$. Estimation is optimistic if $\text{Bias}(\epsilon_{\text{est}}) = 0$.

2. **Variance**: $\text{Var}(\epsilon_{\text{est}}) = \text{Var}(\epsilon_{\text{true}})$. The minimum estimated error is $\epsilon_{\text{est}}^m = \min_s \left(\frac{1}{r} \sum_{i=1}^r \epsilon_{\text{est}}^i \right)$. These are combined to form ϵ_{est}, which is marginal to the joint distribution of $\epsilon_{\text{est}}^1, \epsilon_{\text{est}}^2, \ldots, \epsilon_{\text{est}}^r$.

A key performance measure derived from the deviation distribution is the bias of ϵ_{est} as an estimator of ϵ_{true}, namely,

$$\text{Bias}(\epsilon_{\text{est}}) = \text{Bias}(\epsilon_{\text{true}}) = E\left(\epsilon_{\text{est}} \right) - E\left(\epsilon_{\text{true}} \right).$$

Estimation is optimistic if $\text{Bias}(\epsilon_{\text{est}}) \leq 0$. This can happen even if none of the error estimation rules are optimistically biased, that is, even if $\text{Bias}(\epsilon_{\text{est}}^i) \geq 0$ for $i = 1, 2, \ldots, r$. Indeed, this is so, owing to estimation-rule variance, on any given sample it may be that $\epsilon_{\text{est}}^i < \epsilon_{\text{true}}$. For instance, among S_1, S_2, \ldots, S_s, there is an error estimation rule, such as leave-one-out cross-validation, that is slightly (pessimistically) biased and possesses large variance, then we should expect that $E\left(\epsilon_{\text{true}} \right) < E\left(\epsilon_{\text{est}} \right)$. In this case, $E\left(\epsilon_{\text{est}} \right) < E\left(\epsilon_{\text{true}} \right)$ does not hold. If, among S_1, S_2, \ldots, S_s, there is an error estimation rule, then the bias of any estimator results in considering multiple estimated errors among classifiers but also from applying multiple error estimates for each classifier.

From the arguments thus far, we can state two properties concerning the bias. First, as the number of classifier models grows, the minimum of Equation (1) is taken over more estimated errors, thereby increasing the variance of ϵ_{est}^m. Second, as the sample size n is increased, under the typical condition that the variance of the estimator decreases with increasing sample size, $E\left(\epsilon_{\text{est}}^m \right)$ increases and $\text{Bias}(\epsilon_{\text{est}}^m)$ decreases.

Bias is only one factor in estimating $E\left(\epsilon_{\text{true}} \right)$ by ϵ_{est}. Another is the variance of ϵ_{est}^m. In fact, one should consider the root-mean-square (RMS)
be the error estimator chosen by a researcher for the sake of consistency). The expectation, \(E g a[A_{\text{est}}]\), of this distribution gives the mean estimated comparative advantage of \(\Psi_{\text{est}}\) with respect to the collection. A key bias to be considered is \(C_{\text{bias}} = E g a[A_{\text{est}}] - A_{\text{true}}\) because it measures over optimism in comparative performance. In the case of randomization, the true comparative advantage becomes \(E g a[A_{\text{true}}(\Psi_{\text{true}})]\) and the mean estimated comparative advantage becomes \(E g a[A_{\text{est}}(\Psi_{\text{true}})]\).

2.1 Simulation design

We use a general model based on multivariate Gaussian distributions with a blocked covariance structure that conforms to various observations made in microarray expression-based studies (Hua et al., 2009). A battery of distribution models can be constructed by changing model parameters to generate different synthetic data sets. We also consider four real datasets.

2.1.1 Synthetic data

In microarray studies, assuming a blocked covariance matrix is a way of modeling groups of interacting genes where there is negligible interaction between the groups. It has been used in genomic classification to model genes collected into distinct pathways, each pathway being represented by a block (Dougherty et al., 2007). Shimulovich and Dougherty, 2007. As explained in Hua et al. (2009), although the model does not embrace all details of the experimental procedures, it is general enough to include major aspects and various complexity levels suitable for simulation of real-world scenarios. Sample points are taken from two equally likely classes, \(C_0\) and \(C_1\) having \(D\) features. Furthermore, by putting \(\rho\) equally likely subclasses in \(C_1\), each having its own distribution, one can model cases like different stages or subtypes of a cancer. Each sample point in \(C_1\) belongs to one and only one of these subclasses.

Features are categorized into two major groups, markers and non-markers. Markers resemble genes causing disease or susceptibility to disease. The groups have different class-conditional distributions for the two classes. They can be further categorized into two different types: global and heterogeneous markers. Global markers are homogeneously distributed among the two classes with \(D_{\text{gm}}\)-dimensional Gaussian distributions and parameters \((\mu_{\text{gm}}, \Sigma_{\text{gm}})\) for class 0 and \((\mu_{\text{gm}}, \Sigma_{\text{gm}})\) for class 1, where \(D_{\text{gm}}\) is the total number of global markers. Heterogeneous markers are divided into \(c\) subclasses within class 1. Each subclass is associated with \(D_{\text{hm}}\) mutually exclusive heterogeneous markers having \(D_{\text{gm}}\)-dimensional Gaussian distributions with parameters \((\mu_{\text{hm}}, \Sigma_{\text{hm}})\). The sample points not belonging to this particular subclass are considered to have \(D_{\text{gm}}\)-dimensional Gaussian class-conditional distributions with parameters \((\mu_{\text{gm}}, \Sigma_{\text{gm}})\).

Assuming that global and heterogeneous markers possess identical covariance structures, we use \([\Sigma_0, \Sigma_1]\) instead of \([\Sigma_{\text{gm}}, \Sigma_{\text{hm}}]\) and \([\Sigma_{\text{gm}}, \Sigma_{\text{hm}}]\). We assume that \(\Sigma_0 = \sigma_0^2 \Sigma\) and \(\Sigma_1 = \sigma_1^2 \Sigma\), where \(\sigma_0^2\) and \(\sigma_1^2\) can be different, and \(\Sigma\) has the following block structure:

\[
\Sigma = \begin{bmatrix}
\Sigma_0 & 0 & \cdots & 0 \\
0 & \Sigma_0 & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \Sigma_0
\end{bmatrix}
\]

where \(\Sigma_0\) is a \(l \times l\) matrix, with 1 on the diagonal and \(\rho\) off the diagonal. In the block-based covariance structure, the markers are divided into equal-sized blocks of size \(l\). Markers of different blocks are uncorrelated, while all the markers in the same block are correlated to each other with correlation coefficient \(\rho\).

A consequence of having unequal variances and subclasses in the class-conditional distributions is to introduce non-linearities in the decision boundaries for the model, where less global markers and larger difference in the variances lead to a more non-linear decision boundary. Because the global markers and the heterogeneous markers possess the same structure, we can assume the same mean vectors \([\mu_{\text{gm}}, \mu_{\text{hm}}]\) for both groups, \([\mu_{\text{gm}}, \mu_{\text{hm}}]\) and \([\mu_{\text{gm}}, \mu_{\text{hm}}]\), as we did for the covariance matrices. Furthermore, we use the same structure for \(\rho_{\text{gm}}\) and \(\rho_{\text{hm}}\) in the form of \(m_0 \times (1, 1, \ldots, 1)\) and \(m_0 \times (1, 1, \ldots, 1)\), respectively, where \(m_0\) and \(m_0\) are scalars (Hua et al., 2009; Yousefi et al., 2010).

Similar to the global markers, there are two types of non-markers: high-variance and low-variance non-markers. The \(D_{\text{nm}}\) features belonging to the former group are uncorrelated and their distributions are described by \(p(N(m_0, \sigma_0^2)) + (1-\rho)N(m_1, \sigma_1^2)\), where \(m_0, m_1, \sigma_0^2\) and \(\sigma_1^2\) take values equal to the means and variances of the markers, respectively, and \(\rho\) is a random value uniformly distributed over [0, 1]. The \(D_{\text{nm}}\) remaining features are uncorrelated low-variance non-markers, each having a Gaussian distribution with parameters \((m_0, \sigma_0^2)\). A typical microarray experiment usually contains tens of thousands of probes (genes) but a small number of sample points, typically less than 200. We choose the total number of features to be \(D = 20000\) and the number of sample points to be 60 and 120. Two variance settings are considered: equal variances \([\sigma_0^2 = 0.6^2, \sigma_1^2 = 0.6^2]\) and unequal variances \([\sigma_0^2 = 0.6^2, \sigma_1^2 = 1.2^2]\). For the blocked covariance matrix, we choose block size \(l=5\) and correlation coefficient \(\rho=0.8\), giving relatively tight correlation within a block, which would be expected for a pathway. We do not choose model parameters in accordance with the Bayes errors or the estimated errors; rather, we choose them in accordance with achievable true errors seen in real problems. Table 1 shows the parameters of the distribution models used in this study. See Yousefi et al. (2010) for more details about the choice of parameters.

2.2 Real data

This study uses four real datasets from microarray experiments consisting of more than 150 arrays: pediatric acute lymphoblastic leukemia (ALL) (Yeoh et al., 2002), multiple myeloma (Zhan et al., 2006), hepatocellular carcinoma (HCC) (Chen et al., 2004) and drugs and toxicants response on rats dataset (Natsoulis et al., 2005). We use \(n = 60\) sample points for training. The remaining sample points are held out for computing the true error. To the extent possible, we try to maintain the original labeling and follow the data preparation directions used in the papers reporting these datasets. Table 2 shows a summary of the four real datasets. Full descriptions are presented in the Supplementary Materials.

Table 1. Distribution model parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values/description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>(m_0 = 0.23, m_1 = 0.8) (equal variance)</td>
</tr>
<tr>
<td>Variance</td>
<td>(\sigma_0^2 = 1.1, \sigma_1^2 = 0.9) (equal variance)</td>
</tr>
<tr>
<td>Block size (l)</td>
<td>(l = 5)</td>
</tr>
<tr>
<td>Features</td>
<td>(D = 20000)</td>
</tr>
<tr>
<td>Feature block correlation (\rho)</td>
<td>(\rho=0.8)</td>
</tr>
<tr>
<td>Heterogeneous markers (D_{\text{hm}})</td>
<td>(D_{\text{hm}} = 50)</td>
</tr>
<tr>
<td>Low-variance non-markers (D_{\text{nm}})</td>
<td>(D_{\text{nm}} = 2000)</td>
</tr>
<tr>
<td>Low-variance non-markers (D_{\text{nm}})</td>
<td>(D_{\text{nm}} = 17880)</td>
</tr>
</tbody>
</table>

Table 2. A summary of the real datasets used in this study

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dataset type</th>
<th>Feature/sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeoh et al. (2002)</td>
<td>Pediatric ALL</td>
<td>5077/149/99</td>
</tr>
<tr>
<td>Zhan et al. (2006)</td>
<td>Multiple myeloma</td>
<td>5463/156/78</td>
</tr>
<tr>
<td>Chen et al. (2004)</td>
<td>HCC</td>
<td>10237/75/82</td>
</tr>
<tr>
<td>Natsoulis et al. (2005)</td>
<td>Drugs response on rats</td>
<td>8491/120/61</td>
</tr>
</tbody>
</table>
Table 3. Classifier rule models considered in this study

<table>
<thead>
<tr>
<th>Classification rule</th>
<th>Feature selection</th>
<th>Error estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3NN</td>
<td>t-test</td>
<td>5-fold cross-validation</td>
</tr>
<tr>
<td>LDA</td>
<td>t-test + SFS</td>
<td>10-fold cross-validation</td>
</tr>
<tr>
<td>DLDA</td>
<td></td>
<td>LOO</td>
</tr>
<tr>
<td>NMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBF-SVM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 Classification schemes

Six classification rules are considered: 3-nearest neighbors (3NN), linear discriminant analysis (LDA), diagonal LDA (DLDA), nearest-mean classifier (NMC), linear support vector machine (LSVM) and radial basis function SVM (RBF-SVM). Two different feature selection methods are considered: t-test and t-test followed by sequential forward search (t-test + SFS). One-stage feature selection uses the t-test and five features are selected. For two-stage feature selection, the number of features is reduced to 500 in the first stage (t-test) and then to 5 by SFS. Three cross-validation error estimation methods are considered: 5-fold, 10-fold and leave-one-out (LOO). Combining six classification rules with two feature selection methods results in \(12 = 2 \times 6\) classification rules from which we randomly choose \(r = 1, 2, \ldots, R\) and design the classifiers on one sample. Note that with three error estimators, there is a maximum of 36 different classifier rule models. Table 3 lists the classification rules, feature selection methods and error estimation procedures utilized.

To illustrate the definitions, let us suppose we are only considering two classification rules, LDA and 3NN, without feature selection and two error estimators, LOO and CV5 (5-fold cross-validation). LDA is based on the discriminant for the optimal classifier in a Gaussian model (Gaussian class-conditional densities) with common covariance matrix by plugging the sample means and pooled sample covariance matrix obtained from the data into the discriminant. Assuming equally likely classes, LDA assigns \(x\) to class 1 if and only if

\[
(x - \bar{x}_1)\Sigma^{-1}(x - \bar{x}_1) \leq (x - \bar{x}_2)\Sigma^{-1}(x - \bar{x}_2),
\]

where \(\bar{x}_a\) is the sample mean for class \(a\), \(a = 0, 1, 1\), and \(\Sigma\) is the pooled sample covariance matrix. While derived under the Gaussian assumption with common covariance matrix, LDA can provide good results when these assumptions are mildly violated. For the 3NN rule, the designed classifier is defined to be 0 or 1 at \(x\) according to which is the majority among the labels of the 3 points closest to \(x\).

In \(k\)-fold cross-validation, the given sample \(S\) is randomly partitioned into \(k\) folds (subsets) \(S_1, \ldots, S_k\). Each fold is left out of the design process, a (surrogate) classifier, \(\hat{\psi}_{\text{net}}\), is designed on \(S_{-i}\), the error of \(\psi_{\text{net}}\) is estimated as the counting error \(\hat{\psi}_{\text{net}}\), makes on \(S_i\) and the cross-validation estimate is the average error committed on all folds. If there is feature selection, then it must be redone for every fold because it is part of the classification rule. In leave-one-out cross-validation, each fold consists of a single point. Owing to computational requirements, \(k\)-fold cross-validation, \(k < n\), usually involves a random selection of partitions. In general, the bias of cross-validation is typically slightly pessimistic, provided that the number of folds is not too small. The problem with cross-validation is that it tends to be inaccurate for small samples because, for these, it has large variance (Braga-Neto and Dougherty, 2004) and is poorly correlated with the true error (Hanczar et al., 2007). For all error estimators, there is variation resulting from the sampling process. For randomized cross-validation, a second variance component, referred to as ‘internal variance’, arises from the random selection of the partitions (see Hanczar and Dougherty, 2010). The latter does not apply to LOO because only a single set of folds is possible.

Relative to the definitions in the Section 2.1, if we let \(\psi_a\) be LDA, \(\psi_b\) be 3NN, \(S_1\) be LOO and \(S_2\) be CV5, then there are four classifier rule models: (LDA, LOO), (LDA, CV5), (3NN, LOO), and (3NN, CV5). There are two true errors, \(S_1^{\text{true}}\) and \(S_2^{\text{true}}\), four estimated errors, \(S_1^{\text{est}}\) and \(S_2^{\text{est}}\). We now define \(E_{\text{est}}\) and \(E_{\text{true}}\), and \(S_1^{\text{est}}\) and \(S_2^{\text{est}}\) be the minimum of the four estimated errors.

2.3 Implementation

The raw output of the synthetic data simulation consists of the true and estimated error pairs resulting from applying the 36 different classification schemes on 10000 independent random samples drawn from the aforementioned four different distribution models. We approximate the expected true error by taking the average of true errors of each classification rule over the samples. We generate all \(R\) possible collections of classification rules of size \(r\), each associated with \(r\) error estimation rules, resulting in \(R\) collections of classifier rule models of size \(m\). For each collection, we find the true and estimated error pairs from the raw output data. Then, for each sample, we find the classifier model (including the classification and error estimation rules) in the collection that gives the minimum estimated error. We record the estimated error, its corresponding true error and the classification and error estimation rules. Given the collection, \(\Phi_m\), we compute \(S_1^{\text{est}}\) and \(S_2^{\text{est}}\) for each sample. Then, we approximate \(E_n(\Phi_m)\), \(V_{\text{var}}E_n(\Phi_m)\), \(S_1^{\text{var}}(\Phi_m)\) and \(S_2^{\text{var}}(\Phi_m)\), by taking the average over all the samples. Finally, we approximate \(E_n(\Phi_m)(\Delta(\Phi_m))\), \(E_n(\Delta(\Phi_m))\), \(S_1(\Delta(\Phi_m))\), \(S_2(\Delta(\Phi_m))\) by taking the average over the generated collections.

Real data simulations differ somewhat from the synthetic data in the way that the true and estimated errors are computed. For the synthetic data, we generate 10 000 pairs of samples (training set of size 60 or 120 and test set of size 5000) from the assumed distribution model. But for a real dataset, we randomly pick 60 sample points for training (classifier design and error estimation). The remaining hold-out sample points are used to calculate the true error. We repeat this process 10 000 times.

3 RESULTS AND DISCUSSION

The full set of results appears in the Supplementary Material. In the article, we provide representative examples for each issue. We consider two cases regarding the error estimators: multiple error estimators and a single error estimator. For multiple error estimators, we have three different error estimators at once, and \(m = 3, 6, \ldots, 36\). For a single error estimator, \(m = 1\), we have three different cases, depending on which error estimator is used, and \(m = 1, 2, \ldots, 12\) for each error estimator. For \(m = 3\), keep in mind that the simulations are incremented in steps of three, \(3, 6, \ldots, 36\), because each classification rule is evaluated with all three error estimators, as would be the case in practice if an investigator were to consider three error estimators. For a single error estimator, we show LOO in the article and leave the others to the Supplementary Material.

3.1 Joint distributions

For the synthetic data, the joint distributions are estimated with a bivariate Gaussian-kernel density estimation method. The first set of results (Supplementary Figures S1–S16) show joint distributions between the minimum estimated errors and their corresponding true errors, \(S_1^{\text{true}}\) and \(S_2^{\text{true}}\), for multiple and single error estimators, different sample sizes and variances. Each plot includes the regression line and a small circle showing the pair of sample means. As \(m\) increases, the distributions tend to be more circular (indicating less correlation) and also more compact (indicating smaller variance). Furthermore, as \(m\) increases, the distributions...
Multiple-rule bias

Fig. 2. The joint distributions between $\varepsilon_{\text{min}}^{\text{est}}$ and $\varepsilon_{\text{min}}^{\text{true}}$ with respect to the collection size m, for all classifier rule models for $m=6, 21, 36$ (left column) and for single LOO error estimation for $m=2, 7, 12$ (right column). The real dataset is multiple myeloma by Zhan et al. (2006). The white line shows the regression line and the circle indicates the sample mean of the joint distribution.

For the real data, the joint distributions are again estimated with a bivariate Gaussian-kernel density estimation method. Supplementary Figures s25–s40 show the joint distribution of $(\varepsilon_{\text{min}}^{\text{est}}, \varepsilon_{\text{min}}^{\text{true}})$ for multiple and single error estimators, and for different real datasets. Figure 2 shows the distributions and regression lines for the myeloma data: the left column is for multiple error estimators and shows $m=6, 21, 36$; the right column is for the single error estimator LOO and shows $m=2, 7, 12$. Similar to the synthetic data, as m increases, the distributions tend to be more circular, have smaller variances and move to the left. What is most striking is the absence of regression between $\varepsilon_{\text{min}}^{\text{est}}$ and $\varepsilon_{\text{min}}^{\text{true}}$. This lack of regression is consistent with what has been observed in other settings when cross-validation is used to estimate the true error (Hanczar et al., 2007, 2010).

3.2 Moments and comparative performance

For the synthetic data and the multiple error estimator case, Figure 3 shows: (a) the expected bias, Bias_{Av}; (b) the expected variance, Var_{Av}; (c) the expected RMS, RMS_{Av}; and (d) the expected comparative performance bias, C_{bias}. Note that Figure 3d does not graph $m=s$ because the comparative advantages are not defined when $r=1$. The same applies for analogous subfigures in the rest of the article. For increasing m, the bias and RMS get worse, but even with $m=3$, the RMS is about 0.1 for sample size 60. For this sample size and $m=36$, the comparative-performance bias has reached -0.1. Figure 4 shows corresponding results for a single error estimator, LOO. These too are especially alarming for $n=60$.

For the real data, Figures 5 and 6 show corresponding results to Figures 3 and 4, respectively (ignore for the moment the ‘average’ curves, which will soon be discussed). Note the widely different behaviors between the different datasets. Since we are using the full dataset as an empirical distribution to serve as an approximation of the underlying feature-label distribution and are sampling from the empirical distribution, the different biases result from different behaviors of the error estimators on the different distributions. In practice, given a single sample dataset, one would have no idea of what kind of biases and RMS deviations to expect. This uncertainty exemplifies the standard conundrum faced when one lacks prior information regarding the feature-label distribution. In our case, the problem is that error estimator performance is heavily dependent on the underlying feature-label distribution.
The problem of multiple-rule bias is exacerbated if one combines distributions. Our interest is now with feature-label distributions. Assuming multiple error estimators, there ε estimation rule where ε the expected RMS, RMSAv; and (3.3 Averaging over different populations

The average’ curves in Figures 5 and 6 illustrate the effects of averaging. They show less estimation bias, less variance, smaller RMS and less comparative-performance bias when averaging is employed, as opposed to using the datasets individually. The situation is similar, albeit a bit more complicated, than the argument in Yousefi et al. (2010) for averaging results over a large number of datasets. Here, the averaging is done to mitigate multiple-rule bias. It is possible to obtain theoretical results regarding the effect of averaging on the bias of Equation (10). In particular, if all error estimators are unbiased, then we prove in the Appendix A that limσ→0 B(m, n, K) = 0. If one looks closely at the proof, it is clear that the unbiasedness assumption can be relaxed in each of the lemmas. In the first lemma, which shows that limσ→0 B(m, n, K) ≤ 0, we need only assume that none of the error estimators is pessimistically biased. In the second lemma, which shows that limσ→0 B(m, n, K) ≥ 0, unbiasedness can be relaxed to weaker conditions regarding the expectations of the terms making up the minimum in Equation (9); however, these conditions are rather arcane and do not add much practical insight. Moreover, we are interested in close-to-unbiased error estimators, specifically, the cross-validation estimators, so that we can expect B(m, n, K) to diminish with averaging, even if the limit of B(m, n, K) does not actually converge to 0.

3.4 Concluding remarks

From a practical standpoint, the results obtained in the present paper quantitatively demonstrate the large degree of overoptimism that results from comparing classifier rule models via their performances on a small dataset owing to the inaccuracy of error estimation on
We have observed from both simulations and theoretical analysis that the expected RMS, RMS_{Av}, and ($\text{Boulesteix, 2010; Jelizarow}$) performance advantages for proposed classification rules to some predetermined level. This leads us to some final comments. Free results it leaves open the rate of convergence, which in practice the convergence of a word of caution. While the proposition we have proven regarding accuracy of the error estimator). Even with averaging, we must offer a collection of datasets are employed, then one may be able to make a rule bias precludes any conclusions whatsoever, whereas at least if a estimates. If there is only a single small sample, then the multiple- experimental design: too small of a sample to obtain accurate error accretes rapidly with even a small number of models being compared. In fact, the latter possibility has been precluded at the outset by the comparing classification rule performances on a single population. The concerns expressed regarding the difficulty of establishing error estimators. Very little is known about the performance of common error estimators, in particular, cross-validation. To take a salient example: LOO. Prior to 2009, all that was known about LOO for LDA and Gaussian class-conditional distributions were asymptotic expressions for the expectation and variance of the estimator in one dimension (Davison and Hall, 1992). In 2009, the distribution of the LOO estimator was discovered in this model for an arbitrary dimension m without assuming a common variance for $m=1$ and assuming a common covariance matrix with $m>1$ (Zollanvari et al., 2009). Still, none of these results treated the joint distribution of the estimated and true errors, nor, in particular, the RMS. In 2010, the joint distribution was found exactly for $m=1$ without assuming a common variance and an approximation was found for $m>1$ assuming a common covariance matrix (Zollanvari et al., 2010). Besides the joint distribution via complete enumeration (Xu et al., 2006) and the correlation (Braga-Neto and Dougherty, 2010) for multinomial discrimination, there are no other analytic results regarding the joint behavior of LOO with the true error. This dearth of results is striking considering that LOO was first proposed in 1968 (Lachenbruch and Mickey, 1968), it has been used extensively, and the variance problems of LOO have been known from at least 1978 (Glick, 1978). As for more complicated cross-validation estimators that require random resampling, essentially nothing is known. If lamentations regarding the lack of performance characterization in bioinformatics are to be abated, then much greater knowledge regarding error estimation must be discovered.

ACKNOWLEDGEMENTS

We would like to thank the High-Performance Biocomputing Center of TGen for providing the clustered computing resources used in this study; this includes the Saguaro-2 cluster supercomputer, a collaborative effort between TGen and the ASU Fulton High Performance Computing Initiative.

Funding: National Institutes of Health grant (Saguaro-2 cluster, 1S10RR025056-01, in part) and the National Science Foundation (CCF-0634794).

Conflict of Interest: none declared.

REFERENCES

Owing to the unbiasedness of the error estimators, $E_S[\epsilon^{est}|K] = \epsilon_{true}$. Hence, referring to Equation (10), for $K \geq K_{\delta}$, we have

$$
B(m,n,K) = E_S[\epsilon^{\min}(K)] = E_S\left[\min_{i,j} \left\{ \frac{1}{K} \sum_{k=1}^{K} \epsilon_{i,j,k}^{est} \right\} \right]
$$

where $i = 1,2,\ldots,n$ and $j = 1,2,\ldots,m$. Owing to the unbiasedness of the error estimators, $E_S[\epsilon_{i,j,k}^{est}] = E_S[\epsilon_{i,j,k}^{true}]$. Referring to Equations (10) and (A.1), we have

$$
B(m,n,K) = E_S\left[\min_{i,j} \left\{ \frac{1}{K} \sum_{k=1}^{K} \epsilon_{i,j,k}^{est} \right\} \right] = \frac{1}{K} \sum_{k=1}^{K} E_S[\epsilon_{i,j,k}^{true}]
$$

where the relations in the third and sixth lines result from Jensen’s inequality and unbiasedness of the error estimators, respectively.

Lemma A.2. If all error estimators are unbiased, then $\lim_{K \to \infty} B(m,n,K) \geq 0$.

Proof. Let

$$
A_{i,j}^{1} = \frac{1}{K} \sum_{k=1}^{K} \epsilon_{i,j,k}^{est}, \quad T = \frac{1}{K} \sum_{k=1}^{K} E_S[\epsilon_{i,j,k}^{true}]
$$

Owing to the unbiasedness of the error estimators, $E_S[A_{i,j}^{1}] = T$. Without loss of generality, we assume $T^{1} \leq T^{2} \leq \ldots \leq T^{r}$. To avoid cumbersome notation, we will further assume that $T^{1} < T^{r}$ (with some adaptation, the proof goes through without this assumption). Let $2\delta = T^{r} - T^{1}$ and

$$
B_{\delta} = \left(\bigcap_{i=1}^{r} (T^{1} - \delta \leq A_{i,j}^{1} \leq T^{1} + \delta) \right) \cap \left(\bigcap_{j=1}^{m} \min_{i=1}^{n} A_{i,j}^{1} > T^{1} + \delta \right)
$$

Because $|A_{i,j}^{1}| \leq 1/K$, for $\tau > 0$, there exists $K_{\delta,\tau}$ such that $K \geq K_{\delta,\tau}$ implies $P(B_{\delta}|K) > 1 - \tau$. Hence, referring to Equation (10), for $K \geq K_{\delta,\tau}$,

$$
E_S\left[\min_{i,j} (K) \right] \geq E_S\left[\min_{i,j} (K) \mid B_{\delta} \right] P(B_{\delta}) + E_S\left[\min_{i,j} (K) \mid B_{\delta} \right] P(B_{\delta}^c)
$$

$$
\geq E_S\left[\min_{i,j} (K) \mid B_{\delta} \right] P(B_{\delta}) = E_S\left[\min_{i,j} (K) \mid B_{\delta} \right] P(B_{\delta})
$$

$$
\geq (T^{1} - \delta)(1 - \tau). \quad (A.5)
$$
Again referring to Equation (10) and recognizing that $i_{\text{min}} = 1$ in B_k, for $K \geq K_{\delta, \tau}$,

$$
\frac{1}{K} \sum_{k=1}^{K} E_{m,n,K} \left[E_{\text{true},k}^i \right] = \frac{1}{K} \sum_{k=1}^{K} \left(E_{m,n,K} \left[E_{\text{true},k}^i \right] | B_k \right) P(B_k)
$$

$$
+ E_{m,n,K} \left[E_{\text{true},k}^i \right] P(B_0)
$$

$$
\leq \frac{1}{K} \sum_{k=1}^{K} \left(E_{m,n,K} \left[E_{\text{true},k}^i \right] | B_k \right) P(B_k)
$$

$$
+ P(B_0)
$$

$$
\leq T^1 + \tau. \quad (A.6)
$$

Putting Equations (A.5) and (A.6) together and referring to Equation (10) yields, for $K \geq K_{\delta, \tau}$,

$$
B(m,n,K) \geq (T^1 - \delta)(1 - \tau) - T^1 - \tau \geq -(2\tau + \delta) \quad (A.7)
$$

Since δ and τ are arbitrary positive numbers, this implies that for any $\eta > 0$, there exists K_η such that $K \geq K_\eta$ implies $\lim_{K \to \infty} B(m,n,K) \geq 0$, which is precisely what we want to prove.

Combining Lemmas A.1 and A.2, we have proven that $\lim_{K \to \infty} B(m,n,K) = 0$ under the assumption that all the error estimators are unbiased.