ABSTRACT

Summary: Absynte (Archaeal and Bacterial Synteny Explorer) is a web-based service designed to display local syntenies in completely sequenced prokaryotic chromosomes. The genomic contexts are determined with a multiple center star clustering topology on the basis of a user-provided protein sequence and all (or a set of) chromosomes from the publicly available archaeal and bacterial genomes. The results consist in a dynamic web page where a consistent color-coding permits a rapid visual evaluation of the relative positioning of genes with similar sequences within the synteny. Each gene composing the synteny can be further queried interactively using either local or remote databases. Absynte results can be exported in .CSV or high-resolution, .PDF formats for printing, archival, further editing or publication purposes. Performance, real-time computation, user-friendliness and daily database updates constitute the principal advantages of Absynte over similar web services.

Availability: http://archaea.u-psud.fr/absynte
Contact: jacques.oberto@igmors.u-psud.fr

Received on April 21, 2011; revised on July 11, 2011; accepted on August 3, 2011

1 INTRODUCTION

The availability of more than 1400 completely sequenced archaeal and bacterial genomes at the National Center for Biotechnology Information (NCBI) repository provides a wealth of information to researchers involved in prokaryotic genetics. In particular, the comparison of the relative genetic positioning on microbial chromosomes is of special interest not only to measure evolutionary relationships between different species but also to deduce the function of uncharacterized proteins. This conservation of orthologous gene order is commonly referred as 'synteny' even if in its original definition the term had a different meaning (Renwick, 1971). The extraction of syntenic information from sequenced genomes involves the impractical manipulation of large data files and the complexity of the task increases with the number of genomes that need to be compared. The comparative analysis of genome segments from prokaryotic organisms has been addressed by web services such as GeConT2 (Martinez-Guerrero et al., 2008), PSAT (Fong et al., 2008) and GCView (Grin and Linke, 2011). Unfortunately, these web applications suffer from one or more restrictions as discussed below. In response to these limitations, we have developed Absynte (Archaeal and Bacterial Synteny Explorer), a web tool, which only requires a user-provided protein sequence to display the corresponding synteny from a daily updated list of archaeal and bacterial genomes. This interactive web application is executed in real time and is designed to extract, compare and predict orthologous gene clusters originating from any combination of sequenced prokaryotic organisms.

2 FEATURES

The Absynte workflow is initiated by the submission of a protein sequence, which is first compared to itself using BLASTP (Altschul et al., 1997) in order to determine the maximal bit score. The user then opts either to match this protein against all available completely sequenced archaeal and bacterial chromosomes in the database or to a selection of up to 50 individual replicas using TBLASTN (Altschul et al., 1997). Normalization of the resulting scores with the maximal bit value allows to sort the chromosomes by decreasing score. Each matching chromosome determines a 15 kb-segment centered on the sequence similarity coordinates from which open reading frames and protein sequences are extracted according to GenBank annotations. The proteins from the highest ranking chromosomes are compared to each other in order to detect potential duplicates/paralogs using the Smith-Waterman-Gotoh (SWG) algorithm (Gotoh, 1982). These proteins are then matched using SWG against the proteins of the remaining chromosomes. A consistent color code is assigned to matching proteins and synteny maps are then rendered with their genes drawn to scale according to the same color scheme. The alignment and coloring of all the genes composing the genomic context maps allow an immediate visual evaluation of the conservation of gene order across the various analyzed genomes (Fig. 1). This advantage over other synteny servers such as GCView, which will only trace user-defined syntenies using simple BLASTP searches, Absynte is designed to produce synteny maps in real-time in order to simplify daily database maintenance and update. The GeConT2 or PSAT web services rely instead on pre-computed databases that are rarely updated and lack recent genomes. Each newly added genome might indeed require the impractical regeneration of the whole pre-computed database. On the other hand, the real-time Absynte workflow is more computationally intensive. Several techniques were therefore elaborated in order to optimize the overall performance. Among these, the development of parallel processing routines permitted to fully exploit multi-core processors. In addition, a particular interest was devoted to the implementation of routines such as SWG, able to process data directly from faster live memory instead of relying on slower temporary disk files. An additional benefit of Absynte is constituted by its ‘multiple center star’ gene clustering.

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Received on April 21, 2011; revised on July 11, 2011; accepted on August 3, 2011

Associate Editor: Alfonso Valencia
Fig. 1. Absynte report for *Escherichia coli* protein YgjD in three bacterial genomes. The gene corresponding to the protein under analysis is drawn in bold at the center of each context map. The consistent genetic color-coding allows immediate visualization of the synteny. Additional genetic information, displayed in a tooltip, is available for all the genes shown in the genomic contexts.

The initial protein comparisons are executed with TBLASTN instead of BLASTP to avoid potential inaccuracies in genomic annotations. The computations are executed in real-time, from live memory, on the full set of daily updated archaebacterial and bacterial genomes, allowing independence from pre-calculated databases more difficult to maintain. We believe that the rapid identification of synteny provided by Absynte might be of wide interest for researchers dealing with prokaryotic genetics and could constitute a valid complement to phylogenetic analyses of gene clusters.

Funding: ‘Agence Nationale pour la Recherche’; ‘Centre National pour la Recherche Scientifique’.

Conflict of Interest: none declared.

REFERENCES

