ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality

Máté Szalay-Bekő1,†, Robin Palotai1,†, Balázs Szappanos2, István A. Kovács1,3,4, Balázs Papp2 and Péter Csermely1,*

1Department of Medical Chemistry, Semmelweis University, Budapest 1444, 2Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged 6726, 3Department of Physics, Loránd Eötvös University and 4Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, Budapest 1525, Hungary

Associate Editor: Mario Albrecht

ABSTRACT

Summary: The ModuLand plug-in provides Cytoscape users an algorithm for determining extensively overlapping network modules. Moreover, it identifies several hierarchical layers of modules, where meta-nodes of the higher hierarchical layer represent modules of the lower layer. The tool assigns module cores, which predict the function of the whole module, and determines key nodes bridging two or multiple modules. The plug-in has a detailed JAVA-based graphical interface with various colouring options. The ModuLand tool can run on Windows, Linux or Mac OS. We demonstrate its use on protein structure and metabolic networks.

Contact: csermely.peter@med.semmelweis-univ.hu

Supplementary information: Supplementary data are available at Bioinformatics online.

Received on November 21, 2011; revised on June 13, 2012; accepted on June 14, 2012

2 SOFTWARE OVERVIEW

The widely used Cytoscape program (Shannon et al., 2003) has several very useful clustering plug-ins that can be used for network modules, hierarchical layers of modules, module cores and key inter-modular nodes using protein structure and metabolic networks.

The installation of the ModuLand plug-in follows Cytoscape’s widely used feature. The program can be installed as a single .jar file. Moreover, the current implementation works on Linux, Windows and Mac OS, thereby extending the options of the former version.
Fig. 1. The hierarchical modular structure determined by the ModuLand Cytoscape plug-in. The left side shows the protein structure network of \textit{E. coli} Met-tRNA synthase and its three hierarchical levels as determined by the plug-in. Each meta-node of a higher hierarchical level represents a module of the level right below. All networks are coloured according to the five modules identified on hierarchical level 1. This colouring option can be performed by the two clicks of the plug-in main dialog box shown on the right.

The lower number of modules at higher hierarchical levels may be visualized either using the meta-nodes of the higher hierarchical level itself, or projecting this higher level modular structure to the nodes of the original network. On any level of module hierarchy, nodes or meta-nodes can be visualized assigning them the colour of the module they mostly belong to. This shows a non-overlapping assignment of nodes to modules. Nodes can also be marked by blending the colours of the modules proportional to the overlapping module assignment of the given node. Edges may be optionally visualized as a mix of the colour of their two nodes. The plug-in sets meta-node labels on the higher hierarchical level based on the modules of one level below in the hierarchy. The meta-node on the higher hierarchical level representing the module has the name of the node having the highest modular assignment value for the corresponding module at one level below in the hierarchy.

Node colours can also visualize several node (or meta-node) measures including weighted degree, betweenness centrality, community centrality, overlap and bridgeness (see Supplementary Fig. 2).

The plug-in has an option to merge highly similar module pairs containing roughly the same nodes or meta-nodes with the same intensity. For merging of modules the plug-in offers a correlation histogram, and allows the user to select an appropriate correlation threshold. The runtime complexity of the plug-in version remained \(\sim O(n^3)\), as defined earlier (Kovács et al., 2010). To enhance the performance of the plug-in for calculating the higher hierarchical layers further, we introduced a user-selected optimization. This results in the disappearance of meta-edges with very small weights at the higher hierarchical levels. These low intensity meta-edges are derived from the minor overlaps of distant modules of the lower level. This optimization allowed a speedup in running time by a factor of 7 for larger networks (Supplementary Table S10).

The plug-in is capable to generate overview reports for each hierarchical level. These reports list the number of the nodes (meta-nodes), edges (meta-edges) and modules, the effective number of modules (see Kovács et al., 2010) and the size of each module. The overview also contains the list of the 10 nodes of each module having maximal module assignment value to the respective module (called as the module core). Data related to the module assignment and the calculated measures of nodes (and meta-nodes of higher hierarchical levels) can be exported in a csv or txt format.

The plug-in contains a Help function, and a detailed step-by-step User Guide can also be downloaded from the plug-in webpage: www.linkgroup.hu/modules.php.

3 RESULTS AND CONCLUSION

ModuLand-derived communities of various yeast protein–protein interaction networks gave a functionally meaningful description of the yeast interactome (Kovács et al., 2010). Function of module core proteins proved to be good indicator of the function of the whole...
module Mihalik and Csermely (2011). Here, we demonstrate the use of the ModuLand Cytoscape plug-in on the protein structure network of Escherichia coli Met-tRNA synthase, since an elegant study Ghosh and Vishveshwara (2011) showed the existence of four alternative communication paths in this enzyme. The five major sub-domains of Met-tRNA synthase were well reflected by the five modules obtained at the second hierarchical level of the protein structure network (Fig. 4, Supplementary Table S3). Key amino acids of the most frequently used communication path (Ghosh and Vishveshwara, 2011) either belonged to the module cores or were inter-modular nodes between these modules (see Supplementary Table S4). These observations were in agreement with earlier findings Ghosh and Vishveshwara (2011; Sehli et al. 2011).

We further demonstrated the use of the ModuLand plug-in by comparing the modular structures of the metabolic networks of the free-living bacterium E.coli and the endosymbiont Buchnera aphidicola (Pay et al. 2008). E.coli metabolic module cores had a significant overlap (Fisher’s exact test $P=1.4 \times 10^{-7}$; see Supplementary Information for more details) with the modules determined earlier by Guimera and Amaral (2005).

Both visual inspection (see Supplementary Figs S4–S7) and numerical values (see Supplementary Table S3) suggested a more differentiated modular structure of the E.coli metabolic network than that of B.aphidicola. This finding is in agreement with earlier findings Kreiner et al. (2008); Mihalik and Csermely (2011); Putter et al. 2008; Sarni et al. 2008; Tamames et al. 2007. The difference in modular structure was not likely to be caused by the difference in the size of the E.coli and B.aphidicola networks (see Supplementary Figs S8 and S9, and Supplementary Tables S7 and S8).

E.coli module cores corresponded to significantly less metabolic functions than those of B.aphidicola (0.53 versus 0.67 functions per module core reactions, respectively; bootstrap method $P=0.0392$). This difference remained even when we used an ensemble of 1000 randomly selected sub-networks of the E.coli metabolic network having the same number of nodes or edges as found in the smaller B.aphidicola network (see Supplementary Material for more details). However, additional tests suggested that the large twin-modules forming the centre of the B.aphidicola network were not responsible for the differences observed in the number of metabolic functions (see Supplementary Material). These results indicated that modules of the metabolic network of an organism from a variable environment (E.coli) are more specialized than metabolic network modules of a symbiont having a constant environment (B.aphidicola). It is noteworthy that our result is in agreement with earlier findings naming non-overlapping modularization [Putter et al. 2008], which is a further indication that the module cores of the plug-in capture well the biologically relevant function of modules.

In conclusion, the ModuLand Cytoscape plug-in provides a user-friendly and efficient method to identify and visualize a hierarchy of extensively overlapping modules, and determines key network positions (like module cores and bridges). As shown by several case studies, modules identified by the plug-in correspond to biologically meaningful groups, module cores help the identification of biological functions and inter-modular nodes have a key role in a variety of biological networks.

ACKNOWLEDGEMENTS

The authors thank the Editor and the anonymous Reviewers for their comments and suggestions, Amit Ghosh (Lawrence Berkeley National Laboratory, Berkeley, CA, USA) and Saraswathi Vishveshwara (Indian Institute of Science, Bangalore, India) for their help in the 3D coordinates of E.coli Met-tRNA synthase, and members of the LINK-Group (www.lingroup.hu) for their discussions and help.

Funding: EU [FP6-518230, TAMOP-4.2.2A-101/2010-0013 and FP7-264780]; Hungarian Scientific Research Fund [OTKA K-83314 and PD-75261]; International Human Frontiers Science Program Organization (BP); Momentum Program of the Hungarian Academy of Sciences (BP); and residence at the Rockefeller Foundation Bellagio Center (PC).

Conflict of interest: none declared.

REFERENCES