Identification of feedback loops in neural networks based on multi-step Granger causality

Chao-Yi Dong1, Dongkwon Shin2, Sunghoon Joo2, YoonKey Nam2 and Kwang-Hyun Cho2

1Department of Automatic Control, Inner Mongolia University of Technology, Huhhot 010080, People’s Republic of China and 2Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea

ABSTRACT

Identification of feedback loops in neural networks is an important systems biological issue. A variety of network motif search tools (Alon, 2007) such as mfinder (Kashtan et al., 2002), FANMOD (Wernicke and Rasche, 2005) and MAVisto (Schreiber and Schwobbermeyer, 2005) have been proposed to find small vertex-induced subgraphs (occurring more frequently than those in random networks) from a network with known topology, but such methods cannot be used to identify hidden feedback loops in a network with unknown topology from time-series measurements. On the other hand, time-series measurements of dynamical responses are now increasingly available (e.g. real-time polymerase chain reaction (PCR) (Heid et al., 1996), microarray (Schena et al., 1995), immunofluorescence (Henle and Henle, 1966) and multi-electrode array (Chong et al., 2011)) and various types of biological networks can be investigated using such data. So, there is a pressing need to develop an efficient method to identify feedback loops from multi-channel dynamical response data. Based on time-series analysis and system identification theory, several methods have been proposed to tackle this problem. For instance, Caines and Chan (1975) proposed the likelihood ratio test method (LRTM) based on the minimum phase spectral factor (MPSF) which is a canonical representation of the power spectral density matrix of the joint stochastic process of input and output data. In LRTM, the feedback effect between two-partitioned node sets was investigated with a priori knowledge on the system order and structure. Although LRTM can identify a feedback loop between two-partitioned node sets, it cannot identify a feedback loop between two individual nodes in the network. Schneider et al. (1989) developed a direct coherence method in the frequency domain to detect feedbacks in the central nervous system, but this method was only applicable to networks containing no co-regulatory forward path. MSGCM can also significantly improve the ratio of correct identification of feedback loops. In this study, the MSGCM was tested using synthetic pulsed neural network models and also in vitro cultured rat neural networks using multi-electrode array. As a result, we found a large number of feedback loops in the in vitro cultured neural networks with apparent synchronized oscillation, indicating a closer relationship between synchronized oscillatory bursting behavior and underlying feedback loops. The MSGCM is an efficient method to investigate feedback loops embedded in in vitro cultured neural networks. The identified feedback loop motifs are considered as an important design principle responsible for the synchronized bursting behavior in neural networks.

Contact: cikhlikast.ac.kr

Availability: The software implementing MSGCM is available at Supplementary Information.

Supplementary Information: Supplementary material are available at Bioinformatics online.

Received on October 28, 2011; revised on April 23, 2012; accepted on June 4, 2012

1 INTRODUCTION

Feedback circuits are key regulatory motifs in many biological systems. Previous studies show that positive feedback loops determine a variety of cellular processes such as development, cell proliferation, apoptosis and responses to stress (Eisen et al., 1996; Wolpert and Lewis, 1975), and negative feedback loops contribute to maintaining the homeostasis of biological systems under internal and external interferences (Kim et al., 2008; Maeda et al., 2004). Moreover, many functional modules in biological systems are composed of multiple feedback loops. Various nonlinear dynamic behaviors of biological systems are generated by combination of positive and negative feedback loops (Glendinning, 1994; Strogatz, 2000). Interlinked fast and slow positive feedback loops (Brandman et al., 2005) can form a ‘dual-time’ switch which is rapidly inducible and also resistant to noises propagated from the upstream signaling system. Coupled direct and indirect positive feedback loops induce robust synchronized bursting behaviors (Dong et al., 2009a).

Identifying the existence of an intra- or inter-cellular feedback circuit in biological networks is an important systems biological issue. A variety of network motif search tools (Alon, 2007) such as mfinder (Kashtan et al., 2002), FANMOD (Wernicke and Rasche, 2006) and MAVisto (Schreiber and Schwobbermeyer, 2005) were proposed to find small vertex-induced subgraphs (occurring more frequently than those in random networks) from a network with known topology, but such methods cannot be used to identify hidden feedback loops in a network with unknown topology from time-series measurements. On the other hand, time-series measurements of dynamical responses are now increasingly available (e.g. real-time polymerase chain reaction (PCR) (Heid et al., 1996), microarray (Schena et al., 1995), immunofluorescence (Henle and Henle, 1966) and multi-electrode array (Chong et al., 2011)) and various types of biological networks can be investigated using such data. So, there is a pressing need to develop an efficient method to identify feedback loops from multi-channel dynamical response data. Based on time-series analysis and system identification theory, several methods have been proposed to tackle this problem. For instance, Caines and Chan (1975) proposed the likelihood ratio test method (LRTM) based on the minimum phase spectral factor (MPSF) which is a canonical representation of the power spectral density matrix of the joint stochastic process of input and output data. In LRTM, the feedback effect between two-partitioned node sets was investigated with a priori knowledge on the system order and structure. Although LRTM can identify a feedback loop between two-partitioned node sets, it cannot identify a feedback loop between two individual nodes in the network. Schneider et al. (1989) developed a direct coherence method in the frequency domain to detect feedbacks in the central nervous system.
Identification of feedback loops based on multi-step Granger causality

2 METHODS

2.1 VAR model

Dynamical characteristics of complex systems such as biological networks can be inferred from the analysis of a multivariate stochastic model fitted to the observation of time-series data (Tiao and Box, 1981). In practice, many spontaneous time-series data are considered as the measured output of stationary stochastic processes (Ross, 1996). Assume \(\mathbf{X}_t = (x_1(t), x_2(t), \ldots, x_N(t)) \), where \(x_i(t) = k=0, \pm 1, \pm 2, \ldots \) indicates the time index) to be a stationary multivariate stochastic process. \(\mathbf{X}_t \) denotes the \(N \)-dimensional measurements vector of the biological network composed of \(N \)-nodes. The purpose of feedback loop identification is to infer the bi-directional dynamical coupling between any pair of nodes \(x_i(t) \) and \(x_j(t) \), where \(i, j = 1, 2, \ldots, N \) with \(i \neq j \). In this study, the dynamical coupling is conceptually identical to the directional multi-step (say \(h \)-step), where \(h \) can be any positive integer up to infinity) Granger causality that is described in detail in the following section. If bi-directional multi-step causality are identified between two nodes, it means that a feedback loop exists between them.

Among various models representing stationary multivariate time-series data (Brillinger, 2001; Cadotte et al., 2008; Lütkepohl, 2005), the VAR model is selected here to model biological multivariate data because of its feasibility and ease of computations. The \(p \)-th order VAR model (\(\text{VAR}(p) \)) is constructed by expressing \(X_t \), the value of a multivariate process \(X \) at current time \(t \), with its past values weighted with certain coefficients \(A_p \) and a (multivariate) white noise value \(E_t \):

\[
X_t = V + \sum_{k=1}^{p} A_k X_{t-k} + E_t, \quad k=0, \pm 1, \pm 2, \ldots
\]

where \(X_t = (x_1(t), x_2(t), \ldots, x_N(t))' \), \(E_t = (e_1(t), e_2(t), \ldots, e_N(t))' \) and \(V = \{v_1, v_2, \ldots, v_N\}' \) is a constant vector of intercept terms representing the mean of \(X_t \).

For a given vector of multivariate time series, its \(\text{VAR}(p) \) model can be readily estimated by MLSM (Ruppert and Wand, 1994). Suppose that we have a sample of size \(L \) for each of \(N \) variates with the same sample period. The estimation of \(X \) \(= [X_1, X_2, \ldots, X_N]_L \times Np \) is calculated as follows:

\[
\hat{X}_t = \hat{Y} \hat{X}'(\hat{X}'\hat{X})^{-1},
\]

where \(\hat{Y} = [X_t - \hat{\mu}, X_{t-1} - \hat{\mu}, \ldots, X_{t-L+1} - \hat{\mu}]' \), \(\hat{\mu} = \frac{1}{L} \sum_{l=1}^{L} X_l \) is the unbiased estimate of the covariance matrix \(\Sigma_X \) of \(X_t \) as obtained (Lütkepohl, 2005)

\[
\hat{\Sigma}_X = \frac{1}{L-Np-1} \sum_{l=1}^{L} \hat{E}_t \hat{E}_t', \quad \hat{\Sigma}_{YX} = \frac{1}{L-Np-1} \hat{Y}' \hat{X}'(\hat{X}'\hat{X})^{-1} \hat{Y}'.
\]

If the preceding estimation procedures are repeated for different \(p \)-values, the order of the \(\text{VAR}(p) \) model can be selected by HQ criterion (Hannan and Quinn, 1979) which provides an optimal solution of \(p \) using the knowledge of data size \(L \), network dimension \(N \) and estimated covariance matrix \(\hat{\Sigma}_X \). According to the HQ criterion, model order \(p \) is estimated by optimizing

\[
\text{HQ}(p) = \ln(\hat{\Sigma}_X(p)) + \frac{2mn}{L-Np-1}N^2.
\]

Therefore, the optimal order can be determined as \(p_{\text{opt}} = \text{argmin}(\text{HQ}(p)) \).

The advantage of the HQ criterion is that \(p_{\text{opt}} \) is a consistent estimator \(\hat{p} \) converging in probability to \(p \), which is superior to other estimators using different criteria such as Akaike Information Criterion (AIC), Final Prediction Error (FPE) and Schwarz (SC) (Lütkepohl, 2005).

2.2 h-step optimal prediction and multi-step causality

The concept of multi-step Granger causality is defined in light of an optimal prediction of the future value of one variate by using the current and past values of all network variates (Granger, 1969). If a contribution to the prediction comes from the variate itself, it is considered as a self-coupling.
otherwise, if a contribution comes from the other variates, it is called an alien coupling. Such predicted effects include not only most recent contributions but also very earlier contributions of all variates, depending on how much delayed couplings reach from the variates. We use h-step (if $h \geq 1$) sampling periods to quantify such ‘multi-step’ delayed coupling effects. In the following, some crucial inferences, such as h-step optimal prediction of a process and multi-step Granger causality between network variates, are immediately derived from the identified VAR(p).

For an N-dimensional stable VAR(p) process denoted by $X_t = (x_1(t), x_2(t), \ldots, x_N(t))$, it was shown that the minimum mean square error (MSE) predictor for prediction horizon h at prediction origin k is the conditional expected value

$$E(x_{k:h} | x_{k-l} | | l \leq k),$$

which minimizes the MSE of $X_{k:h}$ (Ljung, 2005). Herein, the notation $|X_{k-h} |$ stands for all available past information of X until time k. For a zero mean representation of the VAR(p) model, the optimal h-step predictor (in the sense of minimum MSE) of X_k at origin time k can be represented as

$$X_k(h) = [\tilde{A}_h, \tilde{B}_h, \tilde{C}_h, \tilde{D}_h],$$

where

$$\tilde{A}_k := \begin{bmatrix} A_1 & A_2 & \cdots & A_{h-1} & A_h \\ I_N & 0 & \cdots & 0 & 0 \\ 0 & I_N & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & I_N & 0 \\ \end{bmatrix},$$

$$\tilde{E}_k := \begin{bmatrix} E_0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \end{bmatrix},$$

$$\tilde{h} := \begin{bmatrix} h \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \end{bmatrix},$$

$$\tilde{V} := \begin{bmatrix} \tilde{V}_1 \\ \vdots \\ \tilde{V}_p \\ \end{bmatrix},$$

$$\tilde{J} := \begin{bmatrix} J_0 & \cdots & J_{p-2} & J_{p-1} \\ \end{bmatrix}. $$

The h-step prediction error is $E(x_{k:h} | x_{k-l} | | l \leq k) = \sum_{l=0}^h \varphi_{l:k}x_{k-l}$ and the corresponding prediction error covariance matrix is $\Sigma_k(h) = \sum_{l=0}^h \varphi_{l:k} \Sigma_k x_{k-l} \varphi_{l:k}^T$, where $\varphi_{l:k} = \tilde{A}_l^T \tilde{C}_h \tilde{E}_k \tilde{h}$ and Σ_k is the covariance matrix of white noises \tilde{E}_k. The proof of the above derivation is provided in the [Supplementary Material](Section 1).

Equation (6) shows how all the network variates contribute to predicting each single variate. For instance, \tilde{E}_k, which corresponds to the jth row in Equation (6) ($j = 1, 2, \ldots, N$), is the optimal (minimum MSE) h-step predictor of the jth variate x_k at origin k obtained by using the current and past information of all variates. The corresponding prediction MSE is denoted by $\Sigma_k(h|x_{k-l} | | l \leq k)$ ($j = 1, 2, \ldots, N$). The prediction MSE will increase if the information of some preceding variables is not considered. So, multi-step Granger causality from a stochastic variate x_i to another variate x_j is formally defined as follows (Granger, 1969): the process $x_j(t)$ is said to cause $x_i(t)$ in multi-step Granger’s sense if

$$\Sigma_k(h|x_{k-l} | | l \leq k) > \Sigma_{k,l}(h|x_{k-l} | | l \leq k),$$

for at least one $h \in \{1, 2, \ldots, \infty\}$ (in practice, we only need to check for a finite step—see later of this section for details), i.e., the prediction of $x_j(t)$ can be improved if the past and current information in $x_i(t)$ is taken into account in addition to all the relevant information under consideration (the backslash in Equation (4) denotes the exclusion of the information of $x_i(t) (i \neq j)$). Note that the case of $h = 0$ is considered as instantaneous Granger causality which is physically unfeasible in biological networks because there is usually a significant time delay accompanied with the coupling process. So, we have excluded in this article such instantaneous Granger causality as well as self-coupling for nontrivial discussion. That is, only delayed alien (between different variates) couplings are considered in this article. Feedback loops are found when significant bi-directional multi-step Granger causalties are identified between two different network variates.

Multi-step Granger causality is fairly easy to evaluate in the context of a VAR model. Let us consider the multi-step Granger causality between two variates $x_i(t)$ and $x_j(t)$ ($i = 1, 2, \ldots, N$ and $j
eq i$) in an N-dimensional network. Consistent with the definition of multi-step Granger causality, $x_i(t)$ is called h-step non-causal for $x_j(t)$ if the m-step ahead predictions of $x_j(t)$ cannot be improved for all $m \leq h$ by taking into account the past and present $x_i(t)$(k, t). Therefore, $x_i(t)$ is h-step non-causal for $x_j(t)$ if and only if all elements in the jth row and ith column in matrix $[\tilde{A}_h]$, which is the hth column block matrix of $[\tilde{A}_h]$ (for $m = 1, 2, \ldots$ and $h = 1, 2, \ldots, p$), are zero. This means that there is no contribution from the regulating variate $x_i(t)$ to the prediction of the regulated variate $x_j(t)$ until h-step delays. We can derive this from h-step optimal predictor X_h (see Equation (6) and its expansion in Equation (8)).

$$X_h(t) = \tilde{J}_{h+1} + \tilde{A}_{h+1} \tilde{A}_{h+2} \cdots \tilde{A}_1 \tilde{E}_h,$$

for a two-partitioned process, one-step Granger causality is equivalent to multi-step Granger causality (details can be found from Baccala et al., 1998). The problem of feedback identification is now transformed into a problem of investigating whether non-diagonal blocks in $A_k (i = 1, 2, \ldots, p)$ are zero simultaneously or not. However, in most biological networks, researchers are often interested in the causal couplings between a pair of variates rather than between two-partitioned variate sets. Therefore, it is necessary to develop an approach to identify the multi-step Granger causality between any two variates in a higher dimensional network ($N \geq 3$). In the previous analysis, we need to prove h-step non-causality up to infinity to show that $x_i(t)$ does not contribute to the predictions of $x_j(t)$ (in the sense of multi-step Granger causality) in a multi-dimensional network. This task seems daunting and time-consuming. However, Dufour and Renault (1998) showed that we only need to examine a limited step of $p(N - 2) + 1$ instead of examining until infinite steps. This makes a statistical test of the MSGCM feasible for computation. See [Supplementary Material](Section 2) for details on the modified Wald test to examine the multi-step Granger causality.

2.3 The algorithm for identification of feedback loops based on MSGCM

In this section, we propose an algorithm to identify feedback loops in multivariate biological networks. As this algorithm is based on the foregoing multi-step Granger causality test, it is called the MSGCM. The MSGCM algorithm can be implemented in Matlab 2007 (Mathworks, Inc.) [codes are provided in the [Supplementary Material](Section 8)] and the identification steps are summarized in Figure 1.

The aforementioned algorithm can identify direct couplings as well as indirect couplings, i.e., when the signal from one node is not or is not relayed through another node(s) before reaching the target node since the predictions for one variate would naturally include these two parts of contributions that usually appear in different prediction step h. In the following section, MSGCM is applied to simulated datasets obtained from computational neural network models [e.g., synthetic pulsed neural networks, see the [Supplementary Material](Section 3) for a brief introduction of the models]. It turns out that MSGCM can successfully identify the direct as well as indirect feedback loops in two-, three- and a more complicated six-node networks. See the [Supplementary Material](Section 4) for details on the sampling method of spike data. In our analysis, we used a limited bin size to low-pass filter the spike train data. In particular, a bin size of 10 ms was chosen to minimize false-positive identification (Goldob and Van Loan, 1996). The sampling with a 10 ms interval corresponds to the low-pass filtering with the cutoff frequency of 100 Hz, which can filter out high frequency noises that contribute to false-positive identifications.

2.4 Multichannel recordings of in vitro neural networks

Hippocampal or cortical neurons used for developing in vitro neural networks were isolated from the brain of the Sprague-Dawley rat at embryonic day 18 (E18). Mechanically dissociated neurons were seeded on a planar-type microelectrode array (MEA) which has 60 surface-embedded
Identification of feedback loops based on multi-step Granger causality

3 RESULTS

3.1 Synthetic neural network simulations

To examine the efficacy of MSGCM for identification of feedback loops, we first applied it to two- and three-node pulsed neural networks of 12 different topologies as shown in Supplementary (Section 5) Figure S3a. The spike trains of each network were displayed for a period of 1 s, extracted from 20 s simulations Supplementary (Section 5) Figure S3b. Finally, the sampled time-series data of the neurons in each network were obtained as Supplementary (Section 5) Figure S3c. Based on these time-series data, MSGCM was applied to the six networks. As a result, we successfully identified the existence of feedback loops in all two- and three-node network topologies. The key parameters and results for identifications are summarized in Supplementary (Section 5) Table S1.

The MSGCM was also applied to a more complicated six-node network model containing two direct feedback loops and one indirect feedback loop. We constructed this model based on the same dynamical mechanism as those of the previous two- and three-node pulsed neural network models (Fig. 2a). Based on the obtained time-series data (Fig. 2c), MSGCM was then used to identify the existence of feedback loops with three multiples of the SD credence level ($\alpha = 0.00135$). Using HQ criterion, we determined an optimal order $p_{opt} = 6$ which corresponds to an HQ value of -7.5071. With the estimated parameters of the VAR(6) model, the Wald statistics showed significant Granger causalities in the network (Table 1). Since the bi-directional Granger causalities exist, we conclude that there is a feedback loop between neuron 1 and neuron 5. In the same way, we identified the other bi-directional couplings between neurons (2,3), (3,4) and (2,4). At this stage, we do not know whether the identified feedback loops are direct or indirect. However, MSGCM can correctly discern the existence of feedback loops between any pair of nodes. So, we can eventually identify all direct or indirect feedback loops.

3.2 Comparison of MSGCM and NIRCM

For quantitative comparison of the efficacies of MSGCM and NIRCM, we applied both methods to the same synthetic pulsed neural networks and compared their identification results. We simulated [with the same simulation protocol as detailed in the Supplementary Material (Section 5)] a number of neural networks of different sizes ranging from 6 to 20 nodes. Simulations were performed using SRMs for realization of randomly connected microelectrodes for neural signal recordings. The MEA was cultivated in a humidified incubator with 37˚C, 5% CO2. After 2 weeks of maturation period inside the incubator, the cultured MEA chip was connected with a MEA1060-BC preamplifier (Gain 50, BW 0.1—8500 Hz; Multi Channel Systems, Reutlingen, Germany) and FA605 amplifier (Gain 20, BW 10—5000 Hz; Multi Channel Systems). Multichannel signals were digitized and processed by MC Rack (Multi Channel Systems) and Offline Sorter (Plexon Inc., TX, USA). Extracellular action potentials (spikes) were detected by setting the threshold level at $5 \times$ standard deviation (SD of background noise level) and spike waveforms were classified (sorted) by principal component analysis (PCA) using dedicated spike sorting program (Offline Sorter). There can be multiple neurons (or units) generating spikes near a sensor. So, detected spikes are classified and clustered according to the shape of spikes. PCA has been used as one of the classification techniques to find a well-clustered spike signals (Hill et al., 2011).
Table 1. The identified multi-step Granger causalities in the six-node synthetic neural network

<table>
<thead>
<tr>
<th>Node</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0 (256.1 < 263.6)</td>
<td>0 (190.8 < 263.6)</td>
<td>0 (250.3 < 263.6)</td>
<td>1 (611.6 > 263.6)</td>
<td>0 (205.9 < 263.6)</td>
</tr>
<tr>
<td>2</td>
<td>1 (331.9 > 263.6)</td>
<td>0</td>
<td>1 (311.9 > 263.6)</td>
<td>1 (424.2 > 263.6)</td>
<td>1 (578.1 > 263.6)</td>
<td>1 (308.5 > 263.6)</td>
</tr>
<tr>
<td>3</td>
<td>1 (402.2 > 263.6)</td>
<td>1 (286.0 > 263.6)</td>
<td>0</td>
<td>1 (523.3 > 263.6)</td>
<td>1 (472.0 > 263.6)</td>
<td>0 (222.7 < 263.6)</td>
</tr>
<tr>
<td>4</td>
<td>1 (314.4 > 263.6)</td>
<td>1 (501.6 > 263.6)</td>
<td>1 (451.6 > 263.6)</td>
<td>0</td>
<td>1 (325.2 > 263.6)</td>
<td>1 (335.3 > 263.6)</td>
</tr>
<tr>
<td>5</td>
<td>1 (204.9 > 263.6)</td>
<td>0 (225.3 < 263.6)</td>
<td>0 (212.7 < 263.6)</td>
<td>0 (189.2 < 263.6)</td>
<td>0</td>
<td>0 (231.3 < 263.6)</td>
</tr>
<tr>
<td>6</td>
<td>0 (183.2 < 263.6)</td>
<td>0 (183.3 < 263.6)</td>
<td>0 (215.9 < 263.6)</td>
<td>0 (219.3 < 263.6)</td>
<td>0</td>
<td>0 (185.0 < 263.6)</td>
</tr>
</tbody>
</table>

The ‘1’s in the table represent the existence of significant Granger causalities from a column index to a row index, while ‘0’s denote the non-existence of any significant Granger causality. The comparison between λ_{hp} and λ_{hp} is listed to the right of the identified results, where if $\lambda_{hp} > \lambda_{hp}$, then ‘0’ is inferred and if $\lambda_{hp} < \lambda_{hp}$, then ‘1’ is inferred. The four red-colored ‘1’s in a symmetrical position by the right diagonal show the three identified feedback loops, which corresponds to pairs of bi-directional Granger causalities across nodes (1, 5), (3, 4), (2, 3) and (6, 4).

Table 2. The means and standard deviations of the ratios of correct identifications, the false-positive ratios, and the false-negative ratios for different network scales with Connective Ratio (CR) of 20% and Excitatory Ratio (ER) of 90%

<table>
<thead>
<tr>
<th>Network scale (the number of nodes)</th>
<th>Correct identification ratio</th>
<th>False-positive ratio</th>
<th>False-negative ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSGCM</td>
<td>NRCM</td>
<td>MSGCM</td>
</tr>
<tr>
<td>6</td>
<td>0.906 ± 0.105</td>
<td>0.781 ± 0.145</td>
<td>0.089 ± 0.108</td>
</tr>
<tr>
<td>8</td>
<td>0.968 ± 0.040</td>
<td>0.855 ± 0.121</td>
<td>0.014 ± 0.034</td>
</tr>
<tr>
<td>10</td>
<td>0.968 ± 0.026</td>
<td>0.843 ± 0.074</td>
<td>0.002 ± 0.006</td>
</tr>
<tr>
<td>12</td>
<td>0.959 ± 0.022</td>
<td>0.874 ± 0.059</td>
<td>0.000 ± 0.000</td>
</tr>
<tr>
<td>14</td>
<td>0.959 ± 0.018</td>
<td>0.879 ± 0.052</td>
<td>0.000 ± 0.000</td>
</tr>
<tr>
<td>16</td>
<td>0.961 ± 0.018</td>
<td>0.882 ± 0.043</td>
<td>0.000 ± 0.000</td>
</tr>
<tr>
<td>18</td>
<td>0.958 ± 0.017</td>
<td>0.871 ± 0.036</td>
<td>0.000 ± 0.001</td>
</tr>
<tr>
<td>20</td>
<td>0.958 ± 0.014</td>
<td>0.867 ± 0.034</td>
<td>0.000 ± 0.001</td>
</tr>
</tbody>
</table>

For each network scale, 100 randomly connected networks were tested using MSGCM and NRCM.

networks where the synaptic efficacies w_{ij} were randomly chosen from a uniform distribution $[-1, 1]$ [see Supplementary Material (Section 3) for further details on SRM]. For in vitro cultured neural networks, it has already been shown that each neuron is monosynaptically connected to 10-30% of all other neurons at their matured phase and a matured inhibitory synaptic ratio of all the synapses is about 10-20% (Jimbo et al., 1999; Marom and Shahaf, 2002). To mimic such in vitro cultured neural networks, the structure of the simulated network was randomly formed by keeping CR of 20% and ER of 90% [see detailed definitions of CR and ER in the Supplementary Material (Section 7)].

For each network size, 100 randomly connected networks were tested for identification of their feedback loops using the two methods. For each n-node network, we judged whether the feedback loop identification is correct or not with respect to all pairs of nodes. Then, for all the pairs of nodes $(n(n−1))/2$ in total, we counted the following four categorized cases: (1) the number of cases for correct identification of a feedback loop, n_{cf}; (2) the number of cases for correct identification of no feedback loop, n_{cnf}; (3) the number of cases for false-negative identification of a feedback loop, n_{fn}; and (4) the number of cases for false-negative identification of no feedback loop, n_{fp}. Then, the ratio of correct identifications is defined as $2(n_{cf}+n_{cnf})/(n(n−1))$, the false-positive ratio as $2n_{fp}/(n(n−1))$ and the false-negative ratio as $2n_{fn}/(n(n−1))$. The means and SDs of the identified three ratios using two different methods were shown in Table 2.

The simulation results showed that the correct identification ratios of MSGCM are always significantly higher than those of NRCM. Both methods had a low level of means for false-positive and false-negative ratios. The false-positive ratios of MSGCM were significantly less than those of NRCM and the false-negative ratios of MSGCM were slightly higher than those of NRCM.

3.3 Investigation of feedback loops in cultured neural networks

In previous sections, we showed the efficacy of MSGCM in identifying feedback loops in the artificial neuronal networks. Then, we also investigated the presence of feedback loops in real biological neural networks that spontaneously generate dynamical behaviors. The experimental data were obtained from a MEA (diameter 30 µm and spacing 200 µm) which can measure electrical signals (extracellular spikes) present in vivo hippocampal neural networks (Eytan et al., 2003, 2004; Marom and Shahaf, 2002; Shahaf and Marom, 2001). A detailed experimental protocol is described in the Supplementary Material (Section 6). Three 40 s segments of spike trains obtained from three independent cultures (Cultures 1–3 with the same experimental protocols) were used to test the effectiveness of the proposed identification method. Only 9 out of total 60 channels had significant spike responses (the numbers of spikes are >10) in each culture. We excluded the channels showing insignificant data containing <10 spikes. As a result, some feedback loops were identified in the first three cultures, as shown in Table 3.
These distinct behaviors were closely linked to the existence of a feedback loop. The age of each sample network is defined by DIV (days in vitro). Table 3 gives the number of identified feedback loops by MSGCM and NIRCM for each network. The age of each sample network is defined by DIV (days in vitro).

The age of each sample network is defined by DIV (days in vitro). Average SIs were calculated by averaging the SIs for all possible channel pairs in each culture with a time bin of 0.2 s. The average burst rates (BR) are the number of bursts happening in per minute for all nine channel data.

Table 3. The identification results of feedback loops in four cultured neural networks obtained by applying MSGCM and NIRCM

<table>
<thead>
<tr>
<th>Network index</th>
<th>Age of network (DIV)</th>
<th>No. of nodes</th>
<th>Average BR (bursts/min)</th>
<th>Average SI (bin = 0.2 s)</th>
<th>No. of identified feedback loops by MSGCM</th>
<th>No. of identified feedback loops by NIRCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>9</td>
<td>9.2</td>
<td>0.6918</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>9</td>
<td>31.7</td>
<td>0.8707</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>9</td>
<td>7.3</td>
<td>0.3943</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>10</td>
<td>1.8</td>
<td>0.0033</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

The age of each sample network is defined by DIV (days in vitro). Average SIs were calculated by averaging the SIs for all possible channel pairs in each culture with a time bin of 0.2 s. Average burst rates (BR) are the number of bursts happening in per minute for all nine channel data.

Culture 4 was a micro-island neuronal culture in an agarose micro-well array (Kang et al., 2009) in which all physical connections between neurons were ‘cut off’ by the deliberate design. Then, electrodes under Culture 4 recorded spike trains from completely isolated neuronal circuits. Each electrode presented bursting activity generated by a few neurons, but the activity was not able to propagate through other electrodes due to the absence of biological connections between the electrodes. Therefore, the resultant spike trains of each electrode were affected by neurons from other electrodes. This was confirmed by applying MSGCM, as no feedback loop from Culture 4 was identified among 10 electrodes, as shown in Table 3. Therefore, the identification validated the feedback free cases in this non-connective culture. We also tried to identify feedback loops in the four cultures using NIRCM. The resulting identified feedback loops are shown in Table 3.

Although the number of channels was similar in all experiments, the identified feedback loops were different depending on the temporal patterns of spike trains. In particular, the enrichment of identified feedback loops was related to synchronized bursting behaviors. To quantify the temporal relationship of a pair of channels, the cross-correlation coefficient of the two binned data, the cross-correlation coefficient was calculated to approximate the cross-correlation coefficient. Given two binned data, $x(k)$ and $y(k)$ ($k = 1, 2, \ldots, L$), then the sample correlation coefficient is as follows:

$$r_{xy} = \frac{\sum_{k=1}^{L}(x(k) - \bar{x})(y(k) - \bar{y})}{\sqrt{\sum_{k=1}^{L}(x(k) - \bar{x})^2} \sqrt{\sum_{k=1}^{L}(y(k) - \bar{y})^2}}$$

where $\bar{x} = \frac{1}{L} \sum_{k=1}^{L} x(k)$ and $\bar{y} = \frac{1}{L} \sum_{k=1}^{L} y(k)$. Average SIs were then calculated by averaging the SIs for all possible pairs of channels in each culture to evaluate the degree of synchronized behaviors. In the raster plots of Cultures 1 and 2, we can find apparent synchronized oscillations among most of the electrodes (Fig. 3). This was also indicated by high SI index in Table 3. For Culture 3, SI index was significantly smaller than Cultures 1 and 2 despite high burst rates. These distinct behaviors were closely linked to the existence of a feedback loop. A larger number of feedback loops were found from Cultures 1 and 2 than Culture 3 (Table 3). As expected, Culture 4 did not show any synchrony due to the isolation of each electrode indicating no identified feedback loop from the spike trains in Culture 4.

Figure 3 shows two sets of feedback loops identified from Cultures 1 and 3, respectively. We can see a distinct distribution of feedback loops between these two cultures. Culture 1, presenting apparent synchronized oscillatory behavior, had 11 feedback loops among 9 electrodes, whereas Culture 3, showing less synchronized oscillations, had just 4 feedback loops.

4 CONCLUSION

In this study, we investigated the problem of identifying feedback loops embedded in intra- or inter-cellular biological networks using time-series measurements. Based on multivariate time-series analysis, our proposed MSGCM can simultaneously analyze all network variates in the process of identifying the feedback loops from complicated biological networks. MSGCM can completely decouple the correlations between a pair of examined variates and the remaining variates in the network. This makes MSGCM overcome the shortcoming of NIRCM since each regulatory forward path always causes an input—output noise correlation. In this regard, MSGCM is more advanced than NIRCM and suitable for complex multivariate systems like biological networks. The application of MSGCM and NIRCM to the same synthetic pulsed neural networks showed that the correct identification ratios of MSGCM are always significantly higher than those of NIRCM. Although MSGCM can identify feedback loops of multivariate networks more accurately, its computational complexity is higher than NIRCM. However,
such complexity issues can be alleviated as high-performance computation devices become more available.

In this study, we showed that MSGCM can successfully identify feedback loops in synthetic neural network models and in vitro cultured neural networks. We also found that synchronized oscillatory bursting behaviors were closely related to the existence of feedback loops. From this finding, we infer that a feedback loop might be an important network motif for the synchronized oscillatory behavior in pulsed neural networks. In fact, the experiments using in vitro cultured neural networks showed that the adjustment of synaptic connections was highly correlated with the development of neuronal network behaviors characterized by the evolution of spontaneous electrical activities of the network (Muramoto et al., 1993; Van Huizen et al., 1985). An interesting phenomenon was that the visibility of synchronized bursting behaviors was dependent on the developing phase of the tested in vitro neuron cultures. In vitro cultured neural networks showed spontaneous and uncorrelated bursting activities in the beginning, but, after about six DIVs, they exhibited abruptly a synchronized bursting activity (Habets et al., 1987). Then a question arises as to what triggered such an emergent property in the cultured neural networks? The feedback identification method proposed in this study provides a very useful tool to infer a network motif responsible for this emergent property. Previous studies indicated that developing neurons showed their maximum synchronized activities at the 2nd or 3rd week of the brain development (Habets et al., 1987) and after that neuronal circuits reached an optimal connectivity by pruning their connections (Van Huizen et al., 1985), i.e. undergoing an overall decline in the number of synapses. We can also find such a development trend by tracing the variation of feedback loop abundance in Table 3 (the number of feedback loops: 11 → 22 → 4 for DIV; 14 → 18 → 21). As the networks are considered to be randomly connected, it would be reasonable to presume that the abundance of feedback loops is positively correlated with the whole network connectivity. Thus, identifying feedback loops using MSGCM can also be validated from this comparison.

Although we showed in this article the identification of feedback loops in cultured neural networks and investigations into the relationship between the structure of a network and its dynamical behavior, the presented approach can also be applied to studying other biological networks based on time-series measurements using, for example, real-time PCR (Heid et al., 1996), immunofluorescence

REFERENCES

Brandman, O. et al. (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science, 310, 496–498.
Identification of feedback loops based on multi-step Granger causality

