EnrichNet: network-based gene set enrichment analysis

Enrico Glab1, Anaïs Baudot2, Natalio Krasnogor3, Reinhard Schneider1,∗ and Alfonso Valencia4,∗

1Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg, 2Luminy Institute of Mathematics (IML), Université d’Aix-Marseille, 13288 Marseille, France, 3Interdisciplinary Computing and Complex Systems (ICOS) Research Group, University of Nottingham, Nottingham NG8 1BB, UK and 4Structural Biology and Biocomputing Program, Spanish National Cancer Research Centre (CNIO), E-28029 Madrid, Spain

ABSTRACT

Motivation: Assessing functional associations between an experimentally derived gene or protein set of interest and a database of known gene/protein sets is a common task in the analysis of large-scale functional genomics data. For this purpose, a frequently used approach is to apply an over-representation-based enrichment analysis. However, this approach has four drawbacks: (i) it can only score functional associations of overlapping gene/proteins sets; (ii) it disregards genes with missing annotations; (iii) it does not take into account the network structure of physical interactions between the gene/protein sets of interest and (iv) tissue-specific gene/protein set associations cannot be recognized.

Results: To address these limitations, we introduce an integrative analysis approach and web-application called EnrichNet. It combines a novel graph-based statistic with an interactive sub-network visualization to accomplish two complementary goals: improving the prioritization of putative functional gene/protein set associations by exploiting information from molecular interaction networks and tissue-specific gene expression data and enabling a direct biological interpretation of the results. By using the approach to analyse sets of genes with known involvement in human diseases, new pathway associations are identified, reflecting a dense sub-network of interactions between their corresponding proteins.

Contact: Natalio.Krasnogor@nottingham.ac.uk, reinhard.schneider@uni.lu or avalencia@cnio.es

Supplementary Information: Supplementary data are available at Bioinformatics Online.

1 MOTIVATION

The analysis of functional genomics data from high-throughput experiments often involves the assessment of potential functional associations between a gene or protein set of interest, e.g. differentially expressed genes in a microarray study and known gene/protein sets representing cellular processes and pathways. To identify and prioritize these putative associations, a wide range of enrichment analysis tools have been developed in recent years, including three basic types of methods (see Huang et al. (2009) for a more comprehensive review):

1. Over-representation analysis (ORA) techniques, assessing the statistical overrepresentation of a user-defined, pre-selected gene/protein list of interest in a reference list of known gene/protein sets using a statistical test, e.g. the one-sided Fisher’s exact test or the hypergeometric distribution.

2. Gene set enrichment analysis (GSEA) methods, which in contrast to classical annotation enrichment analyses incorporate expression level measurements from an unfiltered dataset, including non-parametric approaches such as GSEA (Subramanian et al., 2005), Catmap (Breslin et al., 2005), EnrichMEnt (Lee et al., 2009) and GeneTrail (Backes et al., 2009), and parametric approaches such as PAGE (Kim and Vois, 2005), MEGO (Hu et al., 2009), PartScan (Al-Shahrour et al., 2009) and GAGE (Lu et al., 2009).

3. Integrative and modular enrichment analysis (MEA) approaches (Huang et al., 2009), which account for dependencies between genes and proteins inferred from biological networks and ontology graphs (e.g. Ontologizer (Banger et al., 2008) and GeneCodis (Carmona-Saez et al., 2005)) or by combining multiple types of annotations (e.g. DAVID (Huang Jr et al., 2009)).

Most of these approaches provide a ranking list of known gene/protein sets as output, scoring the evidence for their association with a user-defined target gene/protein list of interest. Although these prioritized, putative functional associations are a useful starting point for further experimental validation and analysis, they also have the following major limitations (among others):

• ORA techniques tend to have low discriminative power (for a target gene set, several reference gene sets receive the same or similar significance scores, e.g. see Table 1) and the scores vary considerably with small changes in the overlap size.

• Functional information captured in the graph structure of a molecular interaction network connecting the gene/protein sets of interest is disregarded.

• Genes and proteins in the network neighbourhood, in particular those with missing annotations, are not taken into account.

• The recognition of tissue-specific gene/protein set associations is often statistically infeasible.

© The Author(s) 2012. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
These limitations are mutually enhancing, since the combination of low robustness in the scoring of gene/protein set associations and low interpretability of the results increases the difficulty of deriving new biological insights from the analysis. We therefore propose to tackle all these problems simultaneously by introducing EnrichNet, a new integrative enrichment analysis method.

EnrichNet combines a novel graph-based statistic, developed to exploit information from the molecular network structure connecting two gene/protein sets, with a new interactive visualization of network sub-structures. This combined network analysis and visualization enables a direct molecular interpretation of how a user-defined set of genes/proteins is related to a gene/protein set of known function. Based on a previous work on combining network and pathway analysis methods (Glaab et al. 2011b) [the integrated data source contains molecular interaction data, cellular pathway data and tissue-specific gene expression data] and analysis techniques (graph-based statistical analysis and force-directed layout generation for sub-networks) have been designed to build on each other to provide a clearer and more detailed understanding of gene/protein set functional associations. To further facilitate the analysis, a complete implementation of the integrative approach is made freely available as a public web application with an exposed programmatic API (www.enrichnet.org).

In the following, we explain the EnrichNet methodology in detail and show example results obtained from its application on gene sets known to be associated with complex diseases.

2 SYSTEM AND METHODS

2.1 General workflow

A gene/protein list analysis with EnrichNet can be performed in a fully automated fashion and does not require any parameter settings.

2.1.1 Input

The only required input is a list of 10 or more human gene or protein identifiers and the selection of a database of interest (KEGG (Kanehisa et al. 2004), Reactome (Joshi-Tope et al. 2001), or GO (Ashburner et al., 2002), from which reference gene/protein sets will be extracted.

2.1.2 Processing

After mapping the target and reference datasets onto a genome-scale molecular interaction network (two default networks are available, alternatively a user-defined network can be provided, but the availability of sufficient interaction data for the mapping of the target and reference datasets has to be ensured, see implementation details in the Supplementary Materials) a network analysis procedure is applied, consisting of two basic steps: a procedure to score the distances between the mapped target gene set and reference datasets in the network using a random walk with restart (RWR) algorithm and the comparison of these scores against a background model. This random walk and scoring procedure is explained in detail in the following section.

2.1.3 Output

As a final output, a ranking table of the reference datasets has to be ensured, see implementation details in the Supplementary Materials) a network analysis procedure is applied, consisting of two basic steps: a procedure to score the distances between the mapped target gene set and reference datasets in the network using a random walk with restart (RWR) algorithm and the comparison of these scores against a background model. This random walk and scoring procedure is explained in detail in the following section.

2.2 Algorithm

To score the association between a user-defined target gene/protein set and different reference datasets, the target set is first mapped onto a molecular network (here a connected human interaction graph extracted from the STRING 9.0 database [Steinhöfel et al. 2010, Vingron et al. 2003], with edges weighted by the STRING combined confidence score) range 0.0-1.0] and the network nodes corresponding to the target genes are then used as seed nodes for a random walk procedure to score their distances to all reference datasets. A random walk on a graph is a stochastic process modelling the iterative transition of an imaginary particle from a seed node in the graph to randomly chosen neighbour nodes over time. This enables the estimation of the proximity of a target node r to the seed node s by the steady-state probability with which the particle remains at node r (P(a)dr). The motivation for using a random walk procedure as opposed to simpler distance measures like the shortest path distance is that by accounting both for the number and length of path connecting two nodes, multi-facet relationships between them can be captured. Specifically, to enable the choice of an optimal trade-off between the exploitation of local and global network information, EnrichNet uses a random walk variant known as random walk with restart (RWR) (Kumar et al. 2009), which allows the algorithm to restart the walk at the source nodes with probability p in every iteration (a pseudo-code version of the algorithm is shown in Fig. 1) The benefits of RWR for node relevance scoring have been discussed extensively in the literature (Tang et al. 2009) and are already used in current approaches for disease-gene prioritization (Köhler et al. 2010). To emphasize local neighbourhood information, EnrichNet runs the RWR algorithm using a high restart probability of P = 0.9. Importantly, in spite of its name, RWR is a deterministic procedure modelling a random walk via matrix computations (see Fig. 1). The random walk starts with equal probability from each of the genes in the target set and the generated relevance scores obtained for the nodes of the reference pathways are converted to distance scores by subtraction from 1, resulting in a distance score vector for each pathway. To relate these scores to a background model, the single distance score vectors are discretized into equal-sized bins and their deviations from the corresponding average distribution across all pathways is quantified by means of the Xd-distance, a distance measure that has previously been used in the evaluation of protein contact map predictions (Singh et al. 2004) and is defined as follows:

\[Xd = \frac{\sum_{i=1}^{n} P_i - P_{\text{target}}}{P_{\text{target}}} \times 100, \]

where P_i is the percentage of distance scores for the target gene set and the current pathway c within bin j in relation to the total number of distance scores for pathway c, P_{\text{target}} is the analogously defined percentage for the distance scores obtained across the background model of all pathways, n is the number of network distance bins (in our experiments, 10 distance bins provided sufficient sensitivity and are used as the default setting) and the current bin number j is used in the denominator to down-weight the score contribution of long distance and high-degree outliers, to prevent biases resulting from outstanding network properties of single genes/proteins. This weighting factor also accounts for the suppression that an over-representation of small distance scores is more likely to reflect strong associations than an over-representation of large distance scores. Classical statistical tests for comparing differences in the centre or shape of two distributions, e.g. the Mann-Whitney U-test or the Kolmogorov-Smirnov test, are not applicable in this context, because they lack a distance-dependent weighting. Similarly, random matched-size gene sets do not provide an adequate background model, since their members can only have similar connectivity properties as pathway-representing gene sets, if they are allowed to significantly overlap with real pathways in the network. Apart from taking into account the information on the distances and the number of directly and indirectly connecting links between gene/protein sets
To evaluate EnrichNet, we compare the approach with a classical ORA using methods that take into account expression data for the estimation of pathway in the literature and used to evaluate gene set enrichment analysis (GSEA)

\[C2 \]

cutaneous T-cell lymphoma samples (Shin et al., 2005). These datasets have been studied extensively in a molecular network, this scoring method also enables a straight-forward computation of tissue-specific association scores by only including the distances to nodes labelled for the tissue of interest in the reference datasets in the above calculation (in classical overlap-based enrichment analysis, a corresponding focussed tissue-specific analysis is often infeasible, because the intersection sets between the datasets become too small). Although the entire procedure is more computationally expensive than a classical over-representation analysis, this does not result in significant limitations for practical use, since an analysis takes only a few minutes for most pathway databases, and the web-interface optionally provides an e-mail notification for completed tasks. EnrichNet is also applicable to unweighted networks and a corresponding example network, as well as the possibility to upload user-defined networks, is provided on the web page.

Finally, high observed correlations between the final X-distance association scores and classical over-representation scores for overlapping datasets, computed using Fisher’s exact test and the methods by Benjamin and Hochberg (1995) for multiple testing adjustment, are exploited to generate a regression plot (see Fig. 1) that enables the user to choose a significance threshold for the X-distance scores which matches to a user-defined threshold for the adjusted \(P \)-value. The default threshold corresponds to an adjusted \(P \)-value of 0.05 with an additional increment given by the upper bound of the 95% confidence interval for linear regression fitting, added to account for the uncertainty in the fitted model parameters.

2.3 Evaluation method

To evaluate EnrichNet, we compare the approach with a classical ORA using Fisher’s exact test (see Section 3) on all combinations between five labelled microarray gene expression datasets (p53 wild-type versus mutant cancer cell lines; Subramanian et al., 2005) and an independent study in Boston (Khan et al., 2000), a colon cancer dataset comparing tumour samples versus healthy controls (Alon et al., 1999) and a dataset containing lower stage (Stages IIA and IIB) and higher stage (Stages IIIB and IIB) cutaneous T-cell lymphoma samples (Shin et al., 2005) and two frequently used reference gene set collections, \(\text{C1 and C2} \).

These datasets have been studied extensively in the literature and used to evaluate gene set enrichment analysis (GSEA) methods that take into account expression data for the estimation of pathway associations, but which (in contrast to the two methods compared here) are not applicable to gene and protein lists provided without additional expression measurements. Importantly, EnrichNet and ORA methods are designed specifically for the analysis of gene/protein lists that are not accompanied by any additional expression or activity measurements, and microarray data are used only for validation purposes. Specifically, the consensus of GSEA-derived pathway rankings is used as an external benchmark pathway ranking, exploiting the capability of GSEA methods to capture information from gene expression levels and combining two diverse GSEA approaches (see below). Similar evaluation techniques, using the combined evidence from multiple analysis methods and/or exploiting additional data sources to address the absence of a gold standard pathway ranking, have been used before, e.g. a recently introduced approach scored the extent to which gene sets ranked as significant by a method of interest are reproduced by other methods (Bamford et al., 2009). Here, we obtain the benchmark pathway rankings by first normalizing all the gene array datasets listed above using the ‘Variance Stabilizing Normalization’ approach (Huber et al., 2002) and applying two recent GSEA methods, SAM-GS (Bamford et al., 2009) and GAGi (Liao et al., 2008), on all combinations of the microarray datasets with the reference gene set collections \(\text{C1 and C2} \). The resulting GSEA pathway rankings are then combined by computing the intersection sets between the top 100 ranked pathways for each microarray/gene set collection pair (the specific number of pathways was chosen to obtain an equal-sized benchmark set across all datasets and reflects the observation that the estimated numbers of significant pathways at a \(q \)-value significance score cutoff of 0.05 across all methods and datasets cluster roughly around 100). To compare the EnrichNet and ORA pathway rankings against these benchmarks, first the top 100 most significantly differentially expressed genes (DEGs) according to the empirical Bayes moderated \(t \)-statistic (Smyth, 2004) are extracted for each microarray study and the significance scores adjusted for multiple testing according to Benjamin and Hochberg (1995) (again, the specific number of DEGs was chosen to obtain equal-sized target gene sets for all datasets and lies in between estimates for the number of significant DEGs at a \(q \)-value cutoff of 0.05). Next, the association scores between these DEGs and the gene set collections are computed using EnrichNet and ORA, providing two ranking lists for each microarray/gene set collection pair. The final evaluation scores are obtained by computing a running-sum statistic across the EnrichNet and ORA ranks for all gene sets from each reference collection, with positive score contributions for benchmark pathways and negative contributions for all other pathways, using the normalized Kolmogorov–Smirnov test as defined in Mosbah et al. (2010).

3 RESULTS AND DISCUSSION

3.1 EnrichNet scores compared to over-representation analysis scores

A common biological application of enrichment analysis methods is the ranking of associations between a set of known disease-related genes and pre-defined gene/protein sets representing cellular pathways. To highlight the wide spectrum of potential biomedical applications, we assessed EnrichNet on two gene sets representing different tumour types (genes mutated in bladder and gastric cancer; Bamford et al., 2009; Futreal et al., 2000; Hamosh et al., 2002) and one gene set representing a neurological disease (genes associated with Parkinson’s disease; Ye et al., 2010) and compared the results with a conventional over-representation analysis on all pathway databases. In agreement with prior expectations, due to the dependency of both scores on the dataset overlap sizes, the network-based and the over-representation-based association scores (here using the Fisher’s exact test) were highly correlated, with absolute Pearson correlations between 0.50 and 0.95 for the different datasets compared (see Fig. 1).
Copyedited by: SK
MANUSCRIPT CATEGORY: ECCB

E. Glaab et al.

3.2 Comparative validation on benchmark gene expression data

In order to evaluate EnrichNet quantitatively, pathway/gene set rankings were computed on all combinations of five benchmark microarray datasets and two gene set collections and compared against the results for a conventional ORA using Fisher’s exact test, as described in Section 2. A set of high confidence benchmark pathways for each microarray/gene set collection pair was obtained by applying the recent gene set enrichment analysis methods SAM-GS and GAGE and computing the intersection set of between the 100 top-ranked pathways for each method. Table 2 shows the enrichment scores obtained when testing the over-representation of the benchmark pathways among the top-ranked entries in the EnrichNet and ORA rankings for all dataset combinations. Additionally, the table provides P-value significance score estimates for the enrichment scores, obtained in a non-parametric fashion using 1000 random permutations of the input rankings. In all cases, EnrichNet provides higher enrichment scores than the ORA approach and its P-value estimates are either lower or below the detection limit (0.001) for both methods. Considering the ‘No Free Lunch Theorem’ (Weldner and Macready 1998), these results do not prove a general superiority of the EnrichNet approach, but show that on common real-world datasets EnrichNet can reduce the gap in sensitivity between expression enrichment analysis methods like SAM-GS and GAGE and more generally applicable annotation enrichment analysis techniques, which are required in cases where only gene/protein lists and no expression data are available (see biological examples in the next section).

3.3 Identification of novel functional associations

In spite of the high correlations between the results for the network-based and the over-representation-based association measure (see Fig. 4), the Xd-score ranking identifies several new associations missed by the classical approach. Rather than studying the top-ranked pathways that receive both significant ORA scores and Xd-scores, the following examples therefore focus on dataset pairs with zero or insignificant overlap size (Fisher’s exact test Q-value > 0.05), which receive Xd-scores above the significance threshold obtained from the linear regression fit (see Section 2), since these results point to functional associations that reflect dense networks of interactions between the target and reference datasets, and are overlooked by approaches scoring only shared genes or proteins. Moreover, the used target gene sets all correspond to lists of genes that are mutated in different diseases without additionally available expression level data, i.e. they could not be analysed with microarray-specific gene set enrichment analysis techniques.

Two of these gene set associations detected by the EnrichNet methodology are visualized in Fig. 6. On the left (Fig. 6i), the largest connected component is displayed for the network structure obtained when comparing the gastric cancer mutated gene set against the pathway ‘Role of Erk5 (Extracellular signal-related kinase 5) in Neuronal Survival (h_erk5Pathway)’ from the BioCarta database, describing a signalling cascade which induces transcriptional events promoting neuronal survival. These datasets have an intersection size of only three genes (HRAS, NRAS and KRAS—see green nodes in Fig. 6i) and would therefore not have been considered as significantly associated by an over-representation analysis using the Fisher’s exact test (Q-value: 0.08). However, the obtained Xd-score (0.26, which matches with the regression fit based significance threshold), highlights functional associations reflecting the abundance of molecular interactions between the corresponding proteins for these gene sets and their shared network neighbourhood
Network-based enrichment analysis

Table 1. Xd-score ranking table for the top 20 functional associations between genes mutated in gastric cancer and pathways in the BioCarta database (see also the correlation plot for the same dataset in Fig. 1).

<table>
<thead>
<tr>
<th>BioCarta pathway (identifier)</th>
<th>Xd-score</th>
<th>Fisher Q-value</th>
<th>Target size</th>
<th>Reference size</th>
<th>Overlap size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trkα receptor signaling pathway</td>
<td>2.59</td>
<td>0.01</td>
<td>95</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Telomeres, telomerase, cellular aging, and immortality</td>
<td>2.13</td>
<td>0.00</td>
<td>95</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Calcium signaling by HBs of hepatitis B virus</td>
<td>1.83</td>
<td>0.04</td>
<td>95</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Role of EGF receptor transactivation by GPCRs in cardiac hypertrophy</td>
<td>1.78</td>
<td>0.01</td>
<td>95</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>CBL mediated ligand-induced downregulation of EGF receptors</td>
<td>1.58</td>
<td>0.05</td>
<td>95</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Inhibition of matrix metalloproteinases</td>
<td>1.58</td>
<td>0.05</td>
<td>95</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Cadmium induces DNA synthesis and proliferation in macrophages</td>
<td>1.53</td>
<td>0.03</td>
<td>95</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Regulation of transcriptional activity by PML</td>
<td>1.50</td>
<td>0.02</td>
<td>95</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>EGF signaling pathway</td>
<td>1.46</td>
<td>0.01</td>
<td>95</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>CCR3 signaling in eosinophils</td>
<td>1.38</td>
<td>0.01</td>
<td>95</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Tumor suppressor arf inhibits ribosomal biogenesis</td>
<td>1.38</td>
<td>0.05</td>
<td>95</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>mCALpain and friends in cell motility</td>
<td>1.38</td>
<td>0.03</td>
<td>95</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>RB tumor suppressor/checkpoint signaling in response to DNA damage</td>
<td>1.38</td>
<td>0.05</td>
<td>95</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>TGF beta signaling pathway</td>
<td>1.38</td>
<td>0.03</td>
<td>95</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Trefol factors initiate mucosal healing</td>
<td>1.29</td>
<td>0.01</td>
<td>95</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Spiroty regulation of tyrosine kinase signals</td>
<td>1.25</td>
<td>0.03</td>
<td>95</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>VEGF, hypoxia, and angiogenesis</td>
<td>1.25</td>
<td>0.03</td>
<td>95</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Phosphorylation of MEK1 by cdk5/p35 down-regulates the MAP kinase pathway</td>
<td>1.20</td>
<td>0.06</td>
<td>95</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>PDGF signaling pathway</td>
<td>1.20</td>
<td>0.01</td>
<td>95</td>
<td>26</td>
<td>6</td>
</tr>
</tbody>
</table>

Pathways with the same Fisher Q-value 0.01 but different Xd-scores are highlighted in blue colour.

Fig. 2. Protein–protein interaction sub-networks (largest connected components) for target and reference set pairs with small overlap, predicted to be functionally associated by EnrichNet: (a) gastric cancer mutated genes (blue) and genes/proteins from the BioCarta pathway ‘Role of Erk5 in Neuronal Survival’ (magenta, the shared genes are shown in green); (b) bladder cancer mutated genes (blue) and genes/proteins from Gene Ontology term ‘Tyrosine phosphorylation of Stat3’ (GO:0042503, magenta; the only shared gene NF2 is shown in green). An over-representation analysis approach would have missed these associations, since only few of the cancer mutated genes are members of the corresponding processes (instead of only their directly shared genes/proteins). This dense network of interactions corroborates previous findings linking extracellular signal-related kinases (ERKs) to gastric cancer via an induction of the putative tumour suppressor gene DDMBT1 (deleted in malignant brain tumours 1) by a reduced ERKs activity (Kang et al., 2004). More interestingly, Xd-scores meeting the significance criterion were also obtained for dataset pairs with fewer shared genes or
proteins. For example, Figure 2b shows the largest connected component in the network structure for two datasets, bladder cancer mutated genes (blue) and the genes for the Gene Ontology (GO) term ‘tyrosine phosphorylation of Stat3 (GO:0042503)’, which share only a single gene (NF2) and for which no association can be inferred from an over-representation analysis. The high Xd-score for this gene set pair (0.80, the significance threshold is 0.45) points to a functional association via multiple connecting molecular interactions, which is confirmed by the visualization. This result is in agreement with the previously reported observation that the down-regulation of STAT3 phosphorylation by means of silencing the Rho GTPase CDC42 is linked to the suppression of tumour growth in bladder cancer (Wu et al. 2008). Rho GTPases like CDC42 are known to frequently participate in carcinogenic processes (del Pulgar et al. 2005) and their involvement in bladder cancer is also reflected by a high Xd-score of 0.71 for the GO biological process ‘regulation of Rho GTPase activity’ (GO:0032319), which also shares only one gene with the bladder cancer mutated genes (TSC1).

For the third gene set, containing genes implicated in Parkinson’s disease (PD) (Yu et al. 2010), EnrichNet found a strong association with the ‘regulation of interleukin-6 biosynthetic process’ from the Gene Ontology database (GO:0045408, see Fig. 3. The pathway is ranked with a significant Xd-score (0.77, significance threshold: 0.55). The visualization of the corresponding sub-network (see Fig. 3) reveals a dense cluster of interactions that interlink the PD gene set with the interleukin-6 pathway. This gene set association corroborates previously identified links between PD and inflammation (Hart et al. 2004) and reports of elevated levels of interleukin-6 in the cerebrospinal fluid of PD patients (Blum-Degen et al. 2009).

In summary, these example applications of the network-based scoring methodology illustrate the utility of the approach for identifying novel functional associations between gene/protein sets, which reflect known direct and indirect molecular interactions between their members rather than only the size of their overlap. Further novel associations identified for these cancer datasets and PD are presented in the Supplementary Materials.

3.4 Evaluation of the tissue specificity of gene set associations

The Xd-distance is capable of computing tissue-specific association scores (see Section 2). Although tissue-specific analyses can also be realized with other enrichment analysis techniques, in particular methods that enable the consideration of non-overlapping gene/protein lists without complementary expression measurements. This practical limitation results from the typically small size of the intersection set between the target and reference dataset, because the subset of genes with available tissue-specific annotations within the intersection set of genes/proteins is often too small for at least some of the analysed tissues to obtain reliable over-representation statistics. EnrichNet alleviates this limitation of ORA approaches by additionally taking tissue specificity into account for all non-overlapping gene/protein pairs, which are connected through paths of interactions in a molecular network. We illustrate the informative value of EnrichNet’s tissue-specific scores using a comparative analysis of brain and non-brain tissues (see the details on the tissue grouping for 60 human tissues in the Supplementary Materials). Specifically, we apply EnrichNet on a set of genes with known implications in PD (Yu et al. 2010) and measure the tissue-specific associations with the high-scoring KEGG ‘Neurodegenerative Diseases’ (hsa05110) pathway. As expected, high Xd-scores were over-represented

Table 2. Enrichment scores and P-value estimates for the comparative validation of EnrichNet and ORA using Fisher’s exact test across all combinations of five microarray gene expression datasets and two gene set collections.

<table>
<thead>
<tr>
<th>Microarray dataset</th>
<th>Gene set collection</th>
<th>Fisher’s exact test</th>
<th>EnrichNet</th>
<th>ORA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enrichment score</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P-value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td>C1</td>
<td>13.5 (P=0.225)</td>
<td>36.9 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>45.6 (P=0.001)</td>
<td>65.2 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>21.2 (P=0.028)</td>
<td>40.8 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>6.85 (P=0.673)</td>
<td>70.1 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td>Lung (Boston)</td>
<td>C1</td>
<td>2.6 (P=0.936)</td>
<td>40.0 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>15.0 (P=0.302)</td>
<td>43.7 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td>Lung (Michigan)</td>
<td>C1</td>
<td>9.1 (P=0.634)</td>
<td>40.5 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>22.8 (P=0.075)</td>
<td>94.9 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>C1</td>
<td>8.0 (P=0.569)</td>
<td>65.2 (P<0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>0.94 (P=0.985)</td>
<td>69.8 (P<0.001)</td>
<td></td>
</tr>
</tbody>
</table>

EnrichNet provides higher enrichment scores and lower or equivalent P-value estimates in all cases.

Figure 3. Protein–protein interaction sub-network (largest connected component) for the PD gene set (blue) and genes/proteins from GO term ‘Regulation of interleukin-6 biosynthetic process’ (magenta, GO:0045408, the only shared gene IL1B is shown in green)
in the group of brain tissues, whereas the centre of the Xd-score distribution was significantly lower in the non-brain tissues (P = 0.004, Mann-Whitney test). This example highlights the utility of the scoring scheme in providing information to identify tissue-specific associations between genes/proteins in molecular interaction networks and to rule out associations with low Xd-scores in a tissue of interest.

Funding: The Biotechnology and Biological Sciences Research Council (BB/F01855X/1), and the EU FP7 project Microme (grant number 222886) the Spanish Ministry for Education and Science (BIO2007-68855). N.K. is supported with an Engineering and Physical Sciences Research Council Leadership Fellowship (EP/D031411/1) and a Morris Belkin visiting professorship at the Weizmann Institute of Science.

Conflict of Interest: none declared.

REFERENCES

Al-Shahrour et al. (2007) From genes to functional classes in the study of biological systems. BMC Bioinformatics, 8, 114.

Huber et al. (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18 (Suppl. 1), S96–S104.

Kolchanov et al. (2008) From genes to functional classes in the study of biological systems. BMC Bioinformatics, 8, 193.

Wolpert et al. (1995) No free lunch theorems for search. Technical report SFI-TR-95-02-010; Santa Fe, NM.

