Sequence analysis

motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites

Simon G. Coetzee¹, Gerhard A. Coetzee² and Dennis J. Hazelett¹,*

¹Bioinformatics and Computational Biology Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
and ²Department of Urology and Preventive Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA

*To whom correspondence should be addressed.

Abstract

Summary: Functional annotation represents a key step toward the understanding and interpretation of germline and somatic variation as revealed by genome-wide association studies (GWAS) and The Cancer Genome Atlas (TCGA), respectively. GWAS have revealed numerous genetic risk variants residing in non-coding DNA associated with complex diseases. For sequences that lie within enhancers or promoters of transcription, it is not straightforward to assess the effects of variants on likely transcription factor binding sites. Consequently we introduce **motifbreakR**, which allows the biologist to judge whether the sequence surrounding a polymorphism or mutation is a good match, and how much information is gained or lost in one allele of the polymorphism or mutation relative to the other. **MotifbreakR** is flexible, giving a choice of algorithms for interrogation of genomes with motifs from many public sources that users can choose from. **MotifbreakR** can predict effects for novel or previously described variants in public databases, making it suitable for tasks beyond the scope of its original design. Lastly, it can be used to interrogate any genome curated within bioconductor.

Contact: dennis.hazelett@cshs.org

1 Introduction

Transcription factor binding sites (TFBS) are typically short DNA sequence motifs that facilitate binding of a specific transcription factors via protein–DNA interactions (Stormo, 2000). There are some software tools that facilitate the scoring of non-coding variants with respect to either predefined or user-specified motifs. RegulomeDB, HaploReg and FunSeq each enable assessment of the effects of single nucleotide variants on predicted binding sites (Boyle et al., 2012; Khurana et al., 2013; Ward and Kellis, 2012). Each of these packages has strengths, but does not provide the analysis independent of its other functions. Many users generate their own motifs, but users are limited to built-in motif collections and functions. The functions are largely unavailable to non-human data sets. We hereby introduce an R/bioconductor software package called **motifbreakR** that addresses these major concerns. Implementation in R has the advantage of universality: R and bioconductor are widely used for bioinformatics and well supported across different platforms including Galaxy (Tenenbaum, 2015).

2 Features

2.1 Germline or somatic variants

Single nucleotide polymorphisms (SNPs) can be generated from another R package such as FunciSNP (Coetzee et al., 2012), or read in directly from .bed or .vcf files. The SNPs then need to be converted...
alleles of the sequence, and the effect (strong, weak or neutral). The
ods, ods are extensively documented in the vignette. For all three meth-
on relative entropy but renders very similar conclusions. The meth-
previously described (Hazelett
2.2 Comprehensive positional weight matrices
Once a SNP list is converted to GRanges, selection of PWMs proceeds
to GRanges objects. This is accomplished within
Example of motifbreakR output from plotMB function for a previously
published SNP (Hazelet al. 2014). Genomic sequence and coordinates are
at the bottom of the display; the positions of the matches represented (light
blue boxes). The position of the SNP within the motif is indicated with red
bounding box and alternate allele below, and as red text on the motif logo
position bar above. The motif logos generated from motifstack are shown
above using the color conventions of the genomic sequence below.

Fig. 1. Example of motifbreakR output from plotMB function for a previously
published SNP (Hazelet al. 2014). Genomic sequence and coordinates are
at the bottom of the display; the positions of the matches represented (light
blue boxes). The position of the SNP within the motif is indicated with red
bounding box and alternate allele below, and as red text on the motif logo
position bar above. The motif logos generated from motifstack are shown
above using the color conventions of the genomic sequence below.

3 Conclusion
In principle, a SNP label contains all the information necessary to
characterize a variant or mutation, since it points to information in
external databases somewhere. Our package makes it possible to
rapidly explore TFBS disruptions for a large number of SNPs within
the R framework, with no need to install third party software or
massage arcane output files for downstream analysis. Although the
intention is to study the relationship of human variation to disease,
use of motifbreakR is not limited to this application. Indeed, one
may access any genome in BSgenome, and query it with custom
SNPs and PWMs, or specify organism-specific sets of PWMs from
MotifDb. motifbreakR uses a highly efficient information content-
based algorithm for discriminating between truly disruptive variants
versus neutral. Because motifbreakR is designed to work with
the existing bioconductor framework, we believe it to be the most flex-
ible and extensible package available for this type of analysis.

Acknowledgements
The authors acknowledge Benjamin Berman and Huy Q. Dinh for editing and
discussions.

Funding
This work was supported by the National Institutes of Health [grant numbers
R01CA136924, R01CA190182 to G.A.C.] and National Cancer Institute
[grant number U01CA184826] supporting [D.J.H. and S.G.C.]. Funding for
open access charge: [National Cancer Institute U01CA184826].

Conflict of interest: none declared.

References
Boyle, A.P. et al. (2012) Annotation of functional variation in personal gen-
omes using RegulomeDB. Genome Res., 22, 1790–1792.
Coetze, S.G. et al. (2012) FunciSNP: an R/bioconductor tool integrating func-
tional non-coding data sets with genetic association studies to identify can-
Hazelet, D.J. et al. (2014) Comprehensive functional annotation of 77 pros-
Heinz, S. et al. (2010) Simple combinations of lineage-determining transcrip-
tion factors prime cis-regulatory elements required for macrophage and B
Cell, 152, 327–339.
Kheradpour, P. and Kellis, M. (2014) Systematic discovery and characteriza-
tion of regulatory motifs in encode tf binding experiments. Nucleic Acids
Khurana, E. et al. (2013) Integrative annotation of variants from 1092 humans:
Application to cancer genomics. Science, 342, 1235587.
Kulakovskiy, I.V. et al. (2013) Hocomoco: a comprehensive collection of
human transcription factor binding sites models. Nucleic Acids Res., 41,

