Genome analysis

Hierarchical block matrices as efficient representations of chromosome topologies and their application for 3C data integration

Yoli Shavit1,*, Barnabas James Walker2,3 and Pietro Lio1,*

1Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK, 2University of Cambridge, Cambridge CB3 0FD, UK and 3Department of Life Sciences, Imperial College London, London SW7 2AZ, UK

*To whom correspondence should be addressed.

Abstract

Motivation: Recent advancements in molecular methods have made it possible to capture physical contacts between multiple chromatin fragments. The resulting association matrices provide a noisy estimate for average spatial proximity that can be used to gain insights into the genome organization inside the nucleus. However, extracting topological information from these data is challenging and their integration across resolutions is still poorly addressed. Recent findings suggest that a hierarchical approach could be advantageous for addressing these challenges.

Results: We present an algorithmic framework, which is based on hierarchical block matrices (HBMs), for topological analysis and integration of chromosome conformation capture (3C) data. We first describe chromoHBM, an algorithm that compresses high-throughput 3C (HiT-3C) data into topological features that are efficiently summarized with an HBM representation. We suggest that instead of directly combining HiT-3C datasets across resolutions, which is a difficult task, we can integrate their HBM representations, and describe chromoHBM-3C, an algorithm which merges HBMs. Since three-dimensional (3D) reconstruction can also benefit from topological information, we further present chromoHBM-3D, an algorithm which exploits the HBM representation in order to gradually introduce topological constraints to the reconstruction process. We evaluate our approach in light of previous image microscopy findings and epigenetic data, and show that it can relate multiple spatial scales and provide a more complete view of the 3D genome architecture.

Availability and implementation: The presented algorithms are available from: https://github.com/yolish/hbm.

1 Introduction

HiT-3C techniques provide a means for studying the genome architecture at a range of resolutions. As oppose to light microscopy, 3C gives a population-based measure that relies on spatial proximity but does not directly convey a spatial context (Belmont, 2014). All 3C derivatives consist of cross-linking nuclei, followed by chromatin digestion and re-ligation. Quantifying the number of ligation events between two chromatin fragments gives their ‘contact frequency’ in the examined population of nuclei, providing a pairwise estimator for their distance. HiT-3C methods (most notably, the Hi-C method) detect contacts between groups of loci, per chromosome or genome-wide, which are typically summarized in a non-negative matrix called a ‘contact map’.
Analyzing contact maps can reveal different scales of topological
organization. At a 1 Megabase (Mb) resolution, chromatin compart-
ments and sub-compartments were identified with principal com-
ponent analysis (PCA) (Lieberman-Aiden et al., 2009) and clustering
(Rao et al., 2014). (Dixon et al. 2012) further suggested that at
shorter length scales (40–100 kilobases (kb)), a genomic bin can be
assigned with a state which represents its preference to interact with
other bins along the sequence (directionality index): upstream,
downstream or none. Using hidden Markov models (HMM) the
researchers have shown that the genome can be segmented into re-
gions of bins with the same state, leading to the definition of
Topologically Associated Domains (TADs, ‘upstream’ or ‘down-
stream’ regions) and their boundaries (‘none’ regions). Dynamic pro-
gramming (Levy-Leduc et al., 2014) and change point detection
(Shavit and Lio’, 2014) were also employed for identifying transitions
in contact frequency enrichment which induce a topological
gene segmentation. Owing to the definition of TADs, their po-
position and boundaries can change considerably depending on the
sequencing depth and the bin size used (Filippova et al., 2014).
For example, studying HiT-3C contact maps at different resolutions re-
vealed that previously identified large TADs can be divided into sub-
TADs (Filippova et al., 2014; Phillips-Cremins et al., 2013). This
hierarchical organization suggests the need for methods that could
go beyond the TAD-based segmentation and capture topologies at
different length scales. Hierarchical topologies derived from contact
maps can further provide a spatial context for studying point-wise
and relational properties (e.g., histone modifications and gene co-
expression, respectively). This can in turn uncover associations
between spatial organization (structure) and genomic features (func-
tion) that could not have been discovered when considering only the
proximity of the sequence. Such evidence synthesis requires an ap-
proach which can relate datasets at different resolutions and link
genetic and epigenetic features to the spatial scale at which they
work.

Physics and statistical mechanics have provided valuable lessons
about the genome organization. By modelling the chromatin fibre as a
polymeric chain of beads, researchers have applied polymer physics to
study the expected genome topology and dynamics. In particular, the
distance and probability of contact of between beads (loci), given their
distance on the sequence, were a subject for much research (Mirny,
2011). Measurements obtained with fluorescence in-situ hybridization
(FISH) and HiT-3C experiments were used to motivate and validate
hypotheses concerning these properties, respectively, and, together
with general characteristics of polymer chain behaviour were used
to propose different models of chromatin organization (Barbieri
et al., 2012; Bohn et al., 2007; Lieberman-Aiden et al., 2009; Mateos-
Langerak et al., 2009; Munkel et al., 1999; Sachs et al., 1995). The
increasing volume of HiT-3C data calls for the development of algo-
rithms and data structures that can summarize, compress and inte-
grate datasets while considering issues of time and space complexity.
Such a computational approach can complement physics simulations
and provide the necessary framework for large scale studies of the 3D
genome architecture and its function.

In this paper, we present a HBM-based algorithmic framework
for topological analysis and integration of HiT-3C data. We
first introduce the HBM representation for contact maps and give
the necessary definitions (Section 2.1). Next, we describe
chromoHBM, an algorithm which compreses a contact map into a
HBM by iteratively detecting dense modules (communities) of inter-
acting chromatin segments (Section 2.2). We then focus on the ap-
lication of HBMs for 3C data integration. We explain the difficulties
involved in directly combining HiT-3C datasets and propose to
merge their HBM representations instead, using the chromoHBM-
3C algorithm (Section 2.3). We also note that spatial inference can
benefit from incorporating topological knowledge and describe
chromoHBM-3D, an algorithm which takes a 3D reconstruction
method and iteratively guides it by means of HBM traversal (Section
2.4). In order to evaluate our approach, we study Hi-C datasets and
show that HBMs highlight key topologies and that the merged
HBM representation can capture multiple scales of spatial organiza-
tion that could not have been detected by separately analyzing each
dataset. For the sake of space, robustness and running time evalua-
tion is given in the supplementary information (Table 1). Additional results of related or exploratory analysis are also avail-
able on request.

Table 1. Evaluation results and their availability.

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Algorithm</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistency with FISH</td>
<td>chromoHBM</td>
<td>Section 3</td>
</tr>
<tr>
<td>Consistency with FISH</td>
<td>chromoHBM-3C</td>
<td>Section 3</td>
</tr>
<tr>
<td>Consistency with epigenetic data</td>
<td>chromoHBM-3C</td>
<td>Section 3</td>
</tr>
<tr>
<td>Consistency with FISH</td>
<td>chromoHBM-3D</td>
<td>Suppl.</td>
</tr>
<tr>
<td>Consistency with topological</td>
<td>chromoHBM</td>
<td>Suppl.</td>
</tr>
<tr>
<td>domains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness (community detection</td>
<td>chromoHBM</td>
<td>Suppl.</td>
</tr>
<tr>
<td>method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness (filtering)</td>
<td>chromoHBM</td>
<td>Suppl.</td>
</tr>
<tr>
<td>Runtime analysis</td>
<td>chromoHBM</td>
<td>Suppl.</td>
</tr>
<tr>
<td>Runtime analysis</td>
<td>chromoHBM-3C</td>
<td>Suppl.</td>
</tr>
<tr>
<td>Runtime analysis</td>
<td>chromoHBM-3D</td>
<td>Suppl.</td>
</tr>
<tr>
<td>Consistency of contact maps</td>
<td>Pre-processing</td>
<td>AOR</td>
</tr>
<tr>
<td>with FISH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproducibility between</td>
<td>Pre-processing</td>
<td>AOR</td>
</tr>
<tr>
<td>replicates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AOR, available on request; Suppl., supplementary information.

2 Methods

2.1 From contact maps to HBMs: an introduction for
bioinformaticians

3C experiments measure the frequency of ligation events between
chromatin fragments in a population of nuclei. For a given pair of
genomic bins, each spanning one or more chromatin segments, we
define their contact frequency as follows:

Definition 1 (contact frequency): Let a genomic bin be a vector of
consecutive chromatin fragments. Let \(a = (a_1, a_2, ..., a_k) \) be a gen-
omic bin with \(k \) fragments and \(b = (b_1, b_2, ..., b_l) \) a genomic bin
with \(l \) fragments. The contact frequency between \(a \) and \(b \) is then:

\[
f_{ab} = \sum_{i=1}^{k} \sum_{j=1}^{l} e_{a_i b_j} \quad \text{where } e_{a_i b_j} = \text{the number of ligation events between fragments } a_i \text{ and } b_j, \quad 1 \leq i \leq k, \quad 1 \leq j \leq l.
\]

We can further summarize these data with a matrix whose entries give the pairwise contact frequencies between two vectors of
genomic bins. This leads to the following definition:

Definition 2 (contact map): Let \(p = (p_1, p_2, ..., p_m) \) be a vector of \(m \) consecutive genomic bins and \(q = (q_1, q_2, ..., q_n) \) a vector of \(n \) consecutive genomic bins. The contact map of \(p \) and \(q \) is a \(m \times n \) matrix \(A \), with \(A_{ij} = f_{p_i q_j} \), where \(f_{p_i q_j} \) is the contact frequency between bins \(p_i \) and \(q_j \), for \(1 \leq i \leq m, \quad 1 \leq j \leq n. \)
When all the genomic bins in p and q are from the same chromosome, we call A a cis contact map. Otherwise, A is a trans contact map. From Definition 1 we also get that A is a non-negative matrix and that if p and q are identical then it is also symmetric.

In practice, contact frequencies are biased measures of ligation events (Yaffe and Tanay, 2011). Consequently, contact maps need to be corrected before any subsequent analysis. In addition, even in the bias-free case, their exact spatial interpretation is not straightforward. For example, we have recently found that contact frequencies and distances measured with FISH are correlated only for short range distances (Shavit et al., 2014). Thus, de-noised contact maps should also be filtered in order to discard artefacts and data that are not spatially meaningful. Here, we concentrate on the topological analysis and data integration of cis chromosomal contact maps and assume that they are de-noised and filtered (an evaluation of the effect of filtering is described in the suppl. information).

Since we are interested in recovering the topology of chromosomes from their contact maps, the concept of networks immediately comes to mind. In fact, cis contact maps were previously modelled as adjacency matrices of weighted undirected graphs (Boulos et al., 2013). This leads to the definition of a contact network:

Definition 3 (contact network): Let $p = (p_1, p_2, ..., p_m)$ be a vector of m genomic bins, from the same chromosome. The contact network of p is a weighted undirected graph $N(V, E, w)$ where:

- $V = \{p_1, p_2, ..., p_m\}$ is a set of nodes,
- $E = \{(p_i, p_j)|f_{p_i, p_j} > 0\}$ is a set of edges, where f_{p_i, p_j} is the contact frequency between the nodes (bins) p_i and p_j, for $1 \leq i, j \leq m$, and
- $w : E \rightarrow R^+$ is a weight function which assigns each edge with the contact frequency between its elements: $w((p_i, p_j)) = f_{p_i, p_j}$ and R^+ is the set of strictly positive real numbers.

It follows that A, the contact map of p (a symmetric cis contact map), is the $m \times m$ adjacency matrix of N:

$$A_{ij} = \begin{cases} w((p_i, p_j)) & f_{p_i, p_j} > 0, \\ 0 & \text{otherwise} \end{cases}$$ (1)

Based on Definition 3 and Equation 1 we can derive a contact map from a contact network and vice versa. The network representation of a contact map (i.e., its contact network) provides an intuitive starting point for analyzing its topology.

Recently, several studies have demonstrated that both the fine structure and long range scaling behaviour of Hi-C data is consistent with a fractal globule model of genome folding (Grosberg et al., 1988; Lieberman-Aiden et al., 2009; Mirny, 2011; Nazarov et al., 2015). From a modelling point of view, the packing of the crumpled globule is formed by iteratively folding the polymer (chromosome) chain such that folds at one scale are grouped together in the next scale, ultimately forming a ‘fold of folds’ (Grosberg et al., 1988). The resulting structure can be described with a hierarchical block Parisi matrix that is consistent with characteristics observed in Hi-C data (Nazarov et al., 2015). Parisi matrices consist of a growing block, placed along the diagonal, which is itself a Parisi matrix of a smaller size. This class of matrices is a sub-class of hierarchical matrices which can be used to represent large-scale and dense matrices with logarithmic-linear complexity (Hackbusch, 1999). Similarly to Parisi matrices, HBMs can capture self-similar hierarchical structures but in these data structures an entry in the matrix takes the lowest level in the hierarchy. More formally, we define an HBM as follows:

Definition 4 (hierarchical block matrix (HBM)): Let N be an undirected graph $N(V, E, w)$, with V a set of m nodes, E a set of edges between them and w a function which assigns each edge with a weight. If w is defined as $w : E \rightarrow \{1\}$ then we say that N is un-weighted, otherwise N is a weighted graph. Let C be the set of clusters in N, $C = \{c_i\}_{i=1}^{k}$ where $c_i \subseteq V$ and $k \geq 1$. We denote $B(1)$ to be a $m \times m$ matrix, with:

$$B(1)_{ij} = \begin{cases} 1 & i, j \in c_i, \quad c \in C, \quad c \subseteq V, \\ 0 & \text{otherwise} \end{cases}$$

Let $N_s(V, E_1, w_1)$ be an undirected graph whose nodes are the clusters in N and $C_s = \{c_{i1}\}_{i=1}^{k_1}$ is the set of the clusters in N_s, with $c_{i1} \subseteq V$ and $k_1 \geq 1$. Note that each cluster in C_1 is a union of sets (clusters in C) that contain nodes in V. Using a recursive definition, we denote N_s to be an undirected graph whose nodes are the clusters in N_{s-1} and $B(s)$ to be a $m \times m$ matrix, with:

$$B(s)_{ij} = \begin{cases} 1 & i, j \in c_s, \quad c \in C_{s-1}, \quad c \subseteq V, \\ 0 & \text{otherwise} \end{cases}$$

where $C_{s-1} = \{c_{i-1}\}_{i=1}^{k_{s-1}}$ is the set of clusters in N_{s-1} with $c_{i1} \subseteq V$ and $k_{s-1} \geq 1$, for $s \geq 2$. Note that if $B(s)_{ij} = 1$ than for all $s < s$, $B(s')_{ij} = 1$ as well.

The hierarchical block matrix (HBM) of N is a non-negative symmetric $m \times m$ matrix, H, with: $H_{ij} = \min\{B(s)_{ij} = 1\}$, for $s \geq 1$.

If the underlying topology of a chromosome is hierarchical then we expect its contact network to consist of communities (clusters) that will form mega-communities and so forth. This is in keeping with the general definition of communities as dense sub-graphs of a sparser graph (Radicchi et al., 2004). The resulting hierarchy can then be described with an HBM; given a contact map A and its contact network N, we can compute H from N using Definition 4.
by iteratively detecting and merging communities in \(N \) until all communities are merged into one or cannot be merged any further. Figure 1 illustrates this idea. \(H \) can be further summarized with a hierarchical tree (or a dendogram), which describes the merges of communities at each level in a succinct way (Figure 1c). Taking a data-driven perspective, \(H \) also allows us to first incorporate local information and gradually include more global constraints, which is desirable when considering contact frequencies (Shavit et al., 2014).

In the next sections we describe three HBM-based algorithms: chromoHBM, chromoHBM-3C and chromoHBM-3D. The implementation of these algorithms is available at: http://www.cl.cam.ac.uk/ys388/hbm/. Details of data preparation (datasets used and subsequent pre-processing) and performance evaluation are given in the suppl. information (see also Table 1).

2.2 chromoHBM: compressing contact maps into topological features

The chromoHBM algorithm (Algorithm 1) derives the HBM representation of a (de-noised and filtered) cis contact map. It takes a \(m \times m \) symmetric cis-contact map \(A \) and returns its HBM \(H \). chromoHBM starts by initializing \(H \) to be a \(m \times m \) matrix (Algorithm 1, line 3) and then removes self-interactions from \(A \) (by setting its diagonal to zero) and creates \(\text{Adj}_0 \), a copy of \(A \) (Algorithm 1, lines 4–5). Next, \(H \) is iteratively populated. At each iteration, \(s \), chromoHBM calls \text{detectCommunities} which returns the communities in \(N \), the network whose adjacency matrix is defined by \(\text{Adj}_s \). It then updates \(\text{Adj}_s \) to be a \(m \times m \) matrix, with \(m \), the number of identified communities. \(\text{Adj}_s \) is set to be a normalized sum of the contact frequencies between the bins in \(A \) that are elements in the \(r^{th} \) and \(s^{th} \) communities in \(N \), respectively:

\[
\text{Adj}_{ij} = \frac{\sum_{k \in c_i} \sum_{l \in c_j} A_{kl}}{|c_i||c_j|} \tag{2}
\]

where \(c_i \) is the \(r^{th} \) community in \(N \) and \(|c_i| \) is its size, for \(1 \leq r \leq m_s \) and \(i \leq j \). Finally, chromoHBM updates \(H \) to record the communities detected at the current iteration (level) \(s \) by setting \(H_{ij} \) to \(s \) if the bins \(k \) and \(l \) in \(A \) are assigned to the same community for the first time, for \(1 \leq k, l \leq m \) (Algorithm 1, lines 26–30). The iterative process halts when a single community has been identified (all communities were merged) or when it is not possible to merge any of the communities detected at the previous level (Algorithm 1, while-loop condition, line 10). At this point, \(s = \max(H) + 1 \) and \(H \) may include entries that have not been set (if some communities could not have been merged). chromoHBM updates such entries to take the value of \(s \) in order to represent the global community formed by all the communities in the network (Algorithm 1, lines 33–37).

The time complexity of the \(s_{th} \) iteration in chromoHBM is given by:

\[
T(s, m_s) = T(\text{detectCommunities}, \text{Adj}_s) + \sum_{i=1}^{m_s} \sum_{j=i+1}^{m_s} \frac{|c_i||c_j|}{T(s, m_s)} \tag{3}
\]

where \(T(g, m) \) is the time complexity of \(g \) with an input of size \(m \). The first term in Equation 3 gives the time complexity of \text{detectCommunities} which depends on the size of \(\text{Adj} \) at iteration \(s \), \(\text{Adj}_s \). This method is intentionally left unspecified since we expect that the underlying hierarchy will consistently emerge regardless of the implementation used (an evaluation of the robustness of HBMs generated with chromoHBM, when using different detection methods, is described in the suppl. information). The second term describes the number of operations required to update \(\text{Adj} \) and \(H \), which depends on \(m_s \), the number of communities detected at iteration \(s \) and on \(|c_i| \), the size of community \(c_i \), for \(1 \leq r \leq m_s \). Since the final update of \(H \) takes another \(O(m^3) \) operations (Algorithm 1, lines 33–37), the total time complexity of the algorithm is given by:

\[
T(\text{chromoHBM}) = O(m^2) + \sum_{i=1}^{m_s} T(s, m_s) \tag{4}
\]

The space complexity of chromoHBM is \(O(m^2) \) since we store \(\text{Adj} \) and \(H \) in memory. This requirement could be relaxed by implementing \(H \) as a hierarchical tree.

2.3 chromoHBM-3C: merging HBMs with different bin sizes

High-throughput 3C techniques generate contact maps at various resolutions and bin sizes. To date, however, there are no methods for putting together contact maps that differ in their binning,
resolution or protocol. We focus on the integration of cis symmetric contact maps and define the problem of HiT-3C data integration as follows:

Definition 5 (3C data integration): Let \(x = [x_k, x_r] \) be a genomic range starting at position \(x_k \) and ending at position \(x_r \) on a given genomic sequence. A \(y \)-binning of \(x \) divides it into \(\frac{x_r - x_k}{y} \) genomic bins of length \(y \), where \(y \) is a natural number. Let \(u = (u_1, u_2, \ldots, u_m) \) and \(v = (v_1, v_2, \ldots, v_n) \) be two vectors of genomic bins, generated by a \(r \) and a \(n/m \) binning of \(x \), respectively. For simplicity, we will assume that \(n \) and \(\frac{x_r - x_k}{y} \) are natural numbers. Since \(g \) is also a natural number (by the definition of binning), we get that \(k = nm \). Let \(A \) and \(B \) be the contact maps of \(u \) and \(v \), respectively; the problem of integrating \(A \) and \(B \) is to create a new \(k \times k \) contact map which faithfully represents the information in \(A \) and \(B \).

Several factors make the 3C data integration problem particularly challenging. First, differences in resolution and in the molecular protocol can lead to a considerable variation in the contact frequency range, which in turn makes it difficult to combine (and compare) contact maps. Other variations in the experimental setting can also contribute to this effect. In addition, merging contact maps with different bin sizes require data processing, such as expansion or normalization of contact frequencies, which is not straightforward to perform and may lead to data distortion. Since we are ultimately interested in putting together the underlying topologies that are captured by contact maps, the HBM representation offers an attractive surrogate. Thus, instead of directly combining two contact maps, which is a difficult task, we can merge their HBMs and generate a unified representation of their topologies.

We follow the definition of the 3C data integration problem (Definition 5) and denote \(H^A \) to be the \(m \times m \) HBM of \(A \) and \(H^B \) to be the \(k \times k \) HBM of \(B \). Since \(k = nm \), we can expand \(H^A \) to be a \(k \times k \) matrix, \(H^A \), with:

\[
H^A_{ij} = H^A_{pq}, \quad p = \left\lfloor \frac{i}{n} \right\rfloor, \quad q = \left\lfloor \frac{j}{n} \right\rfloor
\]

for \(1 \leq i, j \leq k \) and \(1 \leq p, q \leq m \).

We define a ‘merging matrix’, \(M \), given by:

\[
M = \frac{H^A + H^B}{2}
\]

where \(M_{ij} \) takes the ‘average level’ between the levels at which \(i \) and \(j \) were first assigned to the same community. Given \(M \), we can compute the ‘merged HBM’, \(H^{AB} \), which integrates \(A \) and \(B \) by merging the topologies of \(H^A \) and \(H^B \). Let \(s = \{s_i\}_{i=1}^{lm} \) be the set of levels (unique values) in \(M \), sorted in an increasing order, where \(lm \) is the total number of levels in \(M \). \(H^{AB} \) is given by:

\[
H^{AB}_{ij} = g(M_{ij})
\]

where \(g \) is a function which takes the value of a level in \(M \) and returns its index in \(s \):

\[
g(s_i) = i, \quad s_i \in s
\]

The computation of \(H^{AB} \) mimics a bottom-up traversal of \(M \), where new levels are added in order to accommodate for the, possibly different, topologies of \(H^A \) and \(H^B \) (note that when \(H^A = H^B \) then also \(H^{AB} = H^B \)). Figure 2 illustrates the steps involved in merging two HBMs, using a toy example.

The chromoHBM-3C algorithm (Algorithm 2) takes a \(m \times m \) HBM \(H^A \) and a \(k \times k \) HBM \(H^B \) where \(k = nm \) and \(n \) is a natural number. It follows the steps described above and returns \(H^{AB} \), the merged HBM of \(H^A \) and \(H^B \). First, it generates \(H^A \), the expanded version of \(H^A \), according to **Equation 5** (Algorithm 2, lines 6–11). Second, it creates the merging matrix, \(M \), by taking the ‘average’ of \(H^A \) and \(H^B \). Lastly, chromoHBM-3C traverses the levels of \(M \), from the lowest to the highest, and updates \(H^{AB} \) according to **Equation 7** (Algorithm 2, lines 16–21). For each level \(s_i \) in \(M \), chromoHBM-3C iterates through the entries of \(M \) and updates the entry \(H^{AB}_{ij} \) to be \(i \) if \(M_{ij} \) equals \(s_i \). At the end of the traversal \(H \) contains the number of levels required to merge the topologies in \(H^A \) and \(H^B \). The expansion and merge steps take \(O(k^2) \) operations each and the bottom-up traversal requires another \(O(lmk^2) \) operations (where \(lmk \) is the number of levels in \(M \)). We also create and update matrices of size \(k^2 \). Hence, the total time and space complexities of the algorithm are \(O(lmk^2) \) and \(O(k^2) \), respectively.

2.4 chromoHBM-3D: guiding 3D positioning with HBMs

Current methods for 3D positioning typically use available constraints (contact frequencies) all together. If chromosomes are hierarchically organized, then reconstructing their configuration could benefit from a bottom-up approach, which starts by positioning the smaller, more local domains, and gradually proceeds by placing them relative to each other (instead of inferring all the positions at once). Since HBMs capture and relate multiple levels of topological features, they provide a natural means for implementing such an approach.

The chromoHBM-3D algorithm (Algorithm 3) takes five arguments as input:

- \(A \), a \(m \times m \) contact map,
- \(H \), the HBM of \(A \),
- \(f \), a 3D reconstruction method which takes a contact map and returns its 3D positioning,
- \(t \), a function which converts distances into contact frequencies (for example, using the inverse function), and
- \(\arg \), a list of any additional arguments for \(f \).
Given this input, chromoHBM-3D performs a bottom-up traversal of H and returns the 3D positioning of A. It first creates a $m \times m$ distance matrix, D, that will be updated during the traversal. For each level l, for each community $c_k \in c$ (for c, the set of communities detected at level l), chromoHBM-3D calls f with the contact map of c_k, A'_{c_k}, given by $A'_{c_k} = A_{c_k}$ for all $i, j \in c_k$. Note that small communities are skipped since they do not provide enough spatial constraints (Algorithm 3, line 9, where $|c_k|$ is the size of c_k). Given Y, the 3D configuration reconstructed with f, chromoHBM-3D updates D_{ij} to take the Euclidean distance between i and j in Y, for $i, j \in c_k$. This update is carried only for entries that have not been updated at previous iterations (based on ‘more local’ constraints). At the end of the iterative procedure, chromoHBM-3D transforms D into a ‘contact map’ A', using f, and calls f with A'. The resulting 3D configuration is a ‘refined’ 3D positioning of A based on the information in H.

The running time of chromoHBM-3D depends on the number of levels and communities in H and on the time complexity of f. Let l_H be the number of levels in H, m, the number of communities at level l, and $T(f, n)$, the time complexity of f with an input of size n. The time complexity of chromoHBM-3D is given by:

$$
T(\text{chromoHBM - 3D}) = O(m^2 + T(f, m) + \sum_{l=1}^{l_H} T(f, |c_l|) + |c_l|^2) \quad (9)
$$

The first and second terms in Equation 9 give the number of operations required to derive A' from D and the time complexity of reconstructing Y from A', respectively (Algorithm 3, lines 18–22). The time complexity of the bottom-up traversal is given by the third term (nested sums). For each level l, we call f with the contact map of the community c_l which takes $T(f, |c_l|)$ operations. Updating D requires additional $|c_l|^2$ operations.

3 Results

Let A and B be two contact maps, H^A and H^B their HBMs, respectively, and $H^{A\&B}$ the merged HBM of H^A and H^B, we would like to test:

- **Is $H^{A\&B}$ ‘consistent’?** If $H^{A\&B}$ is consistent then its topology should be in agreement with the separate topologies of H^A and H^B as well as with previous findings.

- **Is $H^{A\&B}$ ‘powerful’?** If $H^{A\&B}$ is powerful then it should add new information, which is not available when independently analyzing H^A and H^B. Also, there should be a clear motivation for not directly comparing A and B (for example, large variation in contact frequency distribution and range).

Further evaluation of the robustness, consistency and performance (running time) of chromoHBM, chromoHBM-3C and chromoHBM-3D is described in the suppl. information (see Table 1).

In order to evaluate how ‘consistent’ and ‘powerful’ separate and merged HBMs are, we study two contact maps and their HBMs, which considerably differ in their binning: a 500 and a 25 kb contact maps generated from human fibroblasts nuclei for chromosome 1 (Rao et al., 2014). We first compare the corrected (de-noised) contact maps. We find that the 25 kb contact map is sparser and that the distributions of the two contact maps are significantly different (one-sided t-test (significant differences are observed also when considering non-parametric tests such as the Kolmogorov-Smirnov test), P-value

Algorithm 2. chromoHBM-3C

1: procedure chromoHBM-3C(H^A, H^B)
2: $m \leftarrow \text{Nrow}(H^A)$
3: $k \leftarrow \text{Nrow}(H^B)$
4: $n \leftarrow \frac{m}{k}$ \hspace{1cm} \triangleright \text{we assume that } n \text{ is a natural number}
5: $H^A \leftarrow \text{matrix}(k, k)$ \hspace{1cm} \triangleright \text{expand } H^A
6: for $i \leftarrow 1$ to k do
7: \hspace{1cm} $p \leftarrow \lceil \frac{i}{k} \rceil$
8: for $j \leftarrow 1$ to k do
9: \hspace{2cm} $q \leftarrow \lceil \frac{j}{k} \rceil$
10: \hspace{2cm} $H^A_{ij} \leftarrow H^B_{pq}$
11: \hspace{1cm} $H^A_{ij} \leftarrow H^A_{ij}$
12: \hspace{1cm} $M \leftarrow \frac{H^A_{ij}}{2}$
13: \hspace{1cm} $H^{AB} \leftarrow \text{matrix}(0, k, k)$
14: \hspace{1cm} $s \leftarrow \text{getLevels}(M)$ \hspace{1cm} \triangleright \text{level values in increasing order}
15: \hspace{1cm} $l_M \leftarrow \text{length}(s)$ \hspace{1cm} \triangleright \text{number of levels}
16: for $l \leftarrow 1$ to l_M do
17: \hspace{1cm} for $i \leftarrow 1$ to k do
18: \hspace{2cm} for $j \leftarrow 1$ to k do
19: \hspace{3cm} if $M_{ij} = s_l$ then
20: \hspace{4cm} $H^{AB}_{ij} \leftarrow l$
21: \hspace{4cm} $H^{AB}_{ij} \leftarrow H^{AB}_{ij}$
22: return H^{AB}

Algorithm 3. chromoHBM-3D

1: procedure chromoHBM-3D(A, H, f, t, arg)
2: $m \leftarrow \text{Nrow}(A)$
3: $D \leftarrow \text{matrix}(m, m)$
4: $l_H \leftarrow \text{Nlevels}(H)$ \hspace{1cm} \triangleright \text{number of levels in } H$
5: for $l \leftarrow 1$ to l_H do
6: \hspace{1cm} $c \leftarrow \text{communitiesAtLevel}(l)$ \hspace{1cm} \triangleright \text{communities detected at level } l
7: for all $c_k \in c$ do
8: \hspace{1cm} $m_l \leftarrow |c_k|$ \hspace{2cm} \triangleright \text{number of elements in } c_k
9: \hspace{1cm} if $m_l > 4$ then
10: \hspace{2cm} $A'^{c_k} \leftarrow \text{matrix}(m_l, m_l)$
11: \hspace{2cm} for all $i, j \in c_k$ do
12: \hspace{3cm} $A'^{c_k}_{ij} \leftarrow A_{ij}$
13: \hspace{2cm} $Y \leftarrow f(A'^{c_k}, \text{args})$ \hspace{1cm} \triangleright \text{the 3D positioning of } A'^{c_k}$
14: \hspace{1cm} for all $i, j \in c_k$ do
15: \hspace{2cm} if D_{ij} is NULL then \hspace{1cm} \triangleright \text{first update}
16: \hspace{2cm} $D_{ij} \leftarrow \sqrt{\sum_{n=1}^{3} (Y_{i,n} - Y_{j,n})^2}$
17: \hspace{2cm} $A' \leftarrow \text{matrix}(m, m)$
18: for $i \leftarrow 1$ to $m - 1$ do
19: for $j \leftarrow i + 1$ to m do
20: \hspace{2cm} $A'_{ij} \leftarrow t(D_{ij})$ \hspace{1cm} \triangleright \text{convert distances into ‘contact frequencies’}$
21: $A'_{ij} \leftarrow A_{ij}$
22: $Y \leftarrow f(A', \text{args})$
23: return Y
The merged HBM of the HBMs in (a) and (b), generated with chromoHBM-3C chromosome 1 (enlarged for visual clarity). (Fig. 3c) accommodates for the distinct scales that are captured (enlarged for visual clarity), 2.2

Hierarchical block matrices

In order to further evaluate the consistency of H_{merged}, we study active and repressed domains in chromosome 1. These domains belong to a group of regions which appear throughout the genome, termed ‘ridges’ and ‘anti-ridges’, which show distinct functional and structural characteristics. Ridge domains are rich with genes and active regulatory elements, and are highly transcribed and expressed (‘active’) (Gilbert et al., 2004; Versteege et al., 2003). They possess an ‘open’ chromatin topology which further correlates with their high expression level. In contrast, anti-ridge domains are gene poor, poorly transcribed and expressed and present a ‘close’ and packed topology (‘repressed’). Figure 4 shows the HBMs of chromosome 1, at positions 1.50 \times 10^5 to 1.54 \times 10^5 (green frame, upper panel) and 1.73 \times 10^6 to 1.76 \times 10^6 (red frame, lower panel), which correspond to a ridge and an anti-ridge domain, respectively. For these specific regions, differences in density were also confirmed with FISH (distances within the ridge domain shown to be larger than distances within the anti-ridge domain) (Mateos-Langerak et al., 2009).

In line with the trend observed when analyzing the entire chromosome, H_{25} captures finer topological details compared to H_{500}. At the first level, the ridge domain of H_{25} consists of four communities, which roughly correspond to two communities in H_{500}. In a similar way, the two communities detected in the anti-ridge domain in H_{25} form a single community in H_{500}. When considering H_{merged}, we find that the anti-ridge domain presents a flatter hierarchy compared to the ridge domain (two levels versus three levels, respectively) with a smaller number of larger communities. This is in agreement with the characteristics of anti-ridge domains, which are more dense than ridge

Fig. 4. HBMs of chromosome 1 at ridge and anti-ridge domains. The upper panel (green frame) shows the 500kb (a), 25kb (b) and merged (c) HBMs of chromosome 1 at positions 1.50 \times 10^5 to 1.54 \times 10^5, which correspond to a ridge (‘active’) domain. The respective HBMs at the lower panel correspond to an anti-ridge (‘repressed’) domain at positions 1.73 \times 10^6 to 1.76 \times 10^6. The vertical track next to the merged HBM of the ridge domain (c) shows the picks of the H3K27Ac histone modification mark at the corresponding positions in the genome (chromosome 1: 1.50 \times 10^5 to 1.54 \times 10^5). This track was retrieved from the UCSC Genome Browser website (Kent et al., 2002)
domains. For the ridge domain, the first and third level of H_{merged} closely correspond to the first and second level of H_2, respectively. The second level of H_{merged} reveals, however, an additional scale that is missing from H_2 and H_{OS}: the last and first two communities (along the diagonal), which are detected at the first level, form one mega community while the other two communities are merged into a second mega community. This topology recapitulates the picks of a regulatory mark (shown as a vertical track next to H_{merged} in Figure 4c), which is associated with a high transcription activity (the H3K27Ac histone mark). The first mega community corresponds to H3K27Ac picks while the second matches a flat profile. This partition, which is missing from the separate HBMs, further illustrates the advantage of a merged view of multiple scales.

4 Outlook

Since the introduction of the 3C technique in 2002 (Dekker et al., 2002), various high-throughput derivatives have been developed. Given the latest enhancements in resolution (kb and sub-kb) (Hsieh et al., 2015; Rao et al., 2014; Sexton et al., 2012) and signal-to-noise ratio (Kalhor et al., 2012a,b), as well as the on-going reduction in sequencing costs, HiT-3C techniques are expected to become even more widely used for studying the 3D genome organization. Recent single-cell protocols (Nagano et al., 2013, 2015) also hold the promise to extend the conventional population-based analysis to the single cell level. Integrating these noisy, big and high-dimensional data across resolutions, sub-populations and with other Omics, pose challenges that are not yet addressed.

The HBM representation summarizes the topological features of chromosomal contact maps. This summary is useful not only for gaining biological insights into genome topology, but importantly as a foundation for analyzing multi-omic data, while considering both their sequence and 3D contexts. Since analysis can be carried independently for each scale, HBMs also lend themselves to parallel computations which is advantageous for big data. Finally, HBMs could complement genome Google-like browsers, which are now starting to emerge (He et al., 2013), since they link information at different resolutions.

Acknowledgements

We thank FP7-Health-F4-2012, under grant agreement 105 no 305280 (MIMOnomics).

Conflict of Interest: none declared.

References

