Abstract

Summary: The Simulation Experiment Description Markup Language (SED-ML) is a standardized format for exchanging simulation studies independently of software tools. We present the SED-ML Web Tools, an online application for creating, editing, simulating and validating SED-ML documents. The Web Tools implement all current SED-ML specifications and, thus, support complex modifications and co-simulation of models in SBML and CellML formats. Ultimately, the Web Tools lower the bar on working with SED-ML documents and help users create valid simulation descriptions.

Contact: fbergman@caltech.edu.

1 Introduction

In 2011, the Simulation Experiment Description Markup Language (SED-ML (Waltemath et al., 2011)) was proposed as an exchange format to improve the reproducibility of simulation experiments. Today, SED-ML is acknowledged as a core COMBINE standard (Hucka et al., 2015) and is widely used to exchange simulation experiments in computational biology. SED-ML descriptions typically consist of five major blocks of information: nomination of the model; initialization of the variables; specification of the simulation algorithm; post-processing of the results; and definition of plots and numerical reports (Bergmann et al., 2015). Libraries to read and write SED-ML are provided by the community and some software tools already consume and export SED-ML files, e.g. BioUML (Kolpakov, 2002), COPASI (Hoops et al., 2006), JWS Online (Olivier and Snoep, 2004) or Tellurium (Sauro et al., 2016). However, tool support is still limited and it remains challenging to derive simulation descriptions given a model, to update a SED-ML file, and to quickly investigate the behaviour of a model that is shared on the internet.

2 Results

We developed the SED-ML Web Tools to support users in generating, modifying, simulating, and exporting standard-compliant simulation experiments. The Web Tools are implemented in ASP.NET MVC (http://www.asp.net/mvc) and provide a web based interface to simulation studies using the SED-ML format. They are based on a .NET library called libSedML (http://libsedml.sf.net), that is also available independently.

The SED-ML Web Tools provide an easy-to-use wizard to generate SED-ML files for a model encoded in the SBML format (Hucka et al., 2003). The SBML model can be specified by (i) uploading it to the portal, (ii) providing a link to a web server delivering the model file or (iii) providing a unique resource identifier (URN). Once the model is obtained, the SED-ML Web Tools scan the model’s structure for parameters, derive initial values and generate a working SED-ML file using a default configuration (e.g. for a time course simulation). This wizard is only available for SBML encoded models.
An integrated editor allows for revising and modifying the simulation description, e. g. to study an alternative behaviour of the system or to generate plots for different parametrizations. It is available for models encoded in either the CellML or SBML format. The editor supports the SED-ML XML format and a Python-based Script Language (Bergmann, 2011).

Using libSedML, SED-ML files can immediately be simulated on the server and the results are presented in the web browser (Fig. 1). The SED-ML Web Tools run SBML models using RoadRunner (Bergmann and Sauro, 2006), Gillespie and LSolve. CellML models (Cuellar et al., 2003) are run using CSim (http://get.readthedocs.io). Simulation studies can be exported as (i) standalone SED-ML descriptions; (ii) SED-ML archives; COMBINE archives (Bergmann et al., 2014) with or without simulation results. COMBINE archives are zip-based containers to bundle all files relevant for a simulation experiment. The Web Tools are also able to read and understand simulation studies encoded in COMBINE archives. COMBINE archives are extracted, and the encoded simulations are run immediately.

The SED-ML Web Tools can be integrated with other tools. For example, the CombineArchive Web application (WebCAT, Scharm and Waltemath, 2015) enriches studies via the addition of external services, for example, to generate simulation descriptions and COMBINE archives remotely, or to execute simulation studies online.

Acknowledgement

FTB thanks H.M. Sauro for the generous support.

Funding

This work was funded by the German Federal Ministry of Education and Research (BMBF) as part of the eBio SEMS project (FKZ 031 61194) and by the National Institute of General Medical Sciences (grant number GM081070).

Conflict of Interest

none declared.

References

Bergmann,F. et al. (2014) COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project. BMC Bioinformatics, 15, 369.