Rhinocladiella mackenziei as an Emerging Cause of Cerebral Phaeohyphomycosis in Pakistan: A Case Series

Kauser Jabeen,1 Joveria Farooqi,1 Afia Zafar,1 Bushra Jamil,2 Syed Faisal Mahmood,2 Farheen Ali,2 Noureen Saeed,1 Abrar Barakzai,1 Arsalan Ahmed,1 Erum Khan,1 Mary E. Brandt,3 and Rumina Hasan1
Departments of 1Pathology Microbiology and 2Medicine, Aga Khan Hospital, Karachi, Pakistan; and 3Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia

Six cases of Rhinocladiella mackenziei cerebral phaeohyphomycosis are being reported for the first time in Pakistan. Identification was confirmed by DNA sequencing (isolates and fixed tissue). Diabetes, head trauma, immunosuppressive treatment, and postpartum state were present in 4 cases. Two survivals and 3 fatalities occurred, with 1 patient lost to follow-up.

Rhinocladiella mackenziei (formerly Ramichloridium mackenziei), a melanized neurotropic fungus, is one of the commonly reported agents of cerebral phaeohyphomycosis[1]. The majority of R. mackenziei infections occur in immunocompetent individuals[2]; however, it has been reported in patients with diabetes, hematological malignancies, systemic lupus erythematosus, chronic liver disease, and renal transplantation, as well as after chemotherapy[1–3]. Cerebral infections with R. mackenziei have been associated with very low survival rates. R. mackenziei grows slowly in culture media, and its accurate diagnosis requires expertise and often consultation with reference laboratories. Confirmed diagnosis of the infection requires visualization of pigmented fungal elements along with isolation of the fungus from biopsy sample or aspirated pus from brain lesions[4]. Central nervous system infections due to R. mackenziei have been exclusively reported from the Middle East, except for cases recently reported from India and Afghanistan [5–6]. Infection with R. mackenziei has never been previously reported from Pakistan. This case series describes 6 cases of cerebral R. mackenziei infection from arid regions of Baluchistan and Sind.

CASES
Details of the cases are described in Table 1. All cases underwent surgical excision of the lesion, followed by antifungal agent, used singly or in combination (Table 1).

LABORATORY IDENTIFICATION
Material was mixed with 10% KOH and was visualized at 10× and 40× magnification. Lactophenol cotton blue staining was used to confirm septations and pigment in doubtful cases. Tissue sections were examined initially with hematoxylin and eosin staining and were further stained with periodic acid–Schiff’s for proper visualization of fungal hyphae. All samples revealed inflammation with moderate to numerous darkly pigmented hyphae. Several toluroid and moniliform hyphae were also visualized, but no yeast forms were noted (Figure 1). Specimens were inoculated on sheep blood agar, Sabouraud’s dextrose agar, potato dextrose agar, and Mycosel and BiGGY agar. Plates were incubated at 27°C and 37°C and were observed daily. In the laboratory, most of the isolates were negative at 4 weeks and started to grow initially as black discoloration of media. Unless the laboratory has a high index of suspicion, the culture plates may be discarded at 4 weeks, falsely reporting these as fungal culture negative. Slide cultures were prepared on malt extract agar or tap water agar. Rhinocladiella-type sporulation (“Mickey Mouse” appearance) was seen in all isolates, with no additional sporulation types even after prolonged incubation.

Four isolates (cases 1–4) were sent for confirmation to the Centers for Disease Control and Prevention (CDC), where the D1/D2 (28S) ribosomal DNA region was sequenced [7]. Genomic DNA was extracted using Omnimixer and DNeasy Tissue kit (Qiagen, Valencia, California), and amplification was performed under conditions previously described[7] by using Pfx DNA polymerase (Invitrogen Tech-Line). Amplicons were purified with the ExoSAP-IT PCR purification kit (USB), and products were directly sequenced using the same primers as for PCR amplification, as described elsewhere [8]. Sequences were edited using Sequencer, version 4.9 (GeneCodes), and were compared with the sequences deposited in GenBank using the BLAST algorithm. DNA from all 4 isolates showed 99%

Received 2 May 2010; accepted 29 September 2010.
Correspondence: Kauser Jabeen, MD, Dept of Pathology Microbiology, Aga Khan University Hospital, Stadium Rd, PO Box 3500, Karachi 74800, Pakistan (kauser.jabeen@aku.edu).
Clinical Infectious Diseases 2011;52(2):213–217
© The Author 2011. Published Oxford University Press. All rights reserved. 1058-4838/2011/522-0001$37.00 DOI: 10.1093/cid/ciq114
<table>
<thead>
<tr>
<th>Case</th>
<th>Age and Gender</th>
<th>Patient Residence and Occupation</th>
<th>Comorbidities</th>
<th>Clinical Presentation</th>
<th>Radiologic Findings</th>
<th>Histopathology</th>
<th>D1/D2 28S rDNA Sequencing</th>
<th>Therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45, male</td>
<td>Balochistan, shopkeeper</td>
<td>Diabetic, hypertensive, paraplegic with bed sores</td>
<td>Fever for one month, slurred speech, dysphagia, right hemiparesis</td>
<td>MRI: ring enhancing lesions in centrum semiovale, left middle peduncle, and right periventricular region</td>
<td>Numerous pigmented septate hyphae with extensive necrosis</td>
<td>Isolate sequencing positive for Rhinocladiella mackenziei; tissue sequencing not performed</td>
<td>Surgical evacuation twice; Amphotericin B deoxycholate 1mg/kg/day and itraconazole 200 mg BD for 6 weeks</td>
<td>Death at one month</td>
</tr>
<tr>
<td>2</td>
<td>30, male</td>
<td>Sindh, woodcutter</td>
<td>Head injury with tree bark 2 years prior to presentation</td>
<td>Progressive right arm weakness, fever, and vomiting</td>
<td>MRI: frontoparietal lesion</td>
<td>Moderate pigmented septate hyphae with toruloid forms; granulomatous inflammation</td>
<td>Isolate sequencing positive for Rhinocladiella mackenziei; tissue sequencing negative for fungi</td>
<td>Frontoparietal craniotomy and evacuation; Amphotericin B deoxycholate 1mg/kg/day and itraconazole 200 mg BD</td>
<td>Alive at 10 months, worsening focal deficits. No contact after that</td>
</tr>
<tr>
<td>3</td>
<td>45, male</td>
<td>Unknown</td>
<td>None known</td>
<td>Fever, vomiting, and focal deficits</td>
<td>Not known</td>
<td>Pigmented septatemoniliform hyphae; granulomatous inflammation</td>
<td>Isolate and tissue sequencing positive for Rhinocladiella mackenziei</td>
<td>Surgical evacuation; Amphotericin B deoxycholate 1mg/kg/day and itraconazole 200 mg BD</td>
<td>Lost to follow-up</td>
</tr>
<tr>
<td>4</td>
<td>20, female</td>
<td>Balochistan, housewife</td>
<td>20 days postpartum</td>
<td>Fever, headache, vomiting, and right-sided weakness; had 2 seizures during therapy</td>
<td>MRI: left posterior frontal cortex lesion</td>
<td>Numerous pigmented toruloid hyphae; granulomatous inflammation</td>
<td>Neuronavigation-guided craniotomy and aspiration; Amphotericin B deoxycholate 1mg/kg/day and itraconazole 200 mg BD for 4 weeks, then itraconazole alone following this</td>
<td>Alive at 12 months; therapy continued, lesions resolved on imaging, resolution of focal deficits</td>
<td></td>
</tr>
</tbody>
</table>
homology with GenBank accession number EU041866.1

R. mackenziei (CBS 368.92). One isolate also gave 100% homology with GenBank accession number FJ427212.1 R. mackenziei and with GenBank accession number AF050288.1 R. mackenziei.

Sequencing of the internal transcribed spacer (ITS) regions was attempted, but no amplification was obtained.

Formalin-fixed paraffin-embedded blocks from cases 2–6 (5 blocks) were used for direct extraction of fungal DNA. The block from case 1 could not be located for testing. Fungal DNA was extracted and amplified, and the ITS 2 region was sequenced from 3 of the 5 blocks (cases 4–6) according to methods previously described [9]. The recovered DNA from blocks 4–6 (285 nucleotides each) showed a 99% match to multiple R. mackenziei sequences in GenBank. Fungal DNA could not be recovered from 2 of the blocks (cases 2 and 3), although the human globin DNA control could be amplified.

DISCUSSION

This series represents the first reported cases of cerebral phaeohyphomycoses due to R. mackenziei from Pakistan. At this time the literature describes about 22 reports, all in residents of Middle Eastern countries, including Saudi Arabia, Syria, and Kuwait [1–2, 4]. The reason for this endemicity has been related to the hot and arid climate in these countries. Recently cases of cerebral abscess due to R. mackenziei have been reported from India and Afghanistan [5–6].

Diagnosis in our cases was established using phenotypic characteristics in Karachi and was confirmed using both morphology and molecular methods at the CDC. DNA could not be sent for molecular identification from each of the 6 cases, either from an isolate or a paraffin block. Sequencing results from 4 isolates were consistent with conventional identification. Two isolates from cases in the latter part of the study could not be sent for molecular identification. DNA matching R. mackenziei was recovered from each of the 6 cases, either from an isolate or a paraffin block. Sequencing of the internal transcribed spacer (ITS) regions was attempted, but no amplification was obtained. Sequencing of the internal transcribed spacer (ITS) region was with GenBank accession number AF508881. R. mackenziei was homologous with GenBank accession number FJ427212.1. One isolate also gave 100% homology with GenBank accession number EU041866.1.

In our series, all the patients 20–53 years of age and 5 of 6 were male. They had no history of travel outside the known endemic region where R. mackenziei is endemic, and all the patients 20–53 years of age and 5 of 6 were male. They had no history of travel outside the known endemic region where R. mackenziei is endemic. Cerebral R. mackenziei infections may be a result of either hematogenous or direct spread from accidental introduction of spores at contiguous sites [10]. We were unable to ascertain the route of infection in these cases, although in the
A patient with a history of head trauma there is a high possibility of direct inoculation of the spores as a result of skull injury.

Only 1 patient, who was post–renal transplantation, had a clear history of immunosuppression. Of the rest no clear risk factors could be ascertained.

Cerebral phaeohyphomycoses with *R. mackenziei* is associated with poor outcome, and mortality is reported to be almost 100% despite surgical intervention and antifungal therapy[2–4]. Of the 6 patients in our series, 3 did not survive (2 had significant comorbidities), and 1 patient was lost to follow-up. Case 6 did show shrinking lesions on CT but died of complicated obstructive uropathy and urosepsis at the fourth month of craniotomy. The remaining 2 patients were both alive at the 6-month follow-up, though one of these patients subsequently discontinued his antifungal therapy without advice and had developed symptoms again at 10 months. He was later lost to follow-up. The other patient at 15-month follow-up was well, with no evidence of disease progression. The survival rate in our series seems apparently higher than that reported previously; however, the surviving patients still require further follow-up to document cure. There has been only one previously reported case of successful treatment of *R. mackenziei* brain abscess [11]. That patient showed improvement after switching to therapy from itraconazole to posaconazole. Posaconazole and, recently, isavuconazole have been reported to be effective in vitro against this agent[12]. However, these drugs are not freely available in developing countries, and a recent report of treatment failure with posaconazole is also of concern[3]. We recognize that all of our patients received suboptimal therapy; the cost of newer antifungals was a great limitation. Due to resource constraints one of our patients was not even able to continue itraconazole (case 2, the woodcutter) and went back to his remote village in Sind and declined follow-up. The patients who could afford voriconazole (cases 4 and 5) both responded favorably to the available itraconazole radiologically as well as clinically. Case 5 was also advised to take voriconazole, but before the drug could be made available (being found only at one center in Karachi and that in oral form), the patient deteriorated and expired.

The emergence of *R. mackenziei* from Pakistan, previously recognized as a country of nonendemicity for this fungus, is alarming. High mortality and the nonavailability and high cost of effective antifungal agents are our major concerns.

Acknowledgments

We would like to acknowledge the help of Lalitha Gade from the Mycotic Diseases Branch, CDC, Atlanta, Georgia, who performed amplification and
sequencing of the D1/D2 ribosomal DNA region from the cultured isolates. We would also like to thank the faculty and staff of the Clinical Microbiology Laboratory, Aga Khan University Hospital, Karachi, and the Mycotic Diseases Branch, CDC, for their support and help. The findings and conclusions of this article are ours and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Potential conflicts of interest. All authors: no conflicts.

Financial support. This work was supported by grants from the Joint Pakistan–US Academic and Research Program HEC/MoST/USAID Higher Education Commission/Ministry of Science and Technology/United State Aid for International Development and approved by the Ethical Review Committee of the Aga Khan University.

References