Influence of Genospecies of *Acinetobacter baumannii* Complex on Clinical Outcomes of Patients with Acinetobacter Bacteremia

Yu-Chung Chuang,²,³* Wang-Huei Sheng,¹,³ Shu-Ying Li,² Yu-Chi Lin,² Jann-Tay Wang,¹ Yee-Chun Chen,¹,³ and Shan-Chwen Chang¹,³

¹Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ²Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan; ³Department of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; and ⁴Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan

Background. *Acinetobacter baumannii* complex infections are increasing in prevalence and are associated with a high mortality. Biochemical classification tests cannot differentiate *A. baumannii* (genospecies 2) from other genospecies. Genospecies typing offers a potential tool to determine whether there are major differences in pathogenicity among the genospecies.

Methods. Adult patients with *A. baumannii* complex bacteremia in intensive care units were prospectively observed from January 2007 through July 2009. *A. baumannii* complex was identified by biochemical methods and the Phoenix bacterial identification system. Genospecies were identified by 16S-23S ribosomal RNA intergenic-spacer sequencing.

Results. Among the 135 patients with *A. baumannii* complex bacteremia, 87 (64.4%) had isolates that belonged to genospecies 2, 36 (26.7%) had isolates that belonged to genospecies 13TU, and 12 (8.9%) had isolates that belonged to genospecies 3. Patients with *A. baumannii* (genospecies 2) bacteremia were more likely to have pneumonia than were patients with bacteremia due to genospecies 13TU (63.2 % vs 27.8%; *P* = .001), whereas patients with bacteremia due to genospecies 13TU were more likely to have primary bacteremia (69.4% vs 20.7%; *P* < .001). Genospecies 2 was less susceptible to antibiotics than were other genospecies. It was associated with a higher rate of mortality than was genospecies 13TU (58.6% vs 16.7%; *P* < .001). On multivariate analysis, genospecies 2 was an independent predictor of mortality (odds ratio, 5.46; 95% confidence interval, 2.00–14.91; *P* = .001).

Conclusions. Genospecies 2 of the *A. baumannii* complex was associated with greater resistance to antibiotics and higher mortality among bacteremic patients, compared with other genospecies, especially genospecies 13TU. These findings emphasize the need to focus on genospecies to better understand the pathogenesis and epidemiology of infections caused by the *A. baumannii* complex.

Acinetobacter baumannii is a nonfermenting gram-negative aerobic coccobacillus that can contaminate health care instruments and environmental surfaces [1]. The prevalence of health care–associated infections caused by *A. baumannii* is increasing among patients in intensive care units (ICUs) [2, 3] and among immunocompromized populations [4, 5]. These infections are associated with a high mortality and a prolonged length of hospital stay [6, 7]. *Acinetobacter* genospecies 1 (*Acinetobacter calcoaceti-cus*), genospecies 2 (*A. baumannii*), genospecies 3, and genospecies 13TU are phenotypically similar and are referred to as the *A. calcoaceticus–A. baumannii* complex (ACB complex) [8]. Genospecies 2 is primarily associated with human diseases [9]. The clinical manifestations and outcomes for the other genospecies within
the ACB complex need additional clarification. Identification limited to the ACB complex can be misleading, because the ACB complex genospecies differ in their biological and pathological characteristics. For example, genospecies 1 is considered to be an environmental pathogen and has been rarely implicated as a cause of severe disease [10, 11]. There are also differences among the ACB complex genospecies in their ability to colonize human skin [12, 13], antimicrobial susceptibility [14–19], and mechanisms of resistance to antimicrobial agents [15, 20, 21]. We hypothesized that patients infected with genospecies 2 of ACB complex may have a poorer outcome than those infected with other genospecies, because genospecies 2 tends to be more resistant to antimicrobial agents [14–19] and is more commonly isolated from patients than other genospecies [22]. The current prospective observational study was designed to test this hypothesis by comparing the clinical characteristics, microbiological findings, and final outcomes for patients with bacteremia caused by genospecies 2, compared with patients with bacteremia due to other members of the ACB complex.

METHODS

Study Population
This study was conducted among patients admitted to ICUs at the National Taiwan University Hospital (NTUH). NTUH is a 2200-bed teaching hospital located in Taipei, Taiwan. It provides both primary and tertiary medical care. ACB complex bacteremia was defined as the presence of ≥1 positive blood culture results for patients with signs and symptoms of infection. Patients with ACB complex bacteremia were prospectively enrolled from January 2007 through July 2009. Patients <18 years of age or with incomplete medical records were excluded. For patients with multiple episodes of ACB complex bacteremia, only the first episode was included. The study was approved by the Institutional Review Board of National Taiwan University Hospital.

Microbiological Studies
Blood cultures were processed by the hospital microbiology laboratory using the Bactec 9240 system (Becton Dickson). The ACB complex was primarily identified by biochemical methods [23], and the Phoenix bacterial identification system (BD Diagnostics). Antimicrobial susceptibility was determined by the disk diffusion method for gentamicin, amikacin, ciprofloxacin, levofloxacin, cefepime, ceftazidime, aztreonam, ticarcillin-clavulanate, meropenem, and ampicillin-sulbactam according to Clinical and Laboratory Standards Institute (CLSI) criteria [24]. Genospecies of blood isolates enrolled were identified according to 16S–23S ribosomal RNA (rRNA) gene intergenic spacer (ITS) region, as previously described [16]. Minimum inhibitory concentrations (MICs) of amikacin, ciprofloxacin, imipenem, and ampicillin-sulbactam were determined by agar dilution methods according to CLSI criteria [24]. The Etest was used for colistin [24, 25]. MICs of tigecycline were determined by agar dilution test. Isolates with MIC ≤2 µg/mL to tigecycline were considered to be susceptible [26].

Data Collection
Demographic data, data on underlying diseases, and data on the site of infection were collected prospectively. The Charlson comorbidity index [27] was used to adjust for underlying conditions. Immunosuppressive therapy was defined as receipt of antineoplastic drugs, cyclophosphamide, or other immunosuppressive agents within 6 weeks after onset of ACB complex bacteremia or receipt of corticosteroids at a dosage equivalent to or higher than 20 mg of prednisolone daily for at least 2 weeks or 30 mg of prednisolone daily for at least 1 week before a positive blood culture for ACB complex bacteremia was obtained [28]. Sites of primary infection were identified according to definitions of the Centers for Disease Control and Prevention [29]. If no infectious focus could be identified, the bacteremia was classified as primary. Initial blood tests included white blood cell and platelet counts; determination of hemoglobin, C-reactive protein, and creatinine levels; and liver function tests (ie, determination of aspartate aminotransferase and total bilirubin levels). The severity of illness was determined by the Acute Physiology and Chronic Health Evaluation II (APACHE II) score [30], Sequential Organ Failure Assessment (SOFA) score [31], and the Pitt bacteremia score [32].

Appropriate empirical antimicrobial therapy was defined as the administration of an antimicrobial agent to which the patient’s isolate had been shown to be susceptible in vitro within 24 h after the first positive blood culture for the ACB complex had been obtained. All-cause in-hospital mortality was recorded. Bacteremia-related death (attributable mortality) was defined as a blood culture positive for the ACB complex and death before resolution of signs and symptoms of bacteremia. Attributable mortality was used in the outcome analysis. Patients who remained alive following the episode of ACB complex bacteremia were classified as the survivor group.

Statistical Analysis
Median values and interquartile ranges (IQRs) were calculated for continuous variables, and percentages were used for categorical variables. The associations between the clinical presentations of ACB complex genospecies 2, genospecies 13TU, and genospecies 3 were compared using Kruskal–Wallis one-way analysis of variance (ANOVA), or Fisher’s exact test. Post hoc analysis using Mann–Whitney U test or Fisher’s exact test used a Bonferroni-adjusted α for pair-wise comparisons if the result of the initial Kruskal–Wallis one-way ANOVA or Fisher’s exact test was statistically significant.

Outcomes of A. Baumannii Bacteremia • CID 2011:52 (1 February) • 353
Multivariate logistic analysis and multivariate Cox proportional hazards models were used for outcome analysis. Variables included sex, age, length of hospital stay before the onset of bacteremia, infection focus, carbapenem resistance, appropriate use of empirical antibiotics, Charlson comorbidity index, use of immunosuppressive drugs, and genospecies. Variables with a P value $< .2$ in the univariate regression were added in a stepwise manner and selected to determine the final model for multiple variables analysis. A P value $< .05$ was considered statistically significant. Data were analyzed using Stata software, version 10 (StataCorp).

RESULTS

During the study period, 149 ICU patients were found to have ACB complex bacteremia by phenotypic identification. Fourteen (9.4%) were excluded from the study according to the 16S–23S rRNA gene ITS region sequencing results. The distribution of ACB complex genotypes among the remaining 135 patients consisted of 87 patients (64.4%) with genospecies 2 isolates, 36 (26.7%) with genospecies 13TU isolates, and 12 (8.9%) with genospecies 3 isolates.

The demographic characteristics and underlying diseases of the 135 patients with ACB complex bacteremia are shown in Table 1. There were no significant differences among patients with different genospecies with respect to age, sex, or length of hospital stay. The Charlson scores were significantly different among the 3 groups ($P = .003$). Patients with genospecies 3 bacteremia had significantly higher Charlson scores and more metastatic malignancies than did patients with genospecies 2 bacteremia ($P = .004$ and .005, respectively). Patients with genospecies 13TU bacteremia had more frequent hypertension and were more likely to have a history of coronary artery disease but had less immunosuppressive therapy than did patients with bacteremia due to the other genospecies. Seventy-one patients had repeat blood cultures. Of these, 21 (29.6%) had persistent bacteremia. The median duration of persistent bacteremia was 3.5 days (range, 1–28 days).

The sources of infection for ACB complex bacteremia are shown in Table 2. Pneumonia was the most frequent source of bacteremia for those with genospecies 2 isolates (63.2% vs 27.8%; $P = .001$ for genospecies 2 vs 13TU, respectively). In contrast, primary bacteremia was the most frequent source of bacteremia for those with genospecies 13TU isolates (69.4% vs 20.7%; $P < .001$ for genospecies 13TU vs 2, respectively).

The clinical characteristics of the study patients are summarized in Table 3. There were no significant differences in APACHE II scores among the groups. The Pitt bacteremia score was significantly higher for those with genospecies 2 isolates than it was for those with genospecies 13TU isolates on the day when the ACB complex bacteremia was first noted ($P = .002$). The laboratory findings were similar among the 3 groups. The only exception was a lower platelet count among patients with genospecies 2 than among patients with genospecies 13TU ($P = .006$). Genospecies 2 blood isolates exhibited more carbapenem resistance than did genospecies 13TU and genospecies 3 isolates ($P < .001$ and .002, respectively). There were also higher rates of appropriate empirical antimicrobial therapy among patients with genospecies 13TU and genospecies 3 isolates than there were among those with genospecies 2 isolates ($P < .001$ and .003, respectively).

The all-cause in-hospital mortality was 59.3% for the 135 patients with ACB complex bacteremia. The highest rate was 67.8% for patients with genospecies 2 isolates, followed by 58.3% for those with genospecies 3 isolates and 38.9% for those with genospecies 13TU isolates ($P = .01$). The attributable mortality was also higher for patients with genospecies 2 isolates than it was for the other patient groups.

The attributable mortality rates were similar between patients who did and those who did not receive appropriate empirical antimicrobial therapy (40.5% vs 47.3%; $P = .58$). Of 93 patients with inappropriate empirical antimicrobial therapy, there were mortality difference among these 3 groups ($P = .05$), especially between the genospecies 2 group and the 13TU group (53.4% vs 20%; $P = .02$). Of 42 patients with appropriate empirical antimicrobial therapy, the mortality rate among those with genospecies 2 isolates was significantly higher than the mortality rate among those with genospecies 13TU isolates (85.7% vs 14.3%; $P < .001$) (Table 3). Of the 12 patients who died due to genospecies 2 bacteremia and received appropriate empirical antimicrobial treatment, 5 received a combination of 2 antimicrobial agents. The antimicrobial agents included carbapenems ($n = 6$), anti-pseudomonas β-lactams ($n = 6$), fluoroquinolones ($n = 2$), colistin ($n = 2$), and tigecycline ($n = 1$).

The antimicrobial susceptibility profiles of the 3 genospecies are shown in Table 4. Genospecies 2 exhibited the highest frequency of resistance to all antibiotics tested, with the exception of colistin. There were significantly different rates of resistance to ciprofloxacin, amikacin, imipenem, ampicillin-sulbactam, and tigecycline among the 3 groups. Genospecies 2 isolates had significantly higher rates of resistance to ciprofloxacin, amikacin, imipenem, and ampicillin-sulbactam (all $P < .001$) and tigecycline ($P = .008$) than did genospecies 13TU isolates. Genospecies 2 isolates also had significantly higher rates of resistance to ciprofloxacin and ampicillin-sulbactam than did genospecies 3 isolates ($P < .001$ and .003, respectively). All isolates of these 3 groups were susceptible to colistin.

The logistic regression analysis for the factors that significantly predicted mortality is shown in Table 5. In univariate analysis, pneumonia, isolates with carbapenem resistance,
immunosuppressive agents, low platelet counts, high APACHE II scores at ICU admission, and genospecies 2 were significant predictive factors of mortality. On multivariate logistic regression analysis, platelet count, high APACHE II score, and genospecies 2 bacteremia were significant independent predictors for mortality. In multivariable Cox proportional hazards model analysis, genospecies 2 bacteremia (adjusted hazard ratio [AHR], 3.04; 95% confidence interval [CI], 1.47–6.26; \(P = .003\)) was an independent factor for rapid mortality.

When the Pitt bacteremia score was included in the multivariate logistic analysis, both genospecies 2 (odds ratio [OR], 4.08; 95% CI, 1.61–10.31; \(P = .003\)) and Pitt bacteremia score (OR, 1.28; 95% CI, 1.07–1.54; \(P = .008\)) were independent predictors for mortality. In addition, both genospecies 2 (AHR, Table 1. Demographic Characteristics and Underlying Diseases of Patients with *Acinetobacter baumannii* Complex Bacteremia

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A. baumannii (Genospecies 2) (n = 87)</th>
<th>Genospecies 13TU (n = 36)</th>
<th>Genospecies 3 (n = 12)</th>
<th>Overall</th>
<th>Genospecies 2 vs 13TU</th>
<th>Genospecies 2 vs 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic characteristic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>61.8 (48.7–74.5)</td>
<td>73.7 (52.0–80.7)</td>
<td>71.8 (48.9–80.7)</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex, male/female</td>
<td>53/34</td>
<td>26/10</td>
<td>6/6</td>
<td>.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days of prior hospitalization[^a^]</td>
<td>17 (8–31)</td>
<td>19 (10–31.5)</td>
<td>21 (9–50.5)</td>
<td>.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days of prior ICU stay[^a^]</td>
<td>10 (1–17)</td>
<td>10 (4–20.5)</td>
<td>3 (0.5–8)</td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past history and underlying disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlson score</td>
<td>3 (2–6)</td>
<td>5.5 (3–7)</td>
<td>6 (4.5–8)</td>
<td>.003</td>
<td>.02</td>
<td>.004</td>
</tr>
<tr>
<td>Diabetes mellitus without end organ damage</td>
<td>28 (32.2)</td>
<td>16 (44.4)</td>
<td>2 (16.7)</td>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus with end organ damage</td>
<td>13 (14.9)</td>
<td>9 (25.0)</td>
<td>0 (0)</td>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver cirrhosis</td>
<td>18 (20.7)</td>
<td>11 (30.6)</td>
<td>5 (41.7)</td>
<td>.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>31 (35.6)</td>
<td>22 (61.1)</td>
<td>6 (50.0)</td>
<td>.03</td>
<td>.016</td>
<td>.36</td>
</tr>
<tr>
<td>Coronal artery disease</td>
<td>6 (6.9)</td>
<td>9 (25.0)</td>
<td>0 (0)</td>
<td>.01</td>
<td>.012</td>
<td>>.99</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>13 (14.9)</td>
<td>9 (25.0)</td>
<td>1 (8.33)</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic renal insufficiency</td>
<td>27 (31.0)</td>
<td>14 (38.9)</td>
<td>3 (25.0)</td>
<td>.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>12 (13.8)</td>
<td>6 (16.7)</td>
<td>1 (8.3)</td>
<td>.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>9 (10.3)</td>
<td>0 (0)</td>
<td>1 (8.3)</td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usage of immunosuppressive agent</td>
<td>41 (47.1)</td>
<td>8 (22.2)</td>
<td>6 (50.0)</td>
<td>.03</td>
<td>.015</td>
<td>>.99</td>
</tr>
<tr>
<td>Leukemia</td>
<td>10 (11.5)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td>4 (4.6)</td>
<td>1 (2.8)</td>
<td>1 (8.3)</td>
<td>.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid malignancies</td>
<td>15 (17.2)</td>
<td>10 (27.8)</td>
<td>2 (16.7)</td>
<td>.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic malignancy</td>
<td>11 (12.6)</td>
<td>5 (13.9)</td>
<td>6 (50.0)</td>
<td>.01</td>
<td>>.99</td>
<td>.005</td>
</tr>
</tbody>
</table>

NOTE. Data are median value (interquartile range) for continuous variables and number of cases (%) for categorical variables. ICU, intensive care unit.

[^a^] Days of hospitalization and ICU stay prior to onset of bacteremia.

Table 2. Infectious Foci of Patients with *Acinetobacter baumannii* Complex Bacteremia

<table>
<thead>
<tr>
<th>Infection source[^a^]</th>
<th>A. baumannii (genospecies 2) (n = 87)</th>
<th>Genospecies 13TU (n = 36)</th>
<th>Genospecies 3 (n = 12)</th>
<th>Overall</th>
<th>Genospecies 2 vs 13TU</th>
<th>Genospecies 2 vs 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary bacteremia</td>
<td>18 (20.7)</td>
<td>25 (69.4)</td>
<td>5 (41.7)</td>
<td><.001</td>
<td><.001</td>
<td>.14</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>55 (63.2)</td>
<td>10 (27.8)</td>
<td>5 (41.7)</td>
<td>.001</td>
<td>.001</td>
<td>.21</td>
</tr>
<tr>
<td>Catheter-related infection</td>
<td>17 (19.5)</td>
<td>1 (2.8)</td>
<td>1 (8.3)</td>
<td>.04</td>
<td>.02</td>
<td>.69</td>
</tr>
<tr>
<td>Intra-abdominal infection</td>
<td>5 (5.8)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical site infection</td>
<td>7 (8.1)</td>
<td>1 (2.8)</td>
<td>0 (0)</td>
<td>.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^a^] Patients may have had >1 focus of infection.
The Kaplan-Meier survival curves for ACB complex bacteremia showed a significant difference between those with genospecies 2 and those with genospecies 3 bacteremia (log-rank test, P = .001). There was no significant difference in survival between those with genospecies 2 and those with genospecies 3 bacteremia (P = .22).

DISCUSSION

We found that *A. baumannii* genospecies 2 accounted for approximately two-thirds (64.4%) of ACB bacteremias among critically ill patients. Genospecies 2 was significantly more often associated with pneumonia and severe infection and was associated with greater resistance to a wide variety of antimicrobial agents than were the other genospecies. It was a significant independent predictive factor for mortality.

A. baumannii infections are associated with a high mortality and increased length of hospital stay in critically ill patients [7]. The overall mortality of patients with *A. baumannii* bacteremia is nearly 50% [33, 34]. The rate of antimicrobial resistance is increasing, and this limits treatment options [17, 35]. It is difficult to differentiate *A. baumannii* from the ACB complex by the classic biochemical typing methods that have been used in previous studies [7,33–35]. Biochemical typing tends to underestimate the virulence and severity of infections caused by the ACB complex, because it dilutes the effect of *A. baumannii*. Although the clinical characteristics and risk factors for mortality in patients with *A. baumannii* bacteremia have been examined in numerous studies [2, 5, 36, 37], few studies have included molecular methods to identify specific genospecies [11]. None of these studies compared the clinical impact of bacteremia caused by different genospecies among the ACB complex.

The current study demonstrates that specific genospecies within the ACB complex differ in their pathogenicity and in their frequency of antimicrobial resistance. Previous studies have revealed higher levels of antimicrobial resistance among *A. baumannii* than among genospecies 3 and genospecies 13TU isolates [14–16, 38, 39], especially to ciprofloxacin, ampicillin-sulbactam, and imipenem [14–16, 38]. The high rate of antimicrobial resistance to *A. baumannii* may be responsible for inappropriate selection of empirical therapy and poorer outcome. In the current prospective observational study, we found higher rates of
Antimicrobial resistance and poorer outcome for patients infected with genospecies 2 (A. baumannii) than for those infected with other members of the ACB complex.

Newer-generation antimicrobial agents, such as tigecycline, and the older-generation antimicrobial agent colistin are now being used more often to treat infections caused by multidrug-resistant Acinetobacter species. In the current study, we found significantly higher MICs in A. baumannii than in other species for all of the antimicrobial agents that were tested, including tigecycline. Ko et al [14] found that 9 imipenem–intermediate susceptible and 13 imipenem-resistant isolates of A. baumannii were susceptible to tigecycline. In the current study, we found that only 64% of carbapenem-resistant A. baumannii isolates were susceptible to tigecycline. Ko et al [14] showed that MICs of colistin and tigecycline were similar among A. baumannii and other genospecies 3 isolates. We also found that all members of the ACB complex were highly susceptible to colistin, including carbapenem-resistant isolates of A. baumannii. However, A. baumannii was more resistant to tigecycline than were other genospecies.

The mortality in patients with genospecies 2 bacteremia who received appropriate empirical antimicrobial treatment was exceptionally high (85.7%). This may have been attributable to the irreversible severity of their disease. Patients infected with genospecies 2 strains had a significantly higher Pitt bacteremia score. This was independently associated with a higher mortality.

The ACB complex has been implicated in numerous nosocomial outbreaks [40]. Phenotypic typing systems are inadequate to differentiate A. baumannii from genospecies 3 and genospecies 13TU strains [8]. No single metabolic test can distinguish Acinetobacter species from other similar glucose non-fermenters [11]. For example, in the current study, 14 (9.4%) of the 149 blood culture isolates were phenotypically identified as ACB complex bacteremia but had to be excluded according to the 16S–23S rRNA gene ITS region sequencing results. Several studies have shown that 0.3% [14], 4.3% [16], and 8.6% [15] of

Table 4. Antimicrobial Susceptibility Tests of Clinical Isolates of Acinetobacter baumannii Complex

<table>
<thead>
<tr>
<th>Variable</th>
<th>Concentration, µg/mL</th>
<th>Susceptible isolates, %</th>
<th>Concentration, µg/mL</th>
<th>Susceptible isolates, %</th>
<th>Concentration, µg/mL</th>
<th>Susceptible isolates, %</th>
<th>Overall</th>
<th>Genospecies 2</th>
<th>Genospecies 3</th>
<th>Genospecies 2 vs 13TU</th>
<th>Genospecies 2 vs 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>MIC₅₀ 32</td>
<td>17.4</td>
<td>0.25</td>
<td>80.6</td>
<td>0.25</td>
<td>75.0</td>
<td><.001</td>
<td><.001</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC₉₀ >128</td>
<td>8</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 0.06 to >128</td>
<td>0.06–64</td>
<td>0.06 to >128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td></td>
</tr>
<tr>
<td>MIC₅₀ >128</td>
<td>27.9</td>
<td>4</td>
<td>80.6</td>
<td>8</td>
<td>66.7</td>
<td><.001</td>
<td><.001</td>
<td>.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC₉₀ >128</td>
<td>32</td>
<td>>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 2 to >128</td>
<td>2 to >128</td>
<td>2 to >128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td></td>
</tr>
<tr>
<td>MIC₅₀ 8</td>
<td>48.8</td>
<td>0.25</td>
<td>94.3</td>
<td>0.25</td>
<td>66.7</td>
<td><.001</td>
<td><.001</td>
<td>.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC₉₀ 32</td>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 0.25–64</td>
<td>0.125–32</td>
<td>0.125–32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulbactam</td>
<td></td>
</tr>
<tr>
<td>MIC₅₀ 16</td>
<td>29.1</td>
<td>1</td>
<td>80.7</td>
<td>1</td>
<td>75.0</td>
<td><.001</td>
<td><.001</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC₉₀ 16</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 0.5–32</td>
<td>0.5–64</td>
<td>0.5–16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigecycline</td>
<td></td>
</tr>
<tr>
<td>MIC₅₀ 2</td>
<td>65.1</td>
<td>0.25</td>
<td>88.9</td>
<td>0.25</td>
<td>83.3</td>
<td>.02</td>
<td>.008</td>
<td>.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC₉₀ 8</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 0.25–16</td>
<td>0.125–8</td>
<td>0.25–4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colistin</td>
<td></td>
</tr>
<tr>
<td>MIC₅₀ 0.25</td>
<td>100</td>
<td>0.19</td>
<td>100</td>
<td>0.25</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIC₉₀ 0.38</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range 0.094–0.75</td>
<td>0.094–0.38</td>
<td>0.125–0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE. MIC₅₀, 50% minimum inhibitory concentration; MIC₉₀, 90% minimum inhibitory concentration.

* The susceptibility of various antimicrobial agents among Acinetobacter baumannii complex were compared by Fisher’s exact test.

Outcomes of A. Baumannii Bacteremia • CID 2011:52 (1 February) • 357
isolates were misclassified according to conventional phenotypic methods. For example, *Acinetobacter* genospecies 10, 11, and 14BJ \[15, 16\] have been misidentified as belonging to the ACB complex. Misidentification can also exclude some isolates that should belong to the ACB complex.

This study has several limitations. First, we only included patients in ICUs, where the ACB complex is most prevalent and is associated with the highest mortality rates \[2, 3\]. Therefore, our findings may not apply to patients with mild infections and those without bacteremia. Second, to our knowledge, this is the largest clinical comparison of the 3 molecularly identified genospecies, but the number of cases was relatively small, compared with the number of cases of bacteremia due to other causes. Third, the Pitt bacteremia score was used as an indicator of severity, but it is also a predictor for the outcome of bacteremia and may not be applicable in the multivariate analysis of mortality. Nevertheless, we found that both bacteremia due to genospecies 2 and the Pitt bacteremia score were independent predictors of mortality.

In conclusion, we found that *A. baumannii* (genospecies 2) bacteremia in critically ill patients exhibits higher levels of antimicrobial resistance and is associated with more-severe infections and greater mortality, compared with other members of the ACB complex, particularly genospecies 13TU. Patients with *A. baumannii* (genospecies 2) bacteremia were significantly more likely to have pneumonia. In contrast, patients with genospecies 13TU bacteremia were significantly more likely to have primary bacteremia. Additional studies are needed to identify...
the putative virulence factors associated with individual geno-
species of the ACB complex.

Acknowledgments

We thank Calvin Kunin, MD, for his suggestions and critical review of
the manuscript.

Financial support. National Science Council, Taiwan (NSC-9-2314-B-
002-155).

Potential conflicts of interest. All authors: no conflicts.

References

1. Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, anti-
46:1254–1263.

baumannii: epidemiology, clinical findings, and prognostic features.

factors for Acinetobacter baumannii nosocomial bacteremia in

4. Levin AS, Levy CE, Manrique AE, Medeiros EA, Costa SF. Severe
nosocomial infections with imipenem-resistant Acinetobacter baun-
mattii treated with ampicillin/sulbactam. Int J Antimicrob Agents

5. Seifert H, Strate A, Pulverer G. Nosocomial bacteremia due to
Acinetobacter baumannii. Clinical features, epidemiology, and predictors

6. Manikal VM, Landman D, Saurina G, Oydna E, Lal H, Quale J. En-
demic carbapenem-resistant Acinetobacter species in Brooklyn, New
York: citywide prevalence, interinstitutional spread, relation to anti-

7. Garcia-Garmendia JL, Ortiz-Leyba C, Garnacho-Montero J, Jimenez-
Jimenez FJ, Montarrubio-Villar J, Gil-Miner M. Mortality and the
increase in length of stay attributable to the acquisition of Acinetobacter

8. Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests

9. Karageorgopoulos DE, Falagas ME. Current control and treatment of
multidrug-resistant Acinetobacter baumannii infections. Lancet Infect
Dis 2008; 8:751–762.

10. Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-
Acinetobacter baumannii complex. J Clin Microbiol 1992; 30:
2680–2685.

11. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence

cpecies on skin of healthy humans. Eur J Clin Microbiol Infect Dis

13. Seifert H, Dijkstra L, Gerner-Smidt P, Pelzer N, Tjernberg I, Va-
neeouthe M. Distribution of Acinetobacter species on human skin:
comparison of phenotypic and genotypic identification methods. J Clin

tion of species in the Acinetobacter calcoaceticus-A. baumannii com-
plex in isolates from blood cultures and antimicrobial susceptibility

15. Lim YM, Shin KS, Kim J. Distinct antimicrobial resistance patterns and
antimicrobial resistance-harboring genes according to genomic species

based array for rapid identification of Acinetobacter spp. with distinct

17. Seifert H, Baginski R, Schulze A, Pulverer G. Antimicrobial suscepti-
ability of Acinetobacter species. Antimicrob Agents Chemother 1993;
37:750–753.

18. Spence RP, Towner KJ, Henwood CJ, James D, Woodford N, Liver-
more DM. Population structure antibiotic resistance of Acinetobacter
DNA group 2 and 13TU isolates from hospitals in the UK. J Med

19. Tjernberg I. Antimicrobial susceptibility of Acinetobacter strains iden-

ceptibility and mechanisms of resistance to quinolones and beta-lac-
tams in Acinetobacter genospecies 3. Antimicrob Agents Chemother

floxacin susceptibility in Acinetobacter spp. by detection of the gyrA
gene mutation using real-time PCR. Mol Cell Probes 2009; 23:
154–156.

22. Seifert H, Gerner-Smidt P. Comparison of ribotyping and pulsed-field
gel electrophoresis for molecular typing of Acinetobacter isolates. J Clin

23. Schrenkberger PC, von Graevenitz A. Acinetobacter, Achromobacter,
Aquilagenes, Moraxella, Methylobacterium, and other nonfermentative
gram-negative rods. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC,
Yolken RH eds: Manual of clinical microbiology, 7th ed. Washington,

antimicrobial susceptibility testing: 17th informational supplement,

E-test method for detection of colistin resistance in clinical isolates

26. Jones RN, Ferraro MJ, Reller LB, Schrenkberger PC, Swenson JM,
Sader HS. Multicenter studies of tigecycline disk diffusion suscepti-
bility results for Acinetobacter spp. J Clin Microbiol 2007; 45:
227–230.

classifying prognostic comorbidity in longitudinal studies: de-

of adult patients with bacteremia caused by extensively resistant
190.

29. Garber JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC defi-

severity of disease classification system. Crit Care Med 1985;

for predicting mortality in the ICU: a systematic review. Crit Care

32. Chow JW, Yu VL. Combination antibiotic therapy versus monotherapy
1999; 11:7–12.

33. Bliot S, Vandewoude K, Colardyn F. Nosocomial bacteremia involving
Acinetobacter baumannii in critically ill patients: a matched cohort

34. Poutanen SM, Louie M, Simor AE. Risk factors, clinical features and
outcome of Acinetobacter bacteremia in adults. Eur J Clin Microbiol

Acinetobacter infections sensitive only to polymyxin B and sulbactam.

36. Chen HP, Chen TL, Lai CH, et al. Predictors of mortality in Acinetobac-

Outcomes of A. Baumannii Bacteremia • CID 2011:52 (1 February) • 359