Transmission of Cryptococcus neoformans by Organ Transplantation

John W. Baddley,1,2 Denise C. Schain,3 Asmita A. Gupte,3 Sundus A. Lodhi,3 Liise K. Kayler,3 João P. Frade,4 Shawn R. Lockhart,4 Tom Chiller,4 J. Steve Bynon Jr,1 and William A. Bower4

1Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; 2Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; 3Department of Medicine, University of Florida School of Medicine, Gainesville, Florida; and 4Centers for Disease Control and Prevention, Atlanta, Georgia

Background. This article describes transmission of Cryptococcus neoformans by solid organ transplantation.

Methods. We reviewed medical records and performed molecular genotyping of isolates to determine potential for donor transmission of Cryptococcus.

Results. Cryptococcosis was diagnosed in 3 recipients of organs from a common donor with an undifferentiated neurologic condition at the time of death. Cryptococcal meningoencephalitis was later diagnosed in the donor at autopsy. The liver and 1 kidney recipient developed cryptococcemia and pneumonia and the other kidney recipient developed cryptococcemia and meningitis; 2 patients recovered with prolonged antifungal therapy. We tested 4 recipient isolates with multilocus sequence typing and found they had identical alleles.

Conclusions. Our investigation documents the transmission of Cryptococcus neoformans by organ transplantation. Evaluation for cryptococcosis in donors with unexplained neurologic symptoms should be strongly considered.

Cryptococcosis is a systemic mycosis caused by the encapsulated yeasts Cryptococcus neoformans and Cryptococcus gattii, organisms found in soil and often associated with pigeon droppings or trees. Infection typically involves the lungs or central nervous system, and less frequently the blood, skin, skeletal system, or prostate. Because the incidence of cryptococcosis is greatly increased in patients with deficits in cellular immunity, cryptococcosis is considered an opportunistic fungal infection.

Cryptococcosis is the third most common fungal infection among solid-organ transplant (SOT) recipients [1–3]. Recent surveillance data suggest the 12-month cumulative incidence is low, <.25% [2, 3]. The disease usually occurs >1 year posttransplant and is generally considered to represent reactivation of latent infection [4, 5]. Although acquisition of the organism in most cases occurs via inhalation, there is risk of transmission through donor organs or other tissues. Previous studies have described 2 cases of Cryptococcus transmission through solid organs and 2 cases of transmission via corneal tissue [6–9]. We report the investigation of C. neoformans infection that developed in 3 recipients of cadaveric organ transplants from 1 donor with unrecognized cryptococcal meningoencephalitis. We used multilocus sequence typing (MLST), a rapid, reproducible, and discriminatory methodology for genotyping isolates of C. neoformans, to investigate genetic relatedness among the isolates [10, 11].

CASE REPORTS

Donor
The organ donor was a 51-year-old woman who presented to the emergency department after 2 weeks of seizures, urinary incontinence, headaches, and slurred speech. She had a 10-year history of sarcoidosis for which she received daily corticosteroid therapy. On
presentation to the emergency department, she was hypotensive and in respiratory distress, which progressed and necessitated mechanical ventilation. Admission chest radiography showed no infiltrates. Computed tomography (CT) of the brain revealed only marked hydrocephalus. Results of routine blood and urine cultures drawn on admission were negative, as was the HIV test result. Lumbar puncture and cerebrospinal fluid (CSF) studies were not performed. The patient developed cardiac arrest 2 days after admission, was unresponsive to resuscitation, and died. The family granted permission for organ donation. The liver and kidneys were used for transplantation, and the lungs were retained for research purposes. Other organs were discarded.

At organ procurement, the lungs, liver, and kidneys looked grossly normal. Brain biopsy showed inflammation, but routine staining revealed neither malignancy nor organisms. Autopsy results, available 30 days after the organs were transplanted, showed meningoencephalitis, and stains revealed fungal organisms consistent with *C. neoformans*. Cryptococcal antigen titer performed on stored serum was 1:64. Lung examination at autopsy revealed non-caseating granulomas, fibrosis, and calcifications consistent with sarcoidosis. No organisms were demonstrated with periodic acid–Schiff, Grocott’s methenamine silver, or mucicarmine staining.

Recipient 1

A 72-year-old white woman with cirrhosis and hepatocellular carcinoma received the liver from the donor on 30 November 2009. Prior to the transplant, she had no fever, chills, or respiratory complaints. Corticosteroids were given as induction immunosuppression, with maintenance consisting of tacrolimus, mycophenolate, and prednisone. Her course after the transplantation was complicated by lower gastrointestinal bleeding and immune thrombocytopenic purpura (ITP) refractory to medications. The patient underwent splenectomy and liver biopsy 2 weeks after transplantation. Unexpectedly, frozen sections from spleen and liver showed organisms consistent with *C. neoformans* (Figure 1), and both spleen and liver tissue grew *C. neoformans*. Blood cultures were drawn and grew *C. neoformans*. Serum cryptococcal antigen titer was 1:256, and CSF antigen test result was negative. The result of CSF analysis was normal. Chest CT revealed new focal airspace consolidation with effusions, and sputum cultures yielded oral flora. The patient was treated with a lipid formulation of AMB and flucytosine for 14 days, during which he clinically improved and blood cultures sterilized. Therapy was changed to oral fluconazole, and the patient was discharged home. The patient was readmitted for fever and dry cough 1 month later, and chest CT showed diffuse micronodules throughout the lungs. Bronchoalveolar lavage cytology (Figure 2) and transbronchial biopsy showed cryptococcal organisms. The patient received a second 2-week induction course of lipid AMB and flucytosine. He was discharged home on oral fluconazole and is doing well 6 months posttransplant.

Recipient 2

A 58-year-old white man with end-stage renal disease secondary to IgA nephropathy and a previous renal transplant in 2004 received a cadaveric renal transplant on 1 December 2009. Antithymocyte globulin and steroids were given as induction immunosuppression, with maintenance consisting of tacrolimus, mycophenolate, and prednisone. On postoperative day 16, the patient was readmitted for evaluation of malaise with fever, and blood cultures yielded *C. neoformans*. Serum cryptococcal antigen titer was 1:256, and CSF antigen test result was negative. The result of CSF analysis was normal. Chest CT revealed new focal airspace consolidation with effusions, and sputum cultures yielded oral flora. The patient was treated with a lipid formulation of AMB and flucytosine for 14 days, during which he clinically improved and blood cultures sterilized. Therapy was changed to oral fluconazole, and the patient was discharged home. The patient was readmitted for fever and dry cough 1 month later, and chest CT showed diffuse micronodules throughout the lungs. Bronchoalveolar lavage cytology (Figure 2) and transbronchial biopsy showed cryptococcal organisms. The patient received a second 2-week induction course of lipid AMB and flucytosine. He was discharged home on oral fluconazole and is doing well 6 months posttransplant.

Recipient 3

A 46-year-old white man with a history of end-stage renal disease secondary to Alport syndrome who received a cadaveric renal transplant on 1 December 2009 was admitted with complaints of fever, neck stiffness, and photophobia, which began 24 days posttransplant. Immunosuppression included induction with basiliximab and steroids, then maintenance on tacrolimus, mycophenolate, and prednisone. Lumbar puncture revealed an
opening pressure of 36 mm H2O, 264 white blood cells (86% polymorphonuclear leukocytes), elevated protein level, and normal glucose level. CSF cryptococcal antigen was 1:256. Cultures of blood and CSF yielded *C. neoformans*, and diagnosis of cryptococcosis was made on day 38 posttransplant. The patient was treated with a lipid formulation of AMB and flu-cytosine for 17 days, after which oral fluconazole was started. Serial lumbar punctures were performed to reduce elevated opening CSF pressures. The patient’s CSF culture became sterile on treatment day 10. During this treatment period, the patient’s course was further complicated by diverticulitis with intra-abdominal abscess requiring temporary diverting colostomy and by the development of *Clostridium difficile* colitis. The patient was clinically improved and on oral fluconazole as an outpatient 6 months posttransplant.

METHODS

The institutions of origin sent 4 available isolates from the 3 organ recipients to the Centers for Disease Control and Prevention. We grew isolates on yeast extract, peptone, and dextrose medium (YPD) with 0.5M sodium chloride, and we purified DNA using the Utraklean DNA isolation kit from MoBio Laboratories as instructed by the manufacturer. We performed multilocus sequence typing (MLST) according to the consensus *C. neoformans* typing scheme described by Meyer et al [10] with the loci URA5, IGS1, GPD1, LAC1, PLB1, SOD1, and CAP59, comprising a combined total of 3892 nucleotides. We assigned allele numbers using the archived online *C. neoformans* database onMLST.net (http://cneoformans.mlst.net/).

RESULTS

For each of the 7 loci tested, the 4 patient isolates had identical alleles (Table 1), indicating a probable clonal origin for this set of isolates. The relative frequency of this sequence type in a US population cannot be determined because there is currently no MLST data set of US isolates. Unpublished data from the CDC suggest that this type is an uncommon strain in the United States (S. R. Lockhart, personal communication). Query of this sequence type usingwww.MLST.net(http://cneoformans.mlst.net) reveals 3 additional isolates with this sequence type [11].

Other than each receiving an organ from the same donor, Recipient 2 and recipient 3 had no known contact, direct or indirect, and lived in different states. Transplantation for Recipients 2 and 3 occurred in a different geographical region from that for Recipient 1.

DISCUSSION

In this report, we confirm with reasonable certainty that *C. neoformans* was transmitted from the donor to geographically separated patients by transplantation of liver and kidneys. This report emphasizes the importance and difficulty of recognizing fungal infection pretransplant, specifically in a donor with an undifferentiated neurologic condition.

Cryptococcus causes up to 8% of invasive fungal infections in SOT recipients and is third in frequency behind *Aspergillus* and *Candida* species [1–3]. Disease most likely represents re-activation of latent infection [12], but epidemiologic investigations also suggest acquisition of primary infection following

Table 1. Multilocus Sequence Typing Analysis of Patient Isolates

<table>
<thead>
<tr>
<th>Locus</th>
<th>Alleles</th>
<th>CAP59</th>
<th>GPD1</th>
<th>IGS1</th>
<th>LAC1</th>
<th>PLB1</th>
<th>SOD1</th>
<th>URA5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele length</td>
<td></td>
<td>501</td>
<td>489</td>
<td>725</td>
<td>471</td>
<td>533</td>
<td>536</td>
<td>637</td>
</tr>
<tr>
<td>Patient 1 blood</td>
<td></td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Patient 2 blood</td>
<td></td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Patient 3 blood</td>
<td></td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Patient 3 cerebrospinal fluid</td>
<td></td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>
Donor Transmission of Cryptococcus

CID 2011:52 (15 February) • e97

transplant [13–15]. Cryptococcosis in SOT recipients usually presents late (>1 y) after transplant [1–3, 16]. In a recent surveillance study of cryptococcosis among SOT patients, the median onset time was 575 days posttransplant, with 75% of cases occurring <3 years posttransplant [3]. Among our recipients, disease was early in onset (<4 wk after transplant), prompting suspicion of donor transmission.

The donor presented with clinical signs and symptoms of cryptococcal meningitis that included headache, seizures, neurologic deficits, and findings of hydrocephalus on brain imaging, and was at risk because of underlying sarcoidosis and corticosteroid therapy; however, cryptococcal meningitis was not diagnosed at the time of death or organ procurement.

Only the donor liver and kidneys were used for transplantation. The liver was transplanted at a single institution (Recipient 1); and both kidneys were transplanted at a separate institution in a different geographical area (Recipients 2 and 3). None of the recipients had contact with each other, nor did they receive antifungal prophylaxis. All recipients developed disseminated disease, and at the 6-month follow-up, 2 were alive and improved. The third died of unrelated causes and had a negative serum cryptococcal antigen test result 1 week before death. Molecular typing confirmed the relatedness of all recipient isolates, showing an identical sequence type for all 4 of the isolates across 3892 nucleotides. Without the availability of a donor isolate, it cannot be completely ruled out that each transplant recipient independently acquired an isolate identical to that of the other recipients; however, this scenario is highly unlikely.

Transmission of cryptococcosis via donor solid organs is extremely unusual, with only 2 cases previously reported [7, 9]. However, transmission of fungi by organ transplantation or through organ preservation fluids has been described for several fungi, including Candida, Histoplasma, Aspergillus, Zygomycetes and Coccidioides [17–20]. The first case of transmission of cryptococcosis, described by Ooi and colleagues in 1971, was reported in a 29-year-old female who received a kidney from a 20-year-old donor with elevated intracranial pressure and suspected brain tumor. On the fifth postoperative day, examination of the nontransplanted kidney showed the presence of 2 cryptococcal granulomas. The patient developed cryptococcuria on the 18th day, and positive cultures for Cryptococcus were obtained over subsequent weeks [9]. In 1996, Kanj and colleagues described a case in which the recipient of a bilateral lung transplant developed cryptococcal left-lower-lobe pneumonia 2 days after transplantation [7]. Endotracheal sputum cultures from postoperative day 2 were positive for C. neoformans and Penicillium species, although pre-implantation donor lung cultures were positive only for Rhodotorula species. Transmission was not proven but was suspected based on early development of cryptococcosis in the posttransplant period.

Donor evaluation to identify transmissible infections must be rapid and specific but is often limited by laboratory technology at specific donor institutions and by time constraints during which the potential donated organs can be used and by available. Donors with altered mental status or other neurologic conditions are particularly challenging because the cause of abnormal neurologic findings may be an infection that can then be transmitted unknowingly to the recipient. Previous reports have documented transmission of rabies virus, West Nile virus, and lymphocytic choriomeningitis virus from donors with altered neurologic presentations [21–23]. In addition, other cases not yet published of Balamuthia mandrillaris and Coccidioides immitis indicate transmission of donor-derived infections in the clinical setting of unexplained meningoencephalitis (D. C. Schain, personal communication). In donors whose presentations included low-grade fever, headache, and unexplained abnormal mental status, subsequent findings of head trauma–related diagnoses or cerebrovascular accident have been assumed to be the primary cause of the abnormal neurologic presentation. In retrospect, documented epidural hematoma, hemiplegia, cerebrovascular accident, and subarachnoid hemorrhage occurred most likely secondarily to underlying central nervous system infection [21–23]. This underscores the importance of considering infectious etiologies for donors with altered mental status, signs of infection, or for whom there is an incomplete medical history, even though the apparent cause may be trauma or other cerebrovascular disease. In addition, the importance of donor autopsy should be emphasized, particularly in patients with possible meningoencephalitis. Testing for meningoencephalitis should include stains to detect fungal organisms. Where possible, autopsy testing should be expedited, and results should be communicated to the organ procurement organization and transplant centers.

At present, uniform guidelines for donor screening for fungal infections are not available [24]. For endemic mycoses such as coccidioidomycosis and histoplasmosis, both of which have been transmitted by organ transplantation [17, 18], donor pretransplant screening with serologic testing or cultures is not recommended routinely; however, carefully taken donor history including locations of residence may help in determining risk of these geographically restricted fungi. Because C. neoformans is ubiquitous, location of residence does not aid detection, and it is unclear whether a history of soil or pigeon-feces exposure would be of benefit. Although detection of cryptococcosis using latex antigen has proven to be a valuable diagnostic tool, especially among HIV-infected patients [25, 26], the use of this test as a screening tool in the donor population has not been studied and is not recommended routinely. Based on this report of probable transmission, evaluation for cryptococcosis in donors with unexplained neurologic symptoms should be strongly considered.
Acknowledgments

The findings and conclusions of this article are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Potential conflicts of interest. J.W.B. is an advisory board member at Merck and Co., a consultant for Pfizer, and a Pfizer research grant recipient. All other authors: no conflicts.

References