Weight-Based Loading of Vancomycin in Patients on Hemodialysis

Merideth Brown,1,2 Radhika Polisetty,1 Edward J. Gracely,2 Bulent Cuhaci,3,a and Hans P. Schlecht4,a

1Department of Pharmacy, Hahnemann University Hospital, 2Department of Epidemiology and Biostatistics, Drexel University School of Public Health, 3Department of Internal Medicine, Division of Nephrology, and 4Department of Internal Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania

We evaluated weight-based loading doses of vancomycin and resulting initial prehemodialysis concentrations. Modeling demonstrated modest correlation between dose administered, age, and initial concentration achieved. Actual body weight–based loading of vancomycin predictably achieves therapeutic initial concentrations in patients who receive hemodialysis.

Vancomycin remains a critical antibiotic for the treatment of infections caused by Gram-positive organisms such as methicillin-resistant Staphylococcus aureus (MRSA). Recommended dosing of vancomycin has recently evolved to include emphasis on dosing based on actual weight, maintenance of trough levels of >10 mg/L to avoid the emergence of resistance in S. aureus, and goal trough levels of >15 mg/L in serious infections caused by S. aureus [1].

Vancomycin dosing in patients with end-stage renal disease (ESRD) who receive hemodialysis (HD) is poorly defined [2]. Using newer recommended target levels, a recent model of vancomycin dosing in HD patients estimated that one-third of trough levels obtained immediately before HD would be subtherapeutic [3]. Loading doses of 15–20 mg/kg are recommended for most patients with normal renal function and doses of 25–30 mg/kg are recommended for critically ill patients [4]. Recent guidelines do not address the HD population, and it is unclear what loading doses are best suited in ESRD [1]. This study sought to assess factors associated with therapeutic pre-HD serum vancomycin concentration.

METHODS

We conducted a retrospective medical record review of consecutive subjects admitted to Hahnemann University Hospital (Philadelphia, PA) between January 2008 and 2009 who received HD and a diagnosis of stage 5 chronic kidney disease. Subjects were included in the analysis if they received a single dose of vancomycin and had a serum vancomycin concentration obtained >4 hours after infusion and prior to their next HD session. Exclusion criteria included administration of the initial dose during HD and/or presence of nonoliguria (production of >400 mL of urine per day). Medical records were reviewed to identify subject demographics (age, race, height, body weight, and sex), medical history (length of time on HD, history of renal transplantation, and presence of anuria), and details of vancomycin therapy. Vancomycin dose, time of administration, serum vancomycin concentration, time and date of dialysis session, and the indication for vancomycin were collected for each subject as well. This study was approved by the institutional review board of Drexel University College of Medicine.

All serum vancomycin levels were analyzed by a particle-enhanced turbidimetric inhibition immunoassay (Synchron LX Systems; Beckman Coulter).

The primary objective of this study was to assess the loading dose (in units of milligrams per kilogram of body weight) associated with therapeutic serum pre-HD vancomycin level in the target range of 10–20 mg/L. The association between subject variables and the resulting pre-HD level was modeled using linear regression for continuous variables and the Student t test for dichotomous variables. Variables found to have a P value of <.1 in univariate analysis were incorporated into multivariate stepwise linear regression to identify variables predictive of the initial vancomycin concentration. This P value threshold of <.1 was chosen to avoid excluding potential predictors prematurely. Descriptive statistics were used for other characteristics of the sample. SPSS Statistics software (version 18; IBM) was used for all statistical analyses. A P value of <.05 was considered to be statistically significant.

RESULTS

A total of 301 subjects were screened for inclusion in this study. Forty-three subjects met the inclusion criteria. Most patients were excluded because they either did not have a vancomycin

Received 15 December 2010, accepted 12 April 2011.

*B. C. and H. P. S. contributed equally to this work.

Present affiliation: Department of Pharmacy, Nanticoke Memorial Hospital, Seaford, Delaware.

Correspondence: Hans P. Schlecht, MD, MSc, Department of Internal Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Mail Stop 461, 245 N 15th St, Philadelphia, PA 19102-1192 (hans.schlecht@drexelmed.edu).

Clinical Infectious Diseases 2011;53(2):164–166

©The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. 1098-4838/2011/532-0009$14.00 DOI: 10.1093/cid/cir322
Vancomycin dose, mg/kg

<table>
<thead>
<tr>
<th>Age</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages</td>
<td>14.8 ± 7.1</td>
<td>19.0 ± 7.1</td>
<td>23.2 ± 7.1</td>
<td>27.3 ± 7.1</td>
</tr>
<tr>
<td>40 y old</td>
<td>18.8 ± 6.5</td>
<td>22.5 ± 6.5</td>
<td>26.1 ± 6.5</td>
<td>29.8 ± 6.5</td>
</tr>
<tr>
<td>50 y old</td>
<td>16.8 ± 6.5</td>
<td>20.5 ± 6.5</td>
<td>24.1 ± 6.5</td>
<td>27.8 ± 6.5</td>
</tr>
<tr>
<td>60 y old</td>
<td>14.8 ± 6.5</td>
<td>18.5 ± 6.5</td>
<td>22.2 ± 6.5</td>
<td>25.8 ± 6.5</td>
</tr>
<tr>
<td>70 y old</td>
<td>12.9 ± 6.5</td>
<td>16.5 ± 6.5</td>
<td>20.2 ± 6.5</td>
<td>23.8 ± 6.5</td>
</tr>
</tbody>
</table>

NOTE. SEE, standard error of the estimate.

a Univariate linear regression equation used to predict vancomycin level from milligram-per-kilogram dose with SEE, $Y = 0.836x + 6.449$.

b Multivariate stepwise linear regression equation used to predict vancomycin level from milligram-per-kilogram dose with SEE, $Y = 0.731x - 0.198A + 19.417$, where A is age in years.
concluded that the elevation in Vd was due to higher tissue affinity in the aged [8]. A similar elevation in Vd among subjects >60 years of age was observed in a large study of 1085 sets of steady-state vancomycin peak and trough levels [9].

The present study has several limitations. Our sample size was fairly small and all estimates are subject to considerable error. A notable difference between prior studies of weight-based loading of vancomycin and the present study is that our mean time from dose to trough level was 22.9 hours (range, 5.4–61.5 h)—significantly shorter than 48 hours, thus preempting further clearance by residual renal function and/or nonrenal clearance [10]. Although this introduces significant heterogeneity into the data, it potentially aids in the generalizability of the study conclusions. Additionally, not all of the trough values were measured in serum drawn immediately prior to HD. Approximately one-half of the trough values were measured in serum drawn >6 hours prior to HD. For patients with ESRD, the interdialysis clearance of vancomycin is low (6–10 mL/min), but whether this influenced the results is unclear [2]. In addition, the present study excluded subjects who received their loading dose of vancomycin during an HD session, which is a common technique in clinical practice. This practice would be expected to lower the level of vancomycin because a significant portion would be removed during the remaining HD session [11]. We cannot exclude the possibility that subjects received a dose of vancomycin prior to presentation to our institution. Many were sent directly from their outpatient dialysis unit, and vancomycin administered at their outpatient center may not have been included in the documentation.

A noteworthy issue with the study of vancomycin in the population of patients with ESRD is the validity of using the same goal levels of 10–20 and 15–20 mg/L in severe MRSA infections as in the population with normal renal function [1]. A ratio of the vancomycin level area under the curve to the minimum inhibitory concentration of the S. aureus isolate (AUC/MIC) of >400 may be a more important predictor of efficacy [12]. Because the value of AUC is significantly increased in ESRD, aggressively targeting a pre-HD level of 20 mg/L may not be needed to achieve an AUC/MIC ratio of >400 even in isolates with MICs approaching 2 mg/L. Prospective studies assessing the therapeutic efficacy of pre-HD levels and also AUC/MIC ratios will be able to determine the best therapeutic measure in the ESRD population.

In summary, we found that the weight-based loading dose of vancomycin for patients with ESRD who receive HD is very similar to that in current guideline recommendations for those patients with normal renal function. A 15–mg/kg loading dose should be expected to achieve a mean initial pre-HD concentration of 19.0 ± 7.1 mg/L (SEE). However, a higher loading dose of 15–20 mg/kg may be required in adults >65 years old with severe infections caused by S. aureus in order to achieve a comparable initial pre-HD level. Additional prospective studies should be performed that can help identify the best approach to prompt achievement of therapeutic vancomycin levels in HD patients.

Supplementary Data

Supplementary materials are available at *Clinical Infectious Diseases* online. Supplementary materials consist of data provided by the author that are published to benefit the reader. The posted materials are not copyedited. The contents of all supplementary data are the sole responsibility of the authors. Questions or messages regarding errors should be addressed to the author.

Acknowledgments

We thank Diana Winters for thoughtful review of the manuscript. Potential conflicts of interest. All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed in the Acknowledgments section.

References