Reply to Gonzalez-Serna et al

We thank Gonzalez-Serna and his colleagues for initiating a discussion on our paper that models the impact of the test-and-treat policy on the human immunodeficiency virus (HIV) epidemic in Los Angeles County. Gonzalez-Serna et al contest the relevance of our findings that test-and-treat could potentially increase multidrug resistance (MDR) in Los Angeles by 89% [1]. Using observational data from British Columbia, Canada, they show that MDR and total drug resistance prevalence in British Columbia decreased over a period during which antiretroviral treatment (ART) prevalence increased by 60%. There are several reasons why this finding might not be particularly relevant for evaluating the impact of test-and-treat in Los Angeles or other regions of the world.

First, British Columbia is a distinct setting with vastly different demographics and healthcare characteristics than Los Angeles. There is evidence that MDR prevalence in Canada is generally much lower than in the United States [2]. As with any mathematical model, our results are a product of the assumptions we make about parameter values and initial conditions, which are setting-specific. Because MDR prevalence in Los Angeles is higher at baseline than in British Columbia, the force of infection of transmitted resistance is higher, causing faster growth. Model results may be different with dynamics based on British Columbia characteristics.

Second, these findings from British Columbia are inconsistent with findings in other parts of the world [3–6]. A recent World Health Organization report highlights the growth of drug-resistant HIV in low- and middle-income countries over the past decade, and shows a positive association between ART coverage and prevalence of transmitted drug-resistant HIV [7].

Third, a recent Canadian surveillance report shows that the results Gonzales-Serna et al report from British Columbia might not even generalize to other provinces in Canada. This report surveys 6 Canadian provinces and shows that prevalence of resistance increased by approximately 70% from 1999 to 2008 and there was no reduction in MDR [8]. Furthermore, a considerable proportion of transmitted drug resistance in both the United States and Canada remains undetected [9].

Fourth, early-stage HIV (ESH) treatment—a hallmark of test-and-treat—stayed relatively stable in British Columbia from 1995 to 2008 [10]. It is likely that ESH will coincide with lower levels of adherence, a strong predictor of increases in acquired drug resistance.

Gonzalez-Serna et al also note a decrease in clinical significance of MDR, as dozens of different drug classes are now available. They suggest that pandrug resistance is the appropriate resistance measure instead of triple-therapy resistance, which we use. Even if this were true, MDR will likely raise HIV treatment costs for cash-strapped patients or healthcare systems. In addition, with expansion of early
treatment, MDR detection might be more
difficult as patients are asymptomatic and
might not be monitored closely. Without
close monitoring of resistance, patients
could unknowingly develop MDR and
thus delay initiation of second-line treat-
ment. Therefore, the clinical significance
of MDR may be greater with a larger ESH
treatment prevalence.

We agree with Gonzalez-Serna et al (and state in the main text) that test-
and-treat is likely to bring epidemiologic
beneﬁts even with MDR growth, and
we do not recommend abandoning this policy. However, Gonzalez-Serna et al
downplay potential implications of MDR
growth. We believe a prudent approach
would be to evaluate the cost-effectiveness
of test-and-treat compared to other policies, and if adoption of test-and-treat
is warranted, it should be accompanied
by initiatives to control and closely
monitor MDR such as expanded MDR
surveillance and interventions to improve
adherence.

Notes

Financial support. A. J. and R. V. received
institutional funding through the National Insti-
tutes of Health (R01 NIH grant). E. D. receives
institutional funding through the Eunice
Kennedy Shriver National Institute of Child
Health and Human Development (grant number
R01HD054877).

Potential conﬂicts of interest. All authors:
No reported conﬂicts.

All authors have submitted the ICMJE Form
for Disclosure of Potential Conflicts of Interest.
Conflicts that the editors consider relevant to the
content of the manuscript have been disclosed.

Neeraj Sood,1,2 Zachary Wagner,1
Amber Jaycocks,3 Emmanuel Drabo,4 and
Raffaele Vardavas3

1 Schaeffer Center for Health Policy and Economics and
2 Titus Family Department of Pharmaceutical
Economics and Policy, University of Southern
California, Los Angeles; and 3 RAND Corporation,
Santa Monica, California

References

1. Gonzalez-Serna A, Lima VD, Montaner JS,
Harrigan PR, Brumme CJ. “Test-and-treat”
strategy for control of HIV and AIDS leads
to a decrease, not an increase, of multidrug-
2. van de Vijver DAMC, Wensing AMI,
Boucher CAB. The epidemiology of transmis-
Los Alamos, NM, 2007.
drug resistance in antiretroviral-naive indi-
viduals in sub-Saharan Africa after rollout of
antiretroviral therapy: a multicentre observa-
tional study. Lancet Infect Dis 2011;
11:750–9.
4. Truong H-HM, Kellogg TA, McFarland W,
et al. Sentinel surveillance of HIV-1 trans-
mitted drug resistance, acute infection and
5. Jain V, Liegler T, Vittinghoff E, et al. Trans-
mitted drug resistance in persons with acute/
6. Wagner BG, Blower S. Universal access to
HIV treatment versus universal ’Test and
Treat’: transmission, drug resistance and
7. World Health Organization. HIV drug resis-
8. HIV-1 Strain and transmitted drug resis-
tance in Canada. Ottawa, ON, Canada: Public Health Agency of Canada/Centre for
Communicable Diseases and Infection
Control, 2008.
HIV-1 drug resistance mutations are present
in antiretroviral treatment–naive populations
and associate with reduced treatment efﬁ-
10. Rank C, Lloyd-Smith E, Gilbert M. Advanced
HIV disease at the time of HIV diagnosis in
British Columbia. British Columbia, Canada:
Public Health Agency of Canada/BC Centre
for Disease Control, 2011.

Correspondence: Raffaele Vardavas, PhD, RAND Corporation,
1776 Main St, Santa Monica, CA 90401 (raffaele_vardavas@rand.org).

Clinical Infectious Diseases 2013;57(3):479–80
© The Author 2013. Published by Oxford University Press
on behalf of the Infectious Diseases Society of America.
All rights reserved. For Permissions, please e-mail: journals.
permissions@oup.com.
DOI: 10.1093/cid/cit261