Naturally Selected Rilpivirine-Resistant HIV-1 Variants by Host Cellular Immunity

Hiroyuki Gatanaga,1,2 Hayato Murakoshi,2 Atsuko Hachiya,1,3 Tsunefusa Hayashida,1,4 Takayuki Chikata,2 Hirotaka Ode,3,4 Kiyoto Tsuchiya,1 Wataru Sugiura,3 Masafumi Takiguchi,2 and Shinichi Oka1,2

1AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo; 2Center for AIDS Research, Kumamoto University; 3National Hospital Organization, Nagoya Medical Center; and 4Japan Foundation for AIDS Prevention, Tokyo, Japan

Background. Rilpivirine is listed as an alternative key drug in current antiretroviral therapy (ART) guidelines. E138G/A/K in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are rilpivirine resistance-associated mutations and can be identified in a few ART-naive patients, although at low frequency. The 138th position in HIV-1 RT is located in one of the putative epitopes of human leukocyte antigen (HLA)–B*18–restricted cytotoxic T lymphocytes (CTLs). CTL-mediated immune pressure selects escape mutations within the CTL epitope. Here we tested whether E138G/A/K could be selected by HLA-B*18-restricted CTLs.

Methods. The amino acid variation at the 138th position was compared between ART-naive HIV-1–infected patients with and without HLA-B*18. The optimal epitope containing the 138th position was determined and the impact of E138G/A/K on CTL response was analyzed by epitope-specific CTLs. The effect of E138G/A/K on drug susceptibility was determined by constructing recombinant HIV-1 variants.

Results. The prevalence of E138G/A/K was 21% and 0.37% in 19 and 1088 patients with and without HLA-B*18, respectively (odds ratio, 72.3; \(P = 4.9 \times 10^{-25} \)). The CTL response was completely abolished by the substitution of E138G/A/K in the epitope peptide. E138G/A/K conferred 5.1-, 7.1-, and 2.7-fold resistance to rilpivirine, respectively.

Conclusions. E138G/A/K can be selected by HLA-B*18-restricted CTLs and confer significant rilpivirine resistance. We recommend drug resistance testing before the introduction of rilpivirine-based ART in HLA-B*18-positive patients.

Keywords. rilpivirine; E138G/A/K; HLA-B*18; CTL.

Rilpivirine is a new-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), with noninferior clinical efficacy demonstrated in large clinical trials, compared with efavirenz [1, 2], and is listed as an alternative key drug in current antiretroviral therapy (ART) guidelines [3, 4]. In those clinical trials, rilpivirine showed more-favorable safety and tolerance profiles compared with efavirenz, although it was also associated with a higher virological failure rate. The most commonly observed NNRTI resistance-associated mutation in rilpivirine-treated patients with virological failure has so far been E138 K [1, 2]. Not only E138 K, but also other substitutions at the 138th position in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), might confer significant rilpivirine resistance [5–7]. The glutamic acid at the 138th position (E138) is well conserved among HIV-1 strains and clinical isolates throughout clades [8]. However, some ART-naive patients are infected with HIV-1 variants harboring other amino acids at the 138th position (E138X), although the proportion of such patients is low [9]. The 138th position is located in one of the putative epitopes of human leukocyte antigen (HLA)–B*18-restricted cytotoxic T lymphocytes (CTLs) [10, 11]. Because CTL immune pressure often selects escape mutations within the epitope [11], E138X may be selected by HLA-B*18-restricted CTLs. In this study, we analyzed the frequency of amino acid variations at the 138th position in ART-naive patients with or without...
HLA-B*18, determined the impact of E138X on CTL response, and analyzed the drug susceptibility of recombinant HIV-1 variants harboring E138X.

METHODS

Sequences of HIV-1 Reverse Transcriptase

HIV-1 RT sequences were analyzed using viral RNA extracted from plasma samples [12], and HLA type was determined by standard sequence-based genotyping in 1107 ART-naive infected individuals who visited the Outpatient Clinic of the AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, between 2003 and 2012. The amino acid variation at the 138th position of HIV-1 RT was compared between individuals with and those without HLA-B*18, and the statistical significance of the difference was analyzed by Fisher exact test using the Statistical Package for Social Sciences, version 17.0 (SPSS, Chicago, Illinois). This study was approved by the institutional ethical committee of the National Center for Global Health and Medicine, and written informed consent was obtained from all the participants according to the Declaration of Helsinki.

Table 1. Amino Acid Variations at the 138th Position of HIV-1 Reverse Transcriptase and Human Leukocyte Antigen–B*18

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>HLA-B*18(+)</th>
<th>HLA-B*18(–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E138 (wild-type)</td>
<td>15</td>
<td>1084</td>
</tr>
<tr>
<td>E138G</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E138A</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E138K</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviation: HLA, human leukocyte antigen.

Intracellular Cytokine Staining Assay

HIV-1-derived peptides and mutant peptides were synthesized using an automated multiple peptide synthesizer and purified by high-performance liquid chromatography. Peripheral blood mononuclear cells (PBMCs) from chronically HIV-1–infected HLA-B*18-positive patients were stimulated with the peptide (100 nM) in culture medium (RPMI 1640 medium supplemented with 10% fetal calf serum and 200 U/mL recombinant human interleukin 2). After 14 days in culture, the cells were assessed for interferon (IFN)–γ production activity using a FACSCanto II (BD Biosciences, San Jose, California) [13, 14].

Drug Susceptibility Assay

The desired mutations were introduced into the Xmal–NheI region of pTZNX, which encodes the 15th–267th positions of HIV-1 RT (strain BH10) [15, 16]. The Xmal–NheI fragment was inserted into pNL4-319, which was modified from pNL101 and encoded the full genome of HIV-1. Each molecular clone was transfected into COS-7 cells, and the obtained virions were harvested 48 hours after transfection and stored at −80°C until use. Efavirenz and nevirapine were generously provided by Merck Co, Inc (Rahway, New Jersey) and Boehringer Ingelheim Pharmaceuticals Inc (Ridgefield, Connecticut), respectively. Etravirine and rilpivirine were purchased from Toronto Research Chemicals Inc (North York, Ontario, Canada). The susceptibility of recombinant HIV-1 variants to efavirenz, nevirapine, etravirine, and rilpivirine was determined in triplicate and repeated 3 times [16]. Fold resistance was calculated by comparing the viral 50% inhibitory concentration (IC50) with that of monoclonal wild-type HIV-1.

Structural Modeling

We constructed structural models of the HIV-1 RT and rilpivirine complex by computational analysis, as described in our

Figure 1. Recognition of human leukocyte antigen (HLA)–B*18-restricted CD8+ T cells. A, Identification of the optimal epitope of HLA-B*18-restricted CD8+ T cells. Peripheral blood mononuclear cells (PBMCs) from an HLA-B*18-positive individual chronically infected with human immunodeficiency virus type 1 (HIV-1) were stimulated with NY9 peptide and cultured for 2 weeks. Recognition of the bulk CD8+ T cells toward each peptide was measured by the intracellular cytokine staining (ICS) assay. B, Induction of NY8-specific CD8+ T cells in HLA-B*18-positive individuals chronically infected with HIV-1. PBMCs from 8 chronically HIV-1-infected HLA-B*18-positive individuals were stimulated with NY9 peptide and cultured for 2 weeks. Recognition of the bulk CD8+ T cells toward NY8 peptide were measured by the ICS assay. C, Effects of E138G/A/K substitutions on the recognition of HLA-B*18-restricted CD8+ T cells. Recognition of the bulk CD8+ T cells toward each wild-type or mutant peptide was measured by the ICS assay. Abbreviations: IFN-γ, interferon gamma; NY8, NETPGIRY; NY8-2G, NGTPGIRY; NY8-2A, NATPGIRY; NY8-2 K, NKTPGIRY; NY9, NNTPGIRY.
previous reports [15, 16]. In brief, the initial models of wild-type RT with rilpivirine were first constructed by homology modelling. The crystal structures of RT with NNRTI (PDB code: 2ZD1 [17]) was used for template structure. We also constructed the respective mutant RTs with rilpivirine by considering every possible conformer of the respective mutant models. The possible conformers were generated from the wild-type homology models using PyMOL software (http://www.pymol.org). Among the conformers, we selected those with the lowest energy as each mutant model.

RESULTS

First, we analyzed the frequency of amino acid variations at the 138th position of HIV-1 RT in 1107 ART-naive individuals. As expected, E138 was found in the majority (1099 cases [99%]) of the analyzed patients. However, 8 cases showed amino acid substitutions, including 3 cases of substitution with glycine (E138G), 3 cases with alanine (E138A), and 2 cases with lysine (E138 K). The frequency of E138G/A/K substitutions was 21% and 0.37% in 19 and 1088 individuals with and without HLA-B*18, respectively (Table 1). There was a significant difference in the frequency of the substitutions (odds ratio, 72.3; \(P = 4.9 \times 10^{-25}\)), suggesting that E138G/A/K could be selected by HLA-B*18-restricted CTLs.

Next, we delineated the impact of E138G/A/K on the response of HLA-B*18-restricted CTLs. The putative HLA-B*18-restricted CTL epitopes containing the 138th position of HIV-1 RT were NETPGIRYQY (NY10; position 137–146), NETPGIRY (NQ9; position 137–145), and NNETPGIRY (NQ9; position 136–144) [10, 11]. These 3 peptides were used to stimulate PBMCs of 8 ART-treated HLA-B*18-positive patients chronically infected with HIV-1. IFN-\(\gamma\) production activity was detected in PBMCs from 1 of the 8 patients when stimulated with NY9. To determine the optimal epitope, the bulk CD8\(^+\) T cells were further analyzed for NY9 and NETPGIRY (NY8; position 137–144). The bulk CD8\(^+\) T cells more efficiently recognized NY8 than NY9 at 1-nM, 10-nM, and 100-nM concentrations (Figure 1A). These findings indicate that NY8 was the optimal epitope of HLA-B*18-restricted CTLs. Indeed, NY8-specific CD8\(^+\) T cells were induced in 3 of the 8 patients (Figure 1B).

Table 2. Susceptibility of Recombinant HIV-1 Variants to 4 Nonnucleoside Reverse Transcriptase Inhibitors

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>IC(_{50}) (nM), Fold Resistance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E138 (wild-type)</td>
<td>1.2 ± 0.2 (1)</td>
</tr>
<tr>
<td>E138G</td>
<td>1.6 ± 0.2 (1.3)</td>
</tr>
<tr>
<td>E138A</td>
<td>2.1 ± 0.3 (1.8)</td>
</tr>
<tr>
<td>E138K</td>
<td>2.4 ± 0.4 (2.0)</td>
</tr>
</tbody>
</table>

Data are presented as mean ± standard deviation.
Abbreviations: EFV, efavirenz; ETR, etravirine; IC\(_{50}\), viral 50% inhibitory concentration; HIV-1, human immunodeficiency virus type 1; NVP, nevirapine; RPV, rilpivirine.
* Fold resistance was calculated by comparing viral IC\(_{50}\) with that of monoclonal wild-type HIV-1.

Figure 2. Structural models of human immunodeficiency virus type 1 reverse transcriptase (RT) and rilpivirine. The binding clefts of 4 complexes are shown: RTE138(wild-type) (A), RTE138G (B), RTE138A (C), and RTE138K (D). Sticks indicate the amino acids at positions 101 and 138 of RT, and the atoms of rilpivirine. The mutated residues (E138G, E138A, and E138 K) and rilpivirine atoms are represented by orange and greenish-blue sticks, respectively. Abbreviation: RPV, rilpivirine.
previous study showed that HLA-B*18-binding peptides have 2 anchor residues, E at position 2 and Y/F at the C-terminus [18]. NY8 also had these 2 anchor residues, supporting that this peptide is a HLA-B*18-restricted CTL epitope. To analyze the effect of E138G/A/K on the CTL response, 3 mutant peptides, NGTPGIRY (NY8-2G), NATPGIRY (NY8-2A), and NKTPGIRY (NY8-2 K), were synthesized, and the recognition of the bulk CTls for these mutant peptides was compared with that for NY8. The bulk CTls failed to recognize these peptides at 0.1-nM, 1-nM, 10-nM, and 100-nM concentrations, although it effectively recognized NY8 (Figure 1C). These substitutions at the 138th position may affect peptide binding to the HLA-B*18 molecule because the second position of HLA-B*18-binding peptides is an anchor for HLA-B*18 [18]. These findings indicate that each of the E138G/A/K affected CTL recognition and allow escape from the HLA-B*18-restricted CTls.

Finally, we analyzed the effect of E138G/A/K on viral susceptibility to NNRTIs by constructing recombinant HIV-1 variants. Each HIV-1 variant harboring one of E138G/A/K showed comparable replication fitness with wild-type HIV-1. Although the substitutions of E138G/A/K did not confer >2-fold resistance to efavirenz and nevirapine, they conferred mild resistance (2.2- to 2.4-fold) to etravirine. With regard to rilpivirine, E138 K, which was commonly observed in patients with virological failure under rilpivirine-based ART [1, 2], conferred mild resistance, whereas E138G and E138A conferred >5-fold resistance (Table 2). These findings indicate that in addition to E138 K, E138G and E138A can also reduce the clinical response to rilpivirine. The structural modeling suggests that substitution of E138 changes interactions around the rilpivirine-binding cleft (Figure 2). The side chain of E138 in the wild-type RT forms a salt bridge with the lysine at the 101th position (K101) at the edge of the cleft and establishes direct interactions with the pyrimidine moiety of rilpivirine, as seen in the crystal structure of RT with rilpivirine [17]. Meanwhile, mutant RTs with E138G/A/K substitutions could not create such a salt bridge, resulting in changes in the morphology of the binding cleft. In particular, RTs with E138G or E138A can reduce interactions with rilpivirine by creating large gaps between rilpivirine and the substituted 138th residues with small side chains, which seems to cause significant resistance to rilpivirine.

DISCUSSION

The major findings of the present study were as follows: (1) E138G/A/K substitutions were escape mutations of HLA-B*18-restricted CTls and they were observed more frequently in HLA-B*18-positive patients than HLA-B*18-negative patients; and (2) we confirmed that these substitutions conferred significant resistance to rilpivirine, demonstrating that drug resistance-associated mutations can be selected naturally by CTL when its epitope is located in the viral protein of antiretroviral targets.

Studies of cellular immunology in HIV-1 have focused mainly on Gag [19, 20]. However, considering that many of the recently identified CTL epitopes are located in Pol [13, 14, 21], analysis of the interaction between CTL and drug susceptibility is warranted. Some escape mutations can persist after viral transmission to other hosts even if the new hosts do not have the corresponding HLAs [22]. Therefore, HIV-1 can adapt to HLA at a population level [23]. In fact, we identified E138G/A/K in ART-naive HLA-B*18-negative patients, although the frequency of such variations was extremely low. However, the same analysis performed in areas with higher prevalence of HLA-B*18, such as Eastern Europe [24], would probably detect higher frequency of E138G/A/K.

HIV drug resistance testing is recommended not only after treatment failure but also before the introduction of the initial treatment, considering the risk that the patient may have acquired drug-resistant viruses from those with treatment failure [3, 25]. The present study may add another reason for drug resistance testing of ART-naive patients: drug resistance-associated mutations may have evolved in the patients selected by their own immunity even if the original transmitted viruses were drug sensitive. At the very least, drug resistance testing should be performed before the introduction of rilpivirine-based ART in HLA-B*18-positive patients.

Notes

Acknowledgments. We thank all physicians and nurses at the AIDS Clinical Center, National Center for Global Health and Medicine, for the clinical practice and patient care. We also thank A. Nakano for the excellent project coordination.

Financial support. This work was supported in part by Grants-in Aid for AIDS research from the Ministry of Health, Labour, and Welfare, Japan; the Global COE Program (Global Education and Research center Aiming at the control of AIDS); MEXT, Japan; and Japan Foundation for AIDS Prevention.

Potential conflicts of interest. H. G. has received honoraria from ViiV Healthcare, MSD K.K., Abbott Japan, Janssen Pharmaceutical K.K., and Torii Pharmaceutical. S. O. has received honoraria and research grants from MSD K.K., Abbott Japan, Janssen Pharmaceutical K.K., Pfizer, ViiV Healthcare, and Roche Diagnostics K.K., and has received honoraria from Astellas Pharmaceutical K.K., Bristol-Myers K.K., Daiichisankyo, Dainippon Sumitomo Pharma, GlaxoSmithKline, K.K., Taisho Toyama Pharmaceutical, and Torii Pharmaceutical. All other authors report no potential conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

2. Cohen CJ, Andrade-Vilanueva J, Clotet B, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse