Disparities in the Quality of HIV Care When Using US Department of Health and Human Services Indicators

Keri N. Althoff,1 Peter Rebeiro,1 John T. Brooks,2 Kate Buchacz,2 Kelly Gebo,1 Jeffrey Martin,2 Robert Hogg,4 Jennifer E. Thorne,1 Marina Klein,3 M. John Gill,5 Timothy R. Sterling,2 Baligh Yehia,8 Michael J. Silverberg,3 Heidi Crane,10 Amy C. Justice,11 Stephen J. Gange,1 Richard Moore,1 Mari M. Kitahata,10 and Michael A. Horberg12; for the North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD)

We estimated US Department of Health and Human Services (DHHS)-approved human immunodeficiency virus (HIV) indicators. Among patients, 71% were retained in care, 82% were prescribed treatment, and 78% had HIV RNA ≤ 200 copies/mL; younger adults, women, blacks, and injection drug users had poorer outcomes. Interventions are needed to reduce retention- and treatment-related disparities.

Keywords. HIV; quality of care; retention in care; antiretroviral therapy; HIV RNA suppression.

Identifying indicators and monitoring human immunodeficiency virus (HIV) care is an established practice [1–3]. In 2012, the Health Resources and Services Administration put forth clinical quality measures that were endorsed by the National Quality Forum for monitoring HIV care services in the United States. Three of these measures were also approved by the Department of Health and Human Services (DHHS) for monitoring DHHS-funded HIV services [3]. The indicators are consistent with the Institute of Medicine’s recommendations for monitoring HIV services [2] and overlap with indicators from the National Committee for Quality Assurance [1].

The North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) was identified by the Institute of Medicine as a potential data source to monitor HIV care in the United States [2]. The NA-ACCORD has shown that 3% of all adults living with HIV in the United States are captured in the clinical cohorts of the NA-ACCORD and participants are demographically similar to persons living with HIV in the United States [4]. The objectives of this study were to apply DHHS-approved indicators for retention in HIV medical care, antiretroviral therapy (ART) use, and HIV viral load (VL) suppression [3] and to identify differences in these indicators by age, sex, race/ethnicity, and HIV risk.

METHODS

Study Population

The NA-ACCORD is a multisite collaboration of cohort studies of HIV-infected adults in the United States and Canada and is a regional group of the International Epideimiologic Database to Evaluate AIDS. Details on the NA-ACCORD collaboration have been published previously [5]. Cohorts contribute data on patient demographics, prescribed ART, dates of primary HIV clinical visits, clinical diagnoses, vital status, and results of laboratory tests. All data are transferred securely to the NA-ACCORD’s central Data Management Core, where they undergo quality control per a standardized protocol before they are combined into harmonized data files. The activities of the NA-ACCORD have been reviewed and approved by the local institutional review boards for each site and at Johns Hopkins School of Medicine.

We conducted a cross-sectional analysis using data contributed by NA-ACCORD US clinical cohorts from 2009; Canadian and interval cohorts were excluded to allow for focus on DHHS indicators for monitoring US HIV clinical care. Ten US clinical cohorts were included with sites in 48 US states (participants hail from all 50 states); Washington, DC; the Virgin Islands; and Puerto Rico (Figure 1).

Outcomes

We evaluated the following 3 DHHS-defined indicators: retention in care, measured as the percentage of patients with ≥ 1 HIV care visit in January 2008–June 2008 and encounters in each of the
From the participating US clinical cohorts in the NA-ACCORD, 35 324 participants had ≥1 HIV care visit during January 2008–June 2008, making them eligible for inclusion in the estimation of the retention in care indicator; 38 331 participants had ≥1 HIV care visit in 2009, making them eligible for inclusion in the estimation of the ART use and VL suppression indicators. Although these groups differed slightly in size, demographics were the same in both groups: 49% of participants were aged ≥50 years, 83% were male, 45% were black, and 19% were IDUs.

Of participants, 71% were retained in care, 82% were prescribed ART, and 78% had a suppressed VL (Table 1). All 3 indicators were higher in older age groups in unadjusted analyses. Differences in crude proportions existed by age, sex, race/ethnicity, and HIV risk for all 3 indicators, with the exception of no statistically significant difference in retention in care by sex.

After adjustment for sex, race/ethnicity, HIV risk group, and cohort, all 3 indicators were statistically more prevalent in older age groups (Table 1). Females had a 7% higher proportion retained in care and a 6% lower proportion prescribed ART compared with males, but no significant statistical difference in the proportion with VL suppression. Hispanics had a 9% higher proportion retained in care compared with whites; blacks had a statistically significant lower proportion retained in care (3%), prescribed ART (3%), and with VL suppression (9%). IDUs and heterosexuals had an 11% and 4% lower proportion retained in care compared with MSM, respectively. Additionally, IDUs had a 6% lower proportion prescribed ART and a 7% lower proportion with VL suppression compared with MSM. There were no meaningful differences in the results after excluding VACS and KPNC.

DISCUSSION

In this era of “treatment as prevention,” there is renewed emphasis on achieving VL suppression through the use of ART; adults in HIV care should be the most easily accessible group in which 100% VL suppression could potentially be achieved. Our study, nested in the largest US collaboration of HIV-infected adults, showed 29% of HIV-infected adults in care fail to meet the definition for retention in care, 18% were not prescribed ART, and 22% of adults did not achieve VL suppression; these proportions were higher for younger adults, females, non-whites, and those with IDU and heterosexual HIV risk.

Our estimate of 71% retained in care is higher than the regularly used metaanalysis estimate of 59% [6], which is similar to that used in the cascade of care [7]. To date, there is currently no “gold standard” for measuring the definition of retention in care, but use of the DHHS indicator allows for consistency in
almost a quarter of the individuals with at least 1 visit in 2009 were not suppressed; of these individuals, 69% were prescribed ART. In adjusted analyses, those who were younger, black, or with IDU or heterosexual HIV risk were more likely to have a detectable viral load. Assuming assortative mixing, this is consistent with national surveillance data that show younger adults and blacks have the highest incidence rates of HIV infection [10]. Differences in viral suppression are likely to play a role in disparities of HIV incidence. For example, a higher prevalence of detectable viral load among black MSM likely contributes to the increase in odds of HIV infection if one has a black partner [11].

Although these DHHS-approved measures are similar in concept to the steps depicted in the cascade of care [7] and the continuum of care [12, 13], proportions cannot be directly compared as the concepts and the denominators are not the same. Another important limitation to our study is the lack of distinction in active vs. former IDU. Finally, enrollment criteria in the NA-ACCORD includes ≥2 HIV primary care visits in 12

Table 1. Crude Proportions, Adjusted Prevalence Ratios, and 95% Confidence Intervals for Three Indicators to Monitor Department of Health and Human Services–Funded Human Immunodeficiency Virus Services, the North American AIDS Cohort Collaboration on Research and Design, 2009

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Retained in Care (N = 35 324)</th>
<th>Antiretroviral Therapy Use (N = 38 331)</th>
<th>Suppressed (≤200 copies/mL) HIV Viral Load (N = 38 331)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>P Value</td>
<td>aPR<sup>a</sup></td>
</tr>
<tr>
<td>Overall</td>
<td>71%</td>
<td>. . .</td>
<td>. . .</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 y</td>
<td>59%</td>
<td><.001 ref</td>
<td>. . .</td>
</tr>
<tr>
<td>40–49 y</td>
<td>69%</td>
<td>1.17 (1.14, 1.20)</td>
<td>85%</td>
</tr>
<tr>
<td>50–59 y</td>
<td>74%</td>
<td>1.26 (1.23, 1.29)</td>
<td>83%</td>
</tr>
<tr>
<td>≥60 y</td>
<td>80%</td>
<td>1.34 (1.31, 1.38)</td>
<td>82%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>71%</td>
<td>.15 ref</td>
<td>. . .</td>
</tr>
<tr>
<td>Female</td>
<td>70%</td>
<td>1.07 (1.04, 1.10)</td>
<td>80%</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>72%</td>
<td><.001 ref</td>
<td>. . .</td>
</tr>
<tr>
<td>Black</td>
<td>71%</td>
<td>0.97 (0.96, 0.99)</td>
<td>81%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>72%</td>
<td>1.09 (1.06, 1.11)</td>
<td>86%</td>
</tr>
<tr>
<td>Other<sup>b</sup></td>
<td>64%</td>
<td>0.94 (0.91, 0.98)</td>
<td>80%</td>
</tr>
<tr>
<td>HIV risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men who have sex with men</td>
<td>68%</td>
<td><.001 ref</td>
<td>. . .</td>
</tr>
<tr>
<td>History of injection drug use</td>
<td>72%</td>
<td>0.89 (0.86, 0.92)</td>
<td>79%</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>69%</td>
<td>0.96 (0.94, 0.99)</td>
<td>80%</td>
</tr>
<tr>
<td>Other<sup>b</sup></td>
<td>74%</td>
<td>0.91 (0.88, 0.94)</td>
<td>81%</td>
</tr>
</tbody>
</table>

Abbreviations: aPR, adjusted prevalence ratio; CI, confidence interval; HIV, human immunodeficiency virus.

^a Prevalence ratios are adjusted for all variables in the table as well as cohort.

^b Those with an unknown race/ethnicity or HIV risk are also included in this category.

^{Bold} signifies statistical significance (\(P<.05\)).
months that are >90 days apart among patients in clinical cohorts. Thus, our study population is enriched with those who successfully linked into care.

Our study provides empiric data on 3 DHHS-approved indicators from the large and diverse NA-ACCORD using clinical HIV cohort population data. The disparities found highlight the need for additional research to determine the drivers of these disparities and the need for programs tailored by age, race/ethnicity, and HIV risk to improve retention, ART use, and VL suppression. Prioritization of program efforts could be guided by targeting the characteristic with the largest differences in all outcomes: young adults (aged <40 years). Our results suggest that continued efforts are needed to optimize these measures among patients who have successfully linked into HIV care.

Notes

Disclaimers. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention (CDC).

Financial support. This work was supported by grants U01-A1069918, U01-AA015366, U24-AA020794, U01-AA020790, U01-AA013184, U01-AA134989, U01-AA134993, U01-AA134994, U01-AA135004, U01-AA135009, U01-AA135040, U01-AA135041, U01-AA135042, U01-AA135043, U01-AA137613, U01-AA137984, U01-AA138855, U01-AA142590, U01-AA168634, U01-AA168636, U01-AA169432, U01-AA169434, U01-HD32632, U10-EY08057, U10-EYO8052, U10-EYO8067, U11-RRO24131, U11-TR000083, U54- MD005787, F31-DA035713 (P. R.), G12- MD007583, K01-A1071754 (B. R. L.), K01-A1093197 (K. N. A.), K23-EY07307, K24-A1065298, K24-00432, M01-RR-00052, N02-CP55504, P30-A1027763, P30-A1094189, P30-A127757, P30-A127767, P30-A159410, P30-A519999, P30-A503821, P30-MH62246, R01-CA165937, R01-AA16893, R01-DA11602, R01-DA08334, R01-DA12568, R24-A1067039, R56-A1102622, Z01-C0P001019, and Z01-C0P010176 from the National Institutes of Health, USA; contract C12C200-2006-18797 from the Centers for Disease Control and Prevention, USA; contract 90047713 from the Agency for Healthcare Research and Quality, USA; contract 90051652 from the Health Resources and Services Administration, USA; grants TGE-96118, HCP-97105, CBR-86906, and CBR-94036 from the Canadian Institutes of Health Research, Canada; Ontario Ministry of Health and Long Term Care; and the Government of Alberta, Canada. The funding sources did not influence the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation; review; or approval of the manuscript or the decision to submit the manuscript for publication, with the exception of the Centers for Disease Control and Prevention, which did review the manuscript and provide optional feedback prior to submission.

Potential conflicts of interest. K. G. reports grants from Tibotec, personal fees from Bristol Myers Squibb (BMS), and grants from the federal government outside the submitted work. M. K. reports grants from the Canadian Institute of Health Research (CIHR), Fonds de recherches en santé du Québec, and CIHR Canadian HIV Trials Network; personal fees from Glaxo-SmithKline/Viiv, BMS, and Gilead; and personal fees for travel/accommodations/meeting expenses unrelated to activities listed outside the submitted work. M. J. S. reports grants from Pfizer and Merck outside the submitted work. J. E. T. reports grants from the federal government during the conduct of the study; grants and other from AbbVie; grants and personal fees from XOMA; personal fees from Gilead, Navigent, and Santen; and grants from Allergan, Inc., outside the submitted work.

K. N. A. and P. R. had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

NA-ACCORD Collaborating Cohorts and Representatives

AIDS Link to the IntraVenous Experience: Gregory D. Kirk.

Adult AIDS Clinical Trials Group Longitudinal Linked Randomized Trials: Constance A. Benson, Ronald J. Bosch, and Ann C. Collier.

HIV Outpatient Study: John T. Brooks and Kate Bucchaz.

John T. Carey Special Immunology Unit Patient Care and Research Database, Case Western Reserve University: Benigno Rodriguez.

Kaiser Permanente Northern California: Michael J. Silverberg.

Multicenter Hemophilia Cohort Study II–J: James J. Goedert.

Multicenter AIDS Cohort Study: Lisa P. Jacobson.

Ontario HIV Treatment Network Cohort Study: Sean R. Rourke, Ann N. Burchell, and Anita R. Rachlis.

Retrovirus Research Center, Bayamon Puerto Rico: Robert F. Hunter-Mellado and Angel M. Mayor.

Southern Alberta Clinical Cohort: M. John Gill.

Studies of the Consequences of the Protease Inhibitor Era: Steven G. Deeks and Jeffrey N. Martin.

University of Alabama at Birmingham 1917 Clinic Cohort: Michael S. Saag, Michael J. Mugavero, and James Willig.

University of North Carolina at Chapel Hill HIV Clinic Cohort: Joseph J. Eron and Sonia Napravnik.

University of Washington HIV Cohort: Mari M. Kitahata and Heidi M. Crane.

Veterans Aging Cohort Study: Amy C. Justice, Robert Dubrow, and David Fiellin.

Women’s Interagency HIV Study: Stephen J. Gange and Kathryn Anastos.

NA-ACCORD Study Administration

Administrative Core: Richard D. Moore, Aimee M. Freeman and Carol Lent.

Epidemiology and Biostatistics Core: Stephen J. Gange, Keri N. Althoff, Alison G. Abraham, Bryan Lau, Jinbing Zhang, Jerry Jing, Elizabeth Golub, Shari Modur, David B. Hanna, Peter Rebeiro, Cherise Wong and Adell Mendes. All other authors report no potential conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

