Prevalence and Antimicrobial Susceptibility of Hypervirulent Klebsiella pneumoniae Isolates in China

TO THE EDITOR—Recently, Li et al reported that an increasing proportion of hypervirulent Klebsiella pneumoniae (hvKP) isolates in China has been identified in clinical samples, and they demonstrated that hvKP strains exhibited an increasing antimicrobial resistance [1]. Our concern is that their study may have significant impact on the empirical anti-infection treatment of serious infections caused by hvKP. Therefore, we performed this study to clarify the hypermucoviscosity (HV) and antimicrobial susceptibility of clinical K. pneumoniae isolates and to determine if their study is reliable to conclude that hvKP strains are being isolated from patients in China.”

In conclusion, a truly objective and scientifically reliable conclusion should be obtained from a multicenter study with a large number of samples collected from patients in the representative regions/hospitals nationally.

Notes

Financial support. This study was supported by the China Mega-Project on Infectious Disease Prevention (grant number 2013ZX10004202-002).

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

2. Lin YC, Lu MC, Tang HL, et al. Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with...


*Y. Z. and Y. M. contributed equally to this work.*

Correspondence: Jiyong Yang, PhD, Microbiology Department, 301 Hospital, No. 28 Fuxing Road, Beijing 100853, China (yangjy301@hotmail.com).

*Clinical Infectious Diseases* 2014;58(10):1493–4

© The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

DOI: 10.1093/cid/ciu110