Safety and Improved Clinical Outcomes in Patients Treated With New Equine-Derived Heptavalent Botulinum Antitoxin

Patricia A. Yu,1 Neal H. Lin,2 Barbara E. Mahon,3 Jeremy Sobel,4 Yon Yu,1 Rajal K. Mody,2 Weidong Gu,2 Jennifer Clements,1 Hye-Joo Kim,1 and Agam K. Rao2

1Regulatory Affairs, 2Enteroic Diseases Epidemiology Branch, Division of Foodborne, Waterborne, and Environmental Diseases (DFWED), and 3DFWED, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia

Background. Botulism is a rare, life-threatening paralytic illness. Equine-derived heptavalent botulinum antitoxin (HBAT), the only currently available treatment for noninfant botulism in the United States, was licensed in 2013. No reports have systematically examined safety and clinical benefit of HBAT among botulism patients.

Methods. From March 2010 through March 2013, we collected data prospectively and through medical record reviews of patients with confirmed or suspected botulism who were treated with HBAT under an expanded-access Investigational New Drug program.

Results. Among 249 HBAT-treated patients, 1 (<1%) child experienced an HBAT-related serious adverse event (hemodynamic instability characterized by bradycardia, tachycardia, and asystole); 22 (9%) patients experienced 38 nonserious adverse events reported by physicians to be HBAT related. Twelve (5%) deaths occurred; all were determined to be likely unrelated to HBAT. Among 104 (42%) patients with confirmed botulism, those treated early (≤2 days) spent fewer days in the hospital (median, 15 vs 25 days; P < .01) and intensive care (10 vs 17 days; P = .04) than those treated later. Improvements in any botulism sign/symptom were detected a median of 2.4 days and in muscle strength a median of 4.8 days after HBAT.

Conclusions. HBAT was safe and provided clinical benefit in treated patients. HBAT administration within 2 days of symptom onset was associated with shorter hospital and intensive care stays. These results highlight the importance of maintaining clinical suspicion for botulism among patients presenting with paralytic illness to facilitate early HBAT treatment before laboratory confirmation might be available. Clinical consultation and, if indicated, HBAT release, are available to clinicians 24/7 through their state health department in conjunction with CDC.

Keywords. equine-derived heptavalent botulinum antitoxin; botulism; HBAT; BAT.

Botulism is a rare illness caused by toxin produced by Clostridium botulinum. This potent toxin binds irreversibly to nerve endings at neuromuscular junctions, causing varying degrees of paralysis, respiratory failure, and even death [1]. Botulinum antitoxin is the only specific therapy for botulism. It binds circulating botulinum toxin and halts illness progression, but does not reverse deficits that have already developed. Because laboratory confirmation takes time, during which neurologic deficits may progress, and because it may not confirm all botulism illnesses, antitoxin is administered empirically as soon as possible after clinical suspicion is raised. Botulism occurs sporadically each year and outbreaks may occur; botulism cases and outbreaks are public health emergencies that require a vigorous response to ensure treatment of affected persons and investigation of the source to prevent further illnesses [2]. Intentional exposures, such as in a bioterror event, could cause thousands of illnesses.

Exposure to botulinum toxin occurs through several routes, including ingestion of preformed toxin in foods, toxin produced by germinating botulinum spores in colonized wounds or the intestinal tract, and injection of high concentrations of botulinum toxin for therapeutic purposes. Infant botulism occurs due to production of toxin by C. botulinum colonizing the immature infant gastrointestinal system and is treated in the United States with BabyBIG®, a human immunoglobulin approved for infant botulism caused by toxin types A and B [3]. Noninfant botulism is treated with equine-derived antitoxin, produced by hyperimmunizing horses with botulinum toxin. There have been prior formulations of equine botulinum antitoxin available through the Centers for Disease Control and Prevention (CDC) for noninfant persons in the United States since the 1960s. In 2010, the first heptavalent formulation capable of neutralizing toxin serotypes (A, B, C, D, E, F, G), although still investigational at the time, replaced previous formulations. To ensure continued availability of antitoxin in the United States, CDC implemented an expanded-access Investigational New Drug program (“compassionate use” IND) starting in March 2010. As a secondary
goal, the IND program enabled collection of data on safety and clinical benefit. In 2013, heptavalent botulinum antitoxin (HBAT, also known by its licensed name BAT) was approved by the US Food and Drug Administration (FDA) based on the Animal Efficacy Rule, under which products treating rare illnesses that are not ethical or feasible to be studied using randomized controlled trials may be approved based on efficacy demonstrated in animals [4]. Safety and clinical outcomes data on HBAT in ill patients from the IND were part of the supportive data for licensure of HBAT but have not previously been published. Data on previous antitoxin formulations are limited and HBAT is a new formulation. Post-licensure data collection by the manufacturer, Cangene Corporation, as part of its FDA-required post-marketing commitments, has not yet completed and therefore, data not available for inclusion in or as a companion to this article. We present the first report on clinical use of HBAT for suspected and confirmed botulism during the CDC IND program.

METHODS

The CDC, working with state and local health departments, provides clinical consultation and antitoxin release 24 hours a day for all noninfant patients who may have botulism in the United States (antitoxin for treatment of infant botulism is available by contacting the California Department of Public Health). During the IND period of March 2010 through March 2013 and for 4 patients treated in 2008–2009, CDC provided investigational HBAT for treatment of patients under a CDC Institutional Review Board–approved protocol. The protocol contained information about HBAT, including case report forms (CRFs), instructions on obtaining informed consent, HBAT administration, and monitoring and reporting of adverse events (AEs), including serious adverse events (SAEs). Skin sensitivity testing was optional. The HBAT regimen for adults was a single dose of 1 vial whereas the pediatric dose was weight-based; the infant dose during the early phase of the IND was 20% of the adult dose. HBAT is formulated to meet a minimum potency level for each antitoxin type expressed as units based on mouse neutralization assay: A (4500 U), B (3300 U), C (3000 U), D (600 U), E (5100 U), F (3000 U), G (600 U) [5]. The half-life of one vial of HBAT ranges from 7.51 hours to 34.20 hours depending on the antitoxin serotype [5].

Definitions and Data Collection

Baseline clinical information was collected verbally at the time of HBAT consultation and, in keeping with HBAT investigational status, physicians were required to comply with the protocol and complete CRFs assessing AEs from HBAT through written reports to CDC. CRF data were obtained soon after HBAT administration and upon patient discharge. CDC systematically contacted hospital staff during patients’ hospitalizations to enhance CRF completion. Medical records were obtained from hospitals to abstract: (1) dates of symptom onset and improvement, hospital admissions, transfers, and discharges and dates of tracheostomy placement; (2) durations of mechanical ventilation and hospitalization in intensive care settings; and (3) clinical deficits at time of acute care discharge and location to which a patient was discharged.

AEs were defined as any untoward medical occurrence related to HBAT per FDA’s IND safety reporting regulations [6]. Physicians reported AEs related to HBAT by completing and returning CRFs that inquired about (1) occurrence or absence of AEs including fever, chills/rigors, rash, urticaria, edema, urinary retention, anaphylaxis, serum sickness, and other reactions; (2) AE duration and timing; (3) any treatment of AEs; and (4) sequelae from AEs. SAEs, including serious unexpected suspected adverse reactions, were defined per FDA IND safety reporting regulations [6]. Information on patient clinical outcomes (eg, survival) was obtained through patient discharge from acute hospitalization and inpatient rehabilitation. Because equine antitoxins carry a risk of hypersensitivity including anaphylaxis and serum sickness, skin testing results and the occurrence of AEs to HBAT administration were evaluated when data on skin sensitivity testing were available. Results of laboratory testing were obtained directly from public health reference laboratories. We used the Council of State and Territorial Epidemiologists definition of confirmed botulism: illness clinically-compatible with botulism and that is laboratory-confirmed or epidemiologically-linked to a laboratory-confirmed case [7]. For analysis of duration of hospitalization, intensive care unit (ICU) stay, and mechanical ventilation, early treatment was defined as HBAT administration within 2 days of symptom onset and later treatment as >2 days from symptom onset.

Data Analysis

Safety was assessed among all HBAT-treated patients, irrespective of botulism confirmation. SAEs, including all deaths reported by physicians regardless of botulism confirmation status or physician-reported association with HBAT, were assessed by the CDC principal investigator for relatedness to HBAT by reviewing patients’ medical records and correspondence with physicians. To assess clinical benefit of HBAT, only confirmed botulism cases were further analyzed. Median durations of hospitalization, ICU stay, and mechanical ventilation were calculated for patients treated early (<2 days of symptom onset) and those treated later (>2 days from symptom onset). Differences were assessed by Wilcoxon rank-sum test. Patients who died during acute care were excluded to avoid biasing calculations of median durations of hospitalization, ICU stay, and mechanical ventilation. Kaplan-Meier curves with log-rank test were generated to compare durations of hospitalization, ICU stay, and mechanical ventilation between patients treated early and those treated later. The percentage of botulism-confirmed patients...
Table 1. Demographic Characteristics of Patients Treated With Heptavalent Botulinum Antitoxin

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients Treated With HBAT (n = 249)</th>
<th>HBAT-Treated Patients With Confirmed Botulism (n = 104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td>46 y (10 d–88 y)</td>
<td>43 y (10 d–83 y)</td>
</tr>
<tr>
<td>Age group, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to <1</td>
<td>1 (<1%)</td>
<td>1 (<1%)</td>
</tr>
<tr>
<td>1–9</td>
<td>8 (3%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>10–17</td>
<td>8 (3%)</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>18–29</td>
<td>35 (14%)</td>
<td>21 (20%)</td>
</tr>
<tr>
<td>30–39</td>
<td>46 (19%)</td>
<td>21 (20%)</td>
</tr>
<tr>
<td>40–49</td>
<td>42 (17%)</td>
<td>24 (23%)</td>
</tr>
<tr>
<td>50–59</td>
<td>40 (20%)</td>
<td>14 (14%)</td>
</tr>
<tr>
<td>60–69</td>
<td>36 (15%)</td>
<td>11 (11%)</td>
</tr>
<tr>
<td>70–79</td>
<td>17 (7%)</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>≥80</td>
<td>7 (3%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>178 (72%)</td>
<td>84 (81%)</td>
</tr>
<tr>
<td>Female</td>
<td>71 (29%)</td>
<td>20 (19%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>90 (36%)</td>
<td>38 (37%)</td>
</tr>
<tr>
<td>Not Hispanic/Latino</td>
<td>110 (44%)</td>
<td>56 (54%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>49 (20%)</td>
<td>10 (10%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>139 (56%)</td>
<td>73 (70%)</td>
</tr>
<tr>
<td>Alaska Native</td>
<td>14 (6%)</td>
<td>8 (8%)</td>
</tr>
<tr>
<td>African American</td>
<td>14 (6%)</td>
<td>3 (3%)</td>
</tr>
<tr>
<td>Asian</td>
<td>12 (5%)</td>
<td>5 (5%)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (2%)</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>Native American</td>
<td>3 (1%)</td>
<td>3 (3%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>61 (25%)</td>
<td>8 (8%)</td>
</tr>
</tbody>
</table>

Abbreviation: HBAT, heptavalent botulinum antitoxin.

*The majority of patients were treated during the expanded access Investigational New Drug period from 2010–2013; 4 patients were treated 2008–2009. Most patients were treated in the United States while 5 patients were treated in Mexico.

Infant botulinum type F illness treated with HBAT because the licensed product for infant botulism treatment, BabyBIG®, does not contain Anti-F activity.

RESULTS

A total of 249 persons aged 10 days–88 years (median, 46 years) were treated with HBAT (Table 1). Of these, 17 (7%) were children (median, 6 years; range, 10 days–17 years). None of the 249 treated patients were pregnant or breastfeeding. Botulism was laboratory or epidemiologically confirmed for 104 (42%) patients. Confirmed cases were caused by toxin types A (74%), Ab (1%), B (7%), E (7%), F (4%), and indeterminate type (8%) with exposure occurring via all naturally occurring transmission routes.

Safety of Heptavalent Botulinum Antitoxin

Among 249 patients, 23 (9%) experienced at least 1 AE reported by physicians as HBAT-related: 22 (9%) patients experienced 38 nonserious AEs and 1 patient experienced an HBAT-related SAE (Table 2). No patients experienced anaphylaxis. The single case of serum sickness occurred in a 64-year-old man, which occurred 11 days after HBAT administration and physician-reported as mild, self-limited serum sickness characterized by myalgia and arthralgia treated with ibuprofen; the principal investigator also determined it as not serious [8].

One HBAT-related SAE occurred in a 10-year-old boy weighing 29 kg who was reported to have experienced...
Table 3. Characteristics of Fatal Cases of Botulism Among Patients Treated With Heptavalent Botulinum Antitoxin (n = 12)

<table>
<thead>
<tr>
<th>Age/Sex</th>
<th>Toxin Type</th>
<th>Cause of Death</th>
<th>Death related to HBAT</th>
<th>Days From Symptom Onset to Death</th>
<th>Days From Symptom Onset to HBAT Administration</th>
<th>Days From HBAT Administration to Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/M</td>
<td>Ab</td>
<td>Aspiration leading to cardiopulmonary arrest</td>
<td>No</td>
<td>41a</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>43/M</td>
<td>A</td>
<td>Acute respiratory distress syndrome due to pneumonia</td>
<td>No</td>
<td>179a</td>
<td>4</td>
<td>175</td>
</tr>
<tr>
<td>64/M</td>
<td>A</td>
<td>Respiratory failure and metastatic prostate cancer</td>
<td>No</td>
<td>48a</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>83/M</td>
<td>A</td>
<td>Myocardial infarction</td>
<td>No</td>
<td>45</td>
<td>17</td>
<td>28</td>
</tr>
<tr>
<td>64/M</td>
<td>F</td>
<td>Unknown cause of death; cardiopulmonary arrest possibly due to respiratory failure because of known pulmonary problems</td>
<td>No</td>
<td>70</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>77/M</td>
<td>A</td>
<td>Unknown cause; death occurred >70 d after hospital transfer</td>
<td>No</td>
<td>99</td>
<td>5</td>
<td>94</td>
</tr>
<tr>
<td>57/M</td>
<td>A</td>
<td>Unknown cause of death; cardiopulmonary arrest due to undetermined reasons occurred following nonspecific complaints 1 d following prolonged hospitalization</td>
<td>No</td>
<td>48</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>82/F</td>
<td>NC</td>
<td>Aspiration pneumonia</td>
<td>No</td>
<td>11</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>88/F</td>
<td>NC</td>
<td>Respiratory failure and complications from Guillain-Barré syndrome and underlying medical problems</td>
<td>No</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>61/M</td>
<td>NC</td>
<td>Myocardial infarction due to triple vessel coronary artery disease</td>
<td>No</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>85/M</td>
<td>NC</td>
<td>Sepsis, bacteremia, possible endocarditis</td>
<td>No</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>49/M</td>
<td>NC</td>
<td>Septic shock and respiratory failure due to pneumonia</td>
<td>No</td>
<td>19e</td>
<td>9e</td>
<td>10</td>
</tr>
</tbody>
</table>

Abbreviation: HBAT, heptavalent botulinum antitoxin; NC, botulism not confirmed.

aToxin type is indicated for only those illnesses confirmed to be botulism. Illnesses not confirmed to be botulism (ie, “NC”) may have been cases of botulism that could not be confirmed or they may have been illnesses other than botulism.

bCause of death determined through CDC principal investigator review of chart and sometimes, discussion with treating physician.

cRelatedness to HBAT was assessed by CDC principal investigator through review of medical records and, when possible, discussion with physicians.

dDeath occurred among botulism-confirmed patients during acute inpatient hospitalization.

eOnset date not reported; hospital admission date used to calculate this duration in lieu of onset date.

A total of 12 deaths (5%) were reported; none were related to HBAT by either physician report or by CDC principal investigator review (Table 3). Characteristics of patients who died and cause of death as determined by CDC principal investigator review are listed in Table 3.

Most reported, HBAT-related AEs were nonserious and included fever (n = 9 [4%]), rash (n = 4 [2%]), and chills (n = 3 [1%]) (Table 2) and resolved with medications such as acetaminophen, diphenhydramine, and methylprednisolone. Although skin sensitivity testing was not required, it was conducted for 33 patients; all but 1 had negative skin test results and no resulting allergic reaction with HBAT administration. The 1 patient with a positive skin test prior to HBAT treatment experienced facial swelling and facial and truncal rash 1 day after HBAT treatment and nausea, chest pressure, and “jitteriness” 2 days later. Information is not available on whether the patient was pretreated for allergy before HBAT administration. The patient recovered without sequelae after treatment with diphenhydramine, methylprednisolone, and ondansetron.

Three adults each received 2 HBAT doses, from 4 to 34 days apart: 2 had a second episode of botulism and 1 was re-treated off-protocol due to lack of clinical improvement.

bradycardia leading to asystole approximately 90 minutes after initiation of HBAT infusion; the lowest observed heart rate immediately before asystole was 10–15 beats per minute [bpm]). Pediatric administration instructions at the time recommended starting the infusion at a rate of 0.1–0.5 mL/min for at least 30 minutes, then increasing the rate to 0.2–1 mL/min for the subsequent 30 minutes and thereafter. The treating physician reported an initial infusion rate of 0.1 mL/min for 30 minutes. The infusion rate thereafter was not reported, including during the time at which the patient experienced bradycardia and asystole. The administration was halted when asystole occurred, epinephrine was administered, and chest compressions performed. Administration was restarted after a pause of approximately 5 minutes. At this time the patient was tachycardic (140 bpm), possibly in consequence of receiving epinephrine, but regained normal cardiac rhythm. No other abnormalities were observed until approximately 30 minutes after the infusion had been restarted, when the patient abruptly experienced a second bradycardic episode (30–40 bpm) and HBAT administration was altogether stopped; an estimated 73% of the intended dose (40 ml of 55 ml) was administered overall.
No AEs were reported. An additional 3 HBAT-treated adults had a prior history of botulism for which they were treated with an older, previously available antitoxin formulation from 4 to 8 years before HBAT treatment; they also did not experience any AEs.

Clinical Outcomes and Timing of Heptavalent Botulinum Antitoxin Administration

Among 104 botulism-confirmed patients, all 33 patients treated within 2 days of symptom onset (early treatment) survived while 64 of 71 (90%) patients treated later survived; this difference was not statistically significant. Early HBAT treatment was associated with statistically significant shorter hospital (median, 15 vs 25 days; \(P < .01 \)) and ICU (10 vs 17 days; \(P = .04 \)) stays compared with later HBAT treatment (Table 4; Figure 1). Simple linear regression indicated that improvement in any of the botulism signs or symptoms occurred 2.4 days (95% confidence interval [CI], 1.6–3.1) after HBAT administration, while strength improvement occurred 4.8 days (95% CI, 2.5–7.1) after administration, irrespective of timing of administration (regression coefficients in both models were 1.0 [95% CIs, 0.8–1.2] and 4.16 [95% CI, 3.1–5.2]).

Intubation followed HBAT administration in 10 (14%) patients with median time to intubation of <1 day (range, <1 to 3 days); these patients were treated with HBAT a median of 4 days from symptom onset (range, 1–11 days). Of 104 botulism-confirmed patients, 73 (70%) required mechanical ventilation. Disposition of patients were as follows: 61 (59%) were discharged home, 32 (31%) were discharged to a long-term acute care facility, 7 (7%) were discharged to a skilled nursing facility/nursing home, and 1 (1%) left against medical advice. Three patients (3%) died during acute hospitalization. Of 73 patients who received mechanical ventilation, 54 (74%) underwent tracheostomy. Most (88, 89%) botulism-confirmed patients had residual disability upon discharge consisting of neurological deficits and/or persistent subjective weakness while 11 (11%) were reported as having no residual disability upon discharge among patients for whom data were available. The percentage of patients with residual disability at discharge did not differ significantly between patients treated with HBAT early (91%) and those treated later (88%).

DISCUSSION

Since 2010, HBAT has been the only antitoxin available in the United States for treatment of noninfant botulism, capable of neutralizing toxin types (A, B, C, D, E, F, G). Our data are the first published on the safety and clinical outcomes associated with HBAT administration among patients with suspected and confirmed botulism. For most patients, HBAT was well-tolerated; 9% developed any HBAT-related AE and 1 patient (1%) developed a related SAE. No deaths related to HBAT treatment were reported. We found that early HBAT administration was associated with shorter hospital and ICU stays among patients with confirmed botulism. These results highlight the importance of early treatment of suspected botulism with HBAT, usually before laboratory confirmation is available. Around-the-clock clinical consultation and HBAT release are available to clinicians through their state health department in conjunction with CDC.

Mortality from botulism decreased from approximately 60% to <5% over the course of the 20th century in the United States, attributed to advances in critical care, specifically mechanical ventilation [2, 9–12]. Outbreak investigation reports, case reports, case series, and animal studies suggested that early administration of previously available botulinum antitoxins improved morbidity and mortality [12]. Our findings suggest the same is true for HBAT: we found that early HBAT administration was associated with shorter hospitalization and intensive care. Additionally, we observed no deaths among patients treated early, whereas 10% of patients who received HBAT >2 days after symptom onset died.

The observation that early HBAT administration was associated with reduced duration of hospitalization and intensive care is consistent with the mechanism of action of HBAT, neutralization of free-circulating toxin, preventing toxin from exerting its action in neuromuscular junctions and preventing further symptom progression [13, 14]. Furthermore, our findings illustrate the expected clinical benefit of HBAT is limited to halting progression of botulism and not speeding recovery. Our data show that improvements in signs and symptoms and in strengths occurred after HBAT administration. However, time to improvement of any sign or symptom (eg, improvement in cranial nerve symptoms) appears to be similar regardless of the timing of HBAT administration following symptom onset. While there is as yet no rapid point-of-care diagnostic test for botulism and even if one were to become available, HBAT should be considered upon clinical suspicion based on signs and symptoms and, if available, exposure history, as early
Treatment is most beneficial in preventing further disease progression [15]. Treatment should not be contingent on laboratory or other diagnostic testing (eg, electromyography) due to delay in conducting such evaluations and their limitations [15, 16]. Thus, HBAT should be administered as soon as possible. Even if treatment were inadvertently delayed, HBAT may still be of clinical benefit given the potential that prolonged toxemia may be present [17]. Clinicians suspecting botulism should immediately contact their state health department’s emergency telephone number for consultation and referral to CDC’s Botulism Clinical Consultation Service, which provides review of clinical presentation and, if indicated, releases an emergency shipment of HBAT for patient treatment.

Reports on botulinum antitoxin products employed in previous decades cite rates of anaphylaxis and serum sickness of 1–2% and 1–4%, respectively; rates varied with number of vials administered [18–21]. With HBAT, we observed anaphylaxis and serum sickness rates of 0% and <1%, respectively. Despeciation of HBAT involves removal of equine-derived Fc segments of the equine immunoglobulin G, resulting in purified F(ab′)2 and F(ab′)2-related immune globulin fragments and purification [22]. Whether this contributes to lower allergenicity is uncertain. Historically, for older equine-derived botulinum antitoxin formulations, skin sensitivity testing before administration was recommended [23, 24]. Although skin testing was predictive of an allergic reaction in a single patient in our analysis, other studies suggest that the positive predictive value is low [18, 19, 25]. In clinical trials of 56 healthy adults, despite negative skin testing with horse dander immunoglobulin E and HBAT before HBAT administration, 2 subjects experienced hypersensitivity reactions including urticaria [4]. Given concerns about its accuracy, sensitivity testing, which can delay HBAT administration, is not recommended. HBAT should be administered in a setting where hypersensitivity reactions, should they occur, can be identified and treated.

The seven botulinum toxin serotypes A–G were described between 1919 and 1970. Recently, reports of new toxin types have been published, including a novel toxin subsequently shown to be hybrid type A/F fully neutralized by HBAT [26, 27], and a novel toxin identified and assembled from the published gene sequence of a C. botulinum isolate [28]. New botulinum toxins of clinical significance might be discovered. Preparedness requires careful laboratory investigation of all suspected botulism cases and research and development of new countermeasures.

Given clinical trial data on HBAT were limited to 2 phase 1 trials in 56 healthy adult subjects, our data provide the first assessment of information derived from clinical use of HBAT to treat patients with suspected botulism.
or confirmed botulism. However, our investigation has several limitations. Because HBAT was provided under expanded-access IND with the primary objective of providing treatment for life-threatening disease, it was not a clinical trial and no comparison group without treatment is available. Efficacy is typically demonstrated by prospective randomized controlled clinical trials and could not be definitively drawn from clinical information collected from only HBAT-treated patients. Our data collection was dependent on physicians completing and returning CRFs. However, through our active follow-up process, the return rate of CRFs containing safety and clinical outcome information was 93%, which was historically challenging to achieve. With the exception of deaths and SAEs, nonserious AEs were physician-reported and not further investigated. Deaths that occurred after hospital discharge and completion of our follow-up may not have been reported to us for further evaluation. Other confounding factors may have contributed to clinical outcomes such as toxin exposure level, individual host factors, and progression of botulism symptoms and neurologic illness before HBAT administration, which could not be evaluated or assessed further by chart abstraction. Despite these limitations, our findings strongly suggest that HBAT is well-tolerated for patients with suspected or confirmed botulism and that early HBAT administration is more effective than later administration. While our data were collected from patients with sporadic or outbreak-related illnesses due to unintentional exposure, it is likely that our findings would still apply in the context of an intentional mass casualty event. For the individual botulism patient properly managed in an intensive care setting, the advantages of HBAT appear to outweigh potential risks. During a mass casualty event, early HBAT treatment may help lessen the population-level strain on limited healthcare resources by reducing the duration of hospitalization and intensive care required by individual patients. However, undesirable consequences arising from the rare risk of otherwise mild HBAT-related AEs may be magnified in these situations if supportive care resources are limited. Regardless of the context in which botulism occurs, our data further support the importance of maintaining clinical suspicion for this paralytic illness to help ensure that safe and effective management is implemented in a timely manner.

Notes

Acknowledgments. We thank Ryan Fagan, MD, MPH, Kelly Jackson, MPH, Susan Maslanka, PhD, Rabahuddin Syed, MD, Hannah Kisselburgh, MPH, BSN, and Tze Li, PharmD; the physicians, nurses, and pharmacists who completed and returned data related to HBAT use in their patients to CDC; Department of Health and Human Services/Office of the Assistant Secretary for Preparedness and Response/Biomedical Advanced Research and Development Authority for their advanced development of HBAT; and Cangene Corporation, a subsidiary of Emergent BioSolutions Inc., as the manufacturer of HBAT.

Disclaimer. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Supplement sponsorship. This article appears as part of the supplement “Botulism,” sponsored by the Centers for Disease Control and Prevention.

Potential conflicts of interest. All authors: No potential conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript will be disclosed.

References

6. US Food and Drug Administration. IND safety reporting. 21 CFR §312.32.

Heptavalent Botulinum Antitoxin: Safety and Outcomes • CID 2018;66 (Suppl 1) • S63

Downloaded from https://academic.oup.com/cid/article-abstract/66/suppl_1/S57/4780425 by guest on 18 January 2019

22. US Food and Drug Administration. Approval history, letters, reviews, and related docu-
ments–BAT (botulism antitoxin heptavalent (A, B, C, D, E, F, G)–(Equine): final review
process validation memo. Available at: https://www.fda.gov/BiologicsBloodVaccines/
BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/

23. Connaught Medical Research Laboratories. Botulism antitoxin trivalent (equine)
types A, B, and E, package insert. 1965.

24. Aventis Pasteur Limited. Botulism antitoxin bivalent (equine) types A and B,

25. Wongtanate M, Sucharitchan N, Tantisiriwit K, et al. Signs and symptoms pre-
dictive of respiratory failure in patients with foodborne botulism in Thailand. Am

26. Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type

ously reported as serotype H, has a hybrid-like structure with regions of similarity
to the structures of serotypes A and F and is neutralized with serotype A anti-