Light Microscopic Detection of Mansonella ozzardi Parasitemias

To the Editor—Under the heading “An incidental finding from a blood smear,” a case report in the Photo Quiz section of Clinical Infectious Diseases appears to show blood smears of Mansonella ozzardi microfilariae [1, 2]. With this letter, we wish to clarify for readers that M. ozzardi microfilariae are typically about 160–200 µm in length [3] and are thus not shown at ×100 magnification as in Hidron et al [1, 2]. Furthermore, from a clinical training perspective, it is also important to point out that while a powerful microscope objective lens (eg, ×100) can be used to help identify microfilariae, they are not easily found with them. This counterintuitive fact, that filarial parasitemias are often missed with high-magnification objectives (eg, ×100), was actually used by Sir Patrick Manson (the founder of the London School of Hygiene and Tropical Medicine) to advocate the opening of specialist tropical medicine training institutions before they existed:

“Ten chances to one if one asks a student, or even a medical practitioner, to set about examining a patient for filariae he will prepare a very fine film of blood, such as would be suitable for the demonstration of bacteria, and that he would set to work to examine it with a twelfth of an inch immersion lens…. Although there may be tens of millions of filariae in the patient’s blood the chances are they will not be discovered by such means…. Most people think that when they have to make a microscopic examination the more microscope they have the better. As a rule, the reverse is truth. Filarias should be sought with an inch objective otherwise they will be missed.” [4]

Given that M. ozzardi microfilariae are still often detected and diagnosed using the same light microscopy–based techniques that Manson used 100 years ago [2, 3], his advice on the matter is still beneficial for clinical diagnostic training today. It is, thus, important (in our view) that readers of this journal who are interested in trying to diagnose M. ozzardi microfilariae are made aware that they are most easily found with a ×10 objective [5, 6]. It is also important to point out that the greatest challenge for accurately diagnosing Colombian M. ozzardi microfilariae is discriminating them from Mansonella perstans microfilariae, which are not effectively treated with ivermectin [3], and that it is not always easy to see that the tails of M. ozzardi microfilariae are “devoid of nuclei” (see Figure 1B in [1]). We recommend polymerase chain reaction (PCR)–based diagnostic techniques for definitive filarial parasite identifications, specifically the assay of Tang et al [7]. This ribosomal DNA–targeting assay can detect and discriminate all filarial parasites that commonly cause parasitemias in humans and is also more sensitive than light microscopy–based diagnosis [3, 8]. Other mitochondrial DNA–targeting PCR–based assays have also been successfully used for this purpose [9], although it is worth noting that recent research has shown that these PCR-based techniques (including the popular CO1 barcoding technique) can be unreliable for M. ozzardi diagnosis and arguably should thus be avoided [10].

Note

Potential conflicts of interest. Both authors: No reported conflicts. Both authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

James Lee Crainey and Sérgio Luiz Bessa Luz
Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane/Instituto Leônidas e Maria Deane/Fundação Oswaldo Cruz, Manaus, Brazil

References


infants remain HIV uninfected. The public health success of peri- and post-natal HIV transmission prevention is tempered by the realization that HIV-exposed uninfected (HEU) infants and children survive and thrive less well than HIV-unexposed (HU) children in comparable settings. Across all settings, compared to HU infants, HEU infants are vulnerable to higher rates and greater severity of infectious morbidity [1–3], and in low- and middle-income countries (LMICs) specifically, they experience a 20%–30% increased risk for preterm birth and 80%–90% increased risk for mortality [4, 5].

Therefore, we applaud the seminal work of Goetghebuer and colleagues who established in a Belgian HEU infant cohort that initiation of maternal antiretroviral therapy (ART) before pregnancy reduced the risk of infant infection-related hospitalizations [6]. In this cohort of 132 HEU infants and 123 HU infants, risk for infection-related hospitalization was highest in HEU infants of mothers who initiated ART during pregnancy (adjusted hazard ration [aHR], 3.84; 95% confidence interval [CI], 1.69–8.71). However, rates in HEU infants whose mothers were already on ART at conception (aHR, 1.42; 95% CI, 0.58–3.48) were similar to those in HU infants. Furthermore, this is the first study to demonstrate an association between increased infectious morbidity risk and the well-described altered HEU infant immune phenotype [7, 8]. Goetghebuer and colleagues found that maternal and newborn monocyte activation and reduced transfer of maternal antibodies were most pronounced when maternal ART was initiated during pregnancy as opposed to before conception. These immune alterations, which occur in utero and are measurable at birth, predicted risk for infection-related hospitalization. That maternal ART from conception appeared to normalize this altered immune phenotype and largely eliminate infectious morbidity risk in HEU infants is extremely promising.

As the authors recognize, this study was conducted in a high-income country with a low HIV prevalence where women living with HIV are not encouraged to breastfeed, and these findings cannot be generalized to eastern and southern Africa where 85% of all HEU infants are born. In LMICs, but not in high-income countries, women who live with HIV and conceive while on ART are at a 40% (meta-analysis risk ratio, 1.41; 95% CI, 1.22–1.63) higher risk of preterm delivery than those who initiate ART during pregnancy [9]. Preterm birth places infants at substantially higher risk for morbidity and mortality during infancy [10]. Therefore, the immunological benefits for HEU infants that are derived from a mother being on ART from conception may be offset in LMICs by adverse consequences of preterm birth. This is just one example of the complexities in the pathways to HEU infant vulnerability. Although it is reasonably expected that in the universal test and treat era where improved maternal health and safer prolonged breastfeeding will benefit all HEU children, we need to provide definitive evidence of this benefit to HEU infants who comprise up to 25% of the infant population in the highest HIV-burden countries. Investment is urgently needed to support carefully designed, appropriately sized cohort studies in settings with the highest prevalence of HEU infants and children.

Notes

Financial support. A.L.S receives salary support through early career development awards from the NIH Fogarty International Center (grant number IK43TW010683) and the International AIDS Society (grant number 2017/518-SLO).

Potential conflicts of interest. All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Amy L. Slogrove,1,2,6 Kathleen M. Powis,3,4 and Mark F. Cotton5

1Department of Paediatrics and Child Health, Faculty of Medicine & Health Sciences, Stellenbosch University, and 2Ukwanda Centre for Rural Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Worcester, South Africa; 3Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, and 4Department of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston; 5Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; and 6Division of Infectious Diseases and Family Clinical Research Unit, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa

References


Correspondence: A. L. Slogrove, 1 Durban Street, Worcester, 6850, Western Cape, South Africa (amy@sun.ac.za).

Clinical Infectious Diseases 2019;68(12):2157–8
© The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved.
For permissions, e-mail: journals.permissions@oup.com.

Reply to Slogrove et al

We would like to thank Slogrove and colleagues for the positive comments on our manuscript and for emphasizing the need to provide definitive evidence of the benefit of controlling maternal human immunodeficiency virus (HIV) infections for the health of infants born in low- and middle-income countries (LMIC), where the burden of HIV infection is highest [1]. We agree that the pathways leading to the vulnerability of HIV-exposed, uninfected (HEU) infants may not be identical in LMIC and in high-income countries (HIC), and that the potential role of specific factors has to be determined. As proposed by Slogrove and colleagues, the decreased risk of hospitalization observed in our study for those infections associated with the initiation of antiretroviral therapy (ART) before pregnancy may be offset by an increased risk of premature delivery in women living in LMIC [2]. On the other hand, contrary to HIC, women living with HIV in LMIC are encouraged to breastfeed. Although the evidence from HIC is less consistent [3], there is strong supportive evidence for a protective effect of breastfeeding on infectious morbidity in LMIC [4]. Through a diversity of immunological components, breastfeeding could reduce the immunological risk of severe infections after birth and thereby mitigate the impact of immune alterations induced by in utero exposure to maternal HIV infection. In our study, maternal and newborn immune activation predicted the risk of hospitalization due to infection in infants born to mothers who initiated ART during pregnancy [5]. Immune activation is commonly observed in adults living in LMIC, independently of HIV infection [6]. Therefore, the potential for ART to correct immune activation in women living with HIV may be lower in LMIC as compared to HIC, and this could mitigate the impact of ART initiation before pregnancy on infants’ susceptibility to infectious diseases.

Although the vulnerability of HEU infants living in different settings could involve different factors, it is essential to recognize that this vulnerability is a global public health issue. An increased susceptibility of HEU infants to severe infections is observed in both LMIC and HIC, suggesting that common determinants are playing a critical role [7, 8]. Identifying these determinants has the potential to positively impact the health of HEU infants worldwide. To meet this challenge, researchers in HIC and LMIC should join efforts and integrate both intensive studies on relatively small study populations and larger studies that are powered to determine the impact of key environmental factors on clinical outcomes. Control of maternal HIV infection before pregnancy and progress in our understanding of the immunobiology of infant exposure to maternal HIV infection provide unprecedented opportunities to further improve the health of children born to HIV-infected mothers.

Note

Potential conflicts of interest. A. M’s institution has received fees from GlaxoSmithKline Vaccines, outside the submitted work. G. A’s institution has received grants from Gilead Sciences and the Bill and Melinda Gates Foundation (grant numbers OPP1032817, OPP1097381, and OPP114729). T. R. K’s institution has received grants from the National Institute for Allergy and Infectious Diseases and the Canada Institutes for Health Research. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References