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Elsa Cubel†

Universitat Politècnica de València
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Enrique Vidal†

Universitat Politècnica de València
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Current machine translation (MT) systems are still not perfect. In practice, the output
from these systems needs to be edited to correct errors. A way of increasing the productivity of
the whole translation process (MT plus human work) is to incorporate the human correction
activities within the translation process itself, thereby shifting the MT paradigm to that of
computer-assisted translation. This model entails an iterative process in which the human
translator activity is included in the loop: In each iteration, a prefix of the translation is validated
(accepted or amended) by the human and the system computes its best (or n-best) translation
suffix hypothesis to complete this prefix. A successful framework for MT is the so-called statis-
tical (or pattern recognition) framework. Interestingly, within this framework, the adaptation
of MT systems to the interactive scenario affects mainly the search process, allowing a great
reuse of successful techniques and models. In this article, alignment templates, phrase-based
models, and stochastic finite-state transducers are used to develop computer-assisted translation
systems. These systems were assessed in a European project (TransType2) in two real tasks: The
translation of printer manuals; manuals and the translation of the Bulletin of the European
Union. In each task, the following three pairs of languages were involved (in both translation
directions): English–Spanish, English–German, and English–French.
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1. Introduction to Computer-Assisted Translation

Research in the field of machine translation (MT) aims to develop computer systems
which are able to translate text or speech without human intervention. However,
present translation technology has not been able to deliver fully automated high-quality
translations. Typical solutions to improving the quality of the translations supplied by
an MT system require manual post-editing. This serial process prevents the MT system
from taking advantage of the knowledge of the human translator, and the human
translator cannot take advantage of the adaptive ability of the MT system.

An alternative way to take advantage of the existing MT technologies is to use
them in collaboration with human translators within a computer-assisted translation
(CAT) or interactive framework (Isabelle and Church 1997). Historically, CAT and MT
have been considered different but close technologies (Kay 1997) and more so for one
of the most popular CAT technologies, namely, translation memories (Bowker 2002;
Somers 2003). Interactivity in CAT has been explored for a long time. Systems have
been designed to interact with human translators in order to solve different types
of (lexical, syntactic, or semantic) ambiguities (Slocum 1985; Whitelock et al. 1986).
Other interaction strategies have been considered for updating user dictionaries or for
searching through dictionaries (Slocum 1985; Whitelock et al. 1986). Specific proposals
can be found in Tomita (1985), Zajac (1988), Yamron et al. (1993), and Sen, Zhaoxiong,
and Heyan (1997), among others.

An important contribution to CAT technology, carried out within the TransType
project, is worth mentioning (Foster, Isabelle, and Plamondon 1997; Langlais, Foster,
and Lapalme 2000; Foster 2002; Langlais, Lapalme, and Loranger 2002). It entailed an
interesting focus shift in which interaction is directly aimed at the production of the
target text, rather than at the disambiguation of the source text, as in earlier interactive
systems. The idea proposed in that work was to embed data-driven MT techniques
within the interactive translation environment. The hope was to combine the best of
both paradigms: CAT, in which the human translator ensures high-quality output, and
MT, in which the machine ensures a significant gain in productivity.

Following these TransType ideas, the innovative embedding proposed here con-
sists in using a complete MT system to produce full target sentence hypotheses, or
portions thereof, which can be accepted or amended by a human translator. Each cor-
rect text segment is then used by the MT system as additional information to achieve
further, hopefully improved, suggestions. More specifically, in each iteration, a prefix
of the target sentence is somehow fixed by the human translator and, in the next itera-
tion, the system predicts a best (or n-best) translation suffix(es)1 to complete this prefix.
We will refer to this process as interactive-predictive machine translation (IPMT).

This approach introduces two important requirements: First, the models have to
provide adequate completions and, second, this has to happen efficiently. Taking these
requirements into account, stochastic finite-state transducers (SFSTs), alignment tem-
plates (ATs), and phrase-based models (PBMs) are compared in this work. In previous
works these models have proven adequate for conventional MT (Vidal 1997; Amengual
et al. 2000; Ney et al. 2000; Tomás and Casacuberta 2001; Och and Ney 2003; Casacuberta
and Vidal 2004; Och and Ney 2004; Vidal and Casacuberta 2004). This article shows that

1 The terms prefix and suffix are used here to denote any substring at the beginning and end (respectively)
of a string of characters (including spaces and punctuation), with no implication of morphological
significance as is usually implied by these terms in linguistics.

4

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/35/1/3/1798566/coli.2008.07-055-r2-06-29.pdf by guest on 17 O
ctober 2021



Barrachina et al. Statistical Computer-Assisted Translation

existing efficient searching algorithms can be adapted in order to provide completions
(rather than full translations) also in a very efficient way.

The work presented here has been carried out in the TransType2 (TT2) project
(SchlumbergerSema S.A. et al. 2001), which is considered as a follow-up to the inter-
active MT concepts introduced in the precursory TransType project cited previously.

We should emphasize the novel contributions of the present work with respect
to TransType. First, we show how fully fledged statistical MT (SMT) systems can be
extended to handle IPMT. In particular, the TT2 systems always produce complete
sentence hypotheses on which the human translator can work. This is an important
difference to previous work, in which the use of basic MT techniques only allowed the
prediction of single tokens (c.f., Section 2.2). Second, using fully fledged SMT systems,
we have performed systematic offline experiments to simulate the specific conditions of
interactive translation and we report and study the results of these experiments. Thirdly,
the IPMT systems presented in this article were successfully used in several field trials
with professional translators (Macklovitch, Nguyen, and Silva 2005; Macklovitch 2006).

We should finally mention that the work developed in TT2 has gone beyond con-
ventional keyboard-and-mouse interaction, leading to the development of advanced
multi-modal interfaces. Speech is the most natural form of human communication and
its use as feedback in the IPMT framework has been explored by Vidal et al. (2006).
On the other hand, human translators can be faster dictating the translation text rather
than typing it, thus it has also been investigated how to improve system performance
and usability when the user dictates the translation first and then edits the recognized
text (Khadivi, Zolnay, and Ney 2005; Khadivi, Zens, and Ney 2006).

The rest of the article is structured as follows. The next section introduces the
general setting for SMT and IPMT. In Section 3, AT, PBM, and SFST are briefly surveyed
along with the corresponding learning procedures. In Section 4, general search proce-
dures for the previous models are outlined and a detailed description of the extension
of these procedures to IPMT scenarios is presented. Section 5 is devoted to introducing
the tasks used for the assessment of the proposal presented in the previous sections:
the pairs of languages, corpora, and assessment procedures. The results are reported in
Section 6. A discussion of these results and the conclusions which can be drawn from
this work are presented in the final section.

2. Statistical Framework

The statistical or pattern recognition framework constitutes a very successful frame-
work for MT. As we will see here, this framework also proves adequate for IPMT.

2.1 Statistical Machine Translation

Assuming that we are given a sentence s in a source language, the text-to-text translation
problem can be stated as finding its translation t in a target language. Using statistical
decision theory, the best translation is given by the equation2

t̂ = argmax
t

Pr(t|s) (1)

2 We follow the common notation of Pr(x) for Pr(X = x) and Pr(x|y) for Pr(X = x|Y = y), for any random
variables X and Y. Similarly, Pr() will be used to denote “true” probability functions, and p() or q() will
denote model approximations.
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Using Bayes’s Theorem, we arrive at

t̂ = argmax
t

Pr(t) · Pr(s|t) (2)

This equation is generally interpreted as follows. The best translation must be a correct
sentence in the target language that conveys the meaning of the source sentence. The
probability Pr(t) represents the well-formedness of t and it is generally called the
language model probability (n-gram models are usually adopted [Jelinek 1998]). On
the other hand, Pr(s|t) represents the relationship between the two sentences (the source
and its translation). It should be of a high value if the source is a good translation of
the target and of a low value otherwise. Note that the translation direction is inverted
from what would be normally expected; correspondingly the models built around this
equation are often called inverted translation models (Brown et al. 1990, 1993). As we
will see in Section 3, these models are based on the notion of alignment. It is interesting to
note that if we had perfect models, the use of Equation (1) would suffice. Given that we
have only approximations, the use of Equation (2) allows the language model to correct
deficiencies in the translation model.

In practice all of these models (and possibly others) are often combined into a log-
linear model for Pr(t | s) (Och and Ney 2004):

t̂ = argmax
t

{
N∑

i=1

λi · log fi(t, s)

}
(3)

where fi(t, s) can be a model for Pr(s|t), a model for Pr(t|s), a target language model
for Pr(t), or any model that represents an important feature for the translation. N is the
number of models (or features) and λi are the weights of the log-linear combination.

When using SFSTs, a different transformation can be used. These transducers
have an implicit target language model (which can be obtained from the finite-state
transducer by dropping the source symbols of each transition (Vidal et al. 2005)). There-
fore, this separation is no longer needed. SFSTs model joint probability distributions;
therefore, Equation (1) has to be rewritten as

t̂ = argmax
t

Pr(s, t) (4)

This is the approach followed in GIATI (Casacuberta et al. 2004a; Casacuberta and Vidal
2004), but other models for the joint probability can be adopted.

If the input is a spoken sentence, instead of a written one, the problem becomes
more complex; we will not deal with this here. The interested reader may consult
Amengual et al. (2000), Ney et al. (2000), or Casacuberta et al. (2004a, 2004b), for
instance.

2.2 Statistical Interactive-Predictive Machine Translation

Unfortunately, current models and therefore the systems which can be built from them
are still far from perfect. This implies that, in order to achieve good, or even acceptable,
translations, manual post-editing is needed. An alternative to this serial approach (first
MT, then manual correction) is given by the IPMT paradigm. Under this paradigm,
translation is considered as an iterative process where human and computer activity
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Figure 1
Typical example of IPMT with keyboard interaction. The aim is to translate the English sentence
Click OK to close the print dialog into Spanish. Each step starts with a previously fixed target
language prefix tp, from which the system suggests a suffix t̂s. Then the user accepts a part of this
suffix (a) and types some keystrokes (k), possibly in order to amend the remaining part of ts.
This produces a new prefix, composed by the prefix from the previous iteration and the accepted
and typed text, (a) (k), to be used as tp in the next step. The process ends when the user enters
the special keystroke ”#”. System suggestions are printed in italics and user input in boldface
typewriter font. In the final translation t, text that has been typed by the user is underlined.

are interwoven. This way, the models take into account both the input sentence and the
corrections of the user.

As previously mentioned, this idea was originally proposed in the TransType
project (Foster, Isabelle, and Plamondon 1997; Langlais, Foster, and Lapalme 2000;
Langlais, Lapalme, and Loranger 2002). In that project, the parts proposed by the sys-
tems were produced using a linear combination of a target language model (trigrams)
and a lexicon model (so-called IBM-1 or -2) (Langlais, Lapalme, and Loranger 2002). As
a result, TransType allowed only single-token completions, where a token could be either
a word or a short sequence of words from a predefined set of sequences. This proposal
was extended to complete full target sentences in the TT2 project, as discussed hereafter.

The approach taken in TT2 is exemplified in Figure 1. Initially, the system provides
a possible translation. From this translation, the user marks a prefix as correct and
provides, as a hint, the beginning of the rest of the translation. Depending on the system
or the user preferences, the hint can be the next word or some letters from it (in the
figure, hints are assumed to be words and are referred to as k). Let us use tp for the prefix
validated by the user together with the hint. The system now has to produce (predict)
a suffix ts to complete the translation. The cycle continues with a new validation and
hint from the user until the translation is completed. This justifies our choice of the term
“interactive-predictive machine translation” for this approach.

The crucial step of the process is the production of the suffix. Again, decision theory
tells us to maximize the probability of the suffix given the available information. That
is, the best suffix will be

t̂s = argmax
ts

Pr(ts|s, tp) (5)

which can be straightforwardly rewritten as

t̂s = argmax
ts

Pr(tp, ts|s) (6)
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Note that, because tpts = t, this equation is very similar to Equation (1). The main
difference is that the argmax search now is performed over the set of suffixes ts that
complete tp instead of complete sentences (t in Equation (1)). This implies that we can
use the same models if the search procedures are adequately modified (Och, Zens, and
Ney 2003).

The situation with respect to finite-state models is similar. Now, Equation (5) is
rewritten as

t̂s = argmax
ts

Pr(tp, ts, s) (7)

which allows the use of the same models as in Equation (4) as long as the search
procedure is changed appropriately (Cubel et al. 2003, 2004; Civera et al. 2004a,
2004b).

3. Statistical and Finite-State Models

The models used are presented in the following subsections: Section 3.1 for the condi-
tional distribution Pr(s|t) in Equation (2) and Section 3.2 for the joint distribution Pr(s, t)
in Equation (4).

3.1 Statistical Alignment Models

The translation models which Brown et al. (1993) introduced to deal with Pr(s|t) in
Equation (2) are based on the concept of alignment between the components of a pair
(s, t) (thus they are called statistical alignment models). Formally, if the number of
the source words in s is J and the number of target words in t is I, an alignment is a
function a : {1, ..., J} → {0, ..., I}. The image of j by a will be denoted as aj, in which the
particular case aj = 0 means that the position j in s is not aligned with any position of t.
By introducing the alignment as a hidden variable in Pr(s|t),

Pr(s|t) =
∑
a

Pr(s, a|t) (8)

The alignment that maximizes Pr(s, a|t) is shown to be very useful in practice for
training and for searching.

Different approaches have been proposed for modeling Pr(s, a|t) in Equation (8):
Zero-order models such as model 1, model 2, and model 3 (Brown et al. 1993) and the first-
order models such as model 4, model 5 (Brown et al. 1993), hidden Markov model (Ney
et al. 2000), and model 6 (Och and Ney 2003).

In all these models, single words are taken into account. Moreover, in practice the
summation operator is replaced with the maximization operator, which in turn reduces
the contribution of each individual source word in generating a target word. On the
other hand, modeling word sequences rather than single words in both the alignment
and lexicon models cause significant improvement in translation quality (Och and Ney
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2004). In this work, we use two closely related models: ATs (Och and Ney 2004) and
PBMs (Tomás and Casacuberta 2001; Koehn, Och, and Marcu 2003; Zens and Ney 2004).
Both models are based on bilingual phrases3 (pairs of segments or word sequences)
in which all words within the source-language phrase are aligned only to words of
the target-language phrase and vice versa. Note that at least one word in the source-
language phrase must be aligned to one word of the target-language phrase, that is,
there are no empty phrases similar to the empty word of the word-based models. In
addition, no gaps and no overlaps between phrases are allowed.

We introduce some notation to deal with phrases. As before, s denotes a source-
language sentence; s̃ denotes a generic phrase in s, and s̃k the kth phrase in s. sj denotes
the jth source word in s; sj

′

j denotes the contiguous sequence of words in s beginning
at position j and ending at position j′ (inclusive); obviously, if s has J words, sJ1 denotes
the whole sentence s. An analogous notation is used for target words, phrases, and
sequences in target sentence t.

3.1.1 Alignment Templates. The ATs are based on the bilingual phrases but they are
generalized by replacing words with word classes and by storing the alignment in-
formation for each phrase pair. Formally, an AT Z is a triple (S,T, ã), where S and
T are a source class sequence and a target class sequence, respectively, and ã is an
alignment from the set of positions in S to the set of positions in T.4 Mapping of source
and target words to bilingual word classes is automatically trained using the method
described by Och (1999). The method is actually an unsupervised clustering method
which partitions the source and target vocabularies, so that assigning words to classes
is a deterministic operation. It is also possible to employ parts-of-speech or semantic
categories instead of the unsupervised clustering method used here. More details can
be found in Och (1999) and Och and Ney (2004). However, it should be mentioned
that the whole AT approach (and similar PBM approaches as they are now called) is
independent of the word clustering concept. In particular, for large training corpora,
omitting the word clustering in the AT system does not much affect the translation
accuracy.

To arrive at our translation model, we first perform a segmentation of the source
and target sentences into K “blocks” dk ≡ (ik; bk, jk) (ik ∈ {1, . . . , I} and jk, bk ∈ {1, . . . , J}
for 1 ≤ k ≤ K). For a given sentence pair (sJ1, t

I
1), the kth bilingual segment (s̃k, t̃k)

is (sjkbk−1+1, t
ik
ik−1+1) (Och and Ney 2003). The AT Zk = (Sk,Tk, ãk) associated with the kth

bilingual segment is: Sk the sequence of word classes in s̃k; Tk the sequence of word
classes in t̃k, and ãk the alignment between positions in a source class sequence S and
positions in a target class sequence T.

For translating a given source sentence s we use the following decision rule as an
approximation to Equation (1):

(Î, t̂Î1) = argmax
I,tI1

{
max
K,dK

1 ,ãK
1

log PAT(sJ1, t
I
1; d

K
1 , ãK

1 )

}
(9)

3 Although the term “phrase” has a more restricted meaning, in this article it refers to a word sequence.
4 Note that the phrases in an AT are sequences of word classes rather than words, which motivates the use

of a different notation.
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We use a log-linear model combination:

log PAT(sJ1, t
I
1; d

K
1 , ãK

1 ) =

I∑
i=1

[
λ1 + λ2 · log p(ti|t

i−1
i−2) + λ3 · log p(Ti|T

i−1
i−4 )

]
+

K∑
k=1

[ λ4 + λ5 · log q(bk|jk−1) + λ6 · log p(Tk, ãk|Sk) +

ik∑
i=ik−1+1

λ7 · log p(ti |̃sk, ãk) ] (10)

with weights λi, i = 1, · · · , 7. The weights λ1 and λ4 play a special role and are used
to control the number I of words and number K of segments for the target sentence
to be generated, respectively. The log-linear combination uses the following set of
models:

� p(ti|t
i−1
i−2): Word-based trigram language model

� p(Ti|T
i−1
i−4 ): Class-based five-gram language model

� p(Tk, ãk|Sk): AT at class level, model parameters are estimated directly
from frequency counts in a training corpus

� p(ti |̃sk, ãk): Single word model based on a statistical dictionary and ãk. As
in the preceding model, the model parameters are estimated by using
frequency counts

� q(bk|jk−1) = e|bk−jk−1+1|: Re-ordering model using absolute j distance of
the phrases.

As can be observed, all models are implemented as feature functions which depend on
the source and the target language sentences, as well as on the two hidden variables
(ãK

1 , bK
1 ). Other feature functions can be added to this sort of model as needed. For a

more detailed description the reader is referred to Och and Ney (2004).

Learning alignment templates. To learn the probability of applying an AT, p(Z =
(S,T, ã)|̃s ), all bilingual phrases that are consistent with the segmentation are extracted
from the training corpus together with the alignment within these phrases. Thus, we
obtain a count N(Z) of how often an AT occurred in the aligned training corpus. Using
the relative frequency

p(Z) = (S,T, ã)|̃s) =
N(Z) · δ(S,C(s̃))

N(C(s̃))
(11)

we estimate the probability of applying an AT Z to translate the source language phrase
s̃, in which δ is Kronecker’s delta function. The class function C maps words onto their
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classes. To reduce the memory requirements, only probabilities for phrases up to a
maximal length are estimated, and phrases with a probability estimate below a certain
threshold are discarded.

The weights λi in Equation (10) are usually estimated using held-out data with
respect to the automatic evaluation metric employed using the downhill simplex al-
gorithm from Press et al. (2002).

3.1.2 Phrase-Based Models. A simple alternative to AT has been introduced in recent
works: The PBM approach (Tomás and Casacuberta 2001; Marcu and Wong 2002; Zens,
Och, and Ney 2002; Tomás and Casacuberta 2003; Zens and Ney 2004). These methods
learn the probability that a sequence of contiguous words—the source phrase—(as a
whole unit) in a source sentence is a translation of another sequence of contiguous
words—the target phrase—(as a whole unit) in the target sentence. In this case, the
statistical dictionaries of single word pairs are substituted by statistical dictionaries of
bilingual phrases or bilingual segments. These models are simpler than ATs, because no
alignments are assumed between word positions inside a bilingual segment and word
classes are not used in the definition of a bilingual phrase.

The simplest formulation is for monotone PBMs (Tomás and Casacuberta 2007),
assuming a uniform distribution of the possible segmentations of the source and of the
target sentences. In this case, the approximation to Equation (1) is:

(Î, t̂Î1) = argmax
I,tI1

{
max
K,dK

1

log PPBM(sJ1, t
I
1; d

K
1 )

}
(12)

In our implementation of this approach, we have also adopted a log-linear model

log PPBM(sJ1, t
I
1; d

K
1 ) =

I∑
i=1

[
λ1 + λ2 · log p(ti|t

i−1
i−2) + λ3 · log p(Ti|T

i−1
i−4 )

]
+

K∑
k=1

[
λ4 + λ5 · log p(̃tk |̃sk)

]
(13)

with weights λi, i = 1, · · · , 5. The weights λ1 and λ4 play a special role and are used
to control the number I of words and number K of segments for the target sentence
to be generated, respectively. The log-linear combination uses the following set of
models:

� p(ti|t
i−1
i−2): Word-based trigram language model

� p(Ti|T
i−1
i−4 ): Class-based five-gram language model

� p(̃tk |̃sk): Statistical dictionary of bilingual phrases.
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If segment re-ordering is desired (non-monotone models), the probability of phrase-
alignment q can be introduced (a first-order distortion model is assumed):

log PPBM(sJ1, t
I
1; d

K
1 ) =

I∑
i=1

[
λ1 + λ2 · log p(ti|t

i−1
i−2) + λ3 · log p(Ti|T

i−1
i−4 )

]
+

K∑
k=1

[
λ4 + λ5 · log p(̃tk |̃sk) + λ6 · log q(bk|jk−1)

]
(14)

with the additional model q, similar to the one used for AT.

Learning phrase-based alignment models. The parameters of each model and the weights
λi in Equations (13) and (14) have to be estimated. There are different approaches to
estimating the parameters of each model (Tomás and Casacuberta 2007). Some of these
techniques correspond to a direct learning of the parameters from a sentence-aligned
corpus using a maximum likelihood approach (Tomás and Casacuberta 2001; Marcu
and Wong 2002). Other techniques are heuristics based on the previous computation
of word alignments in the training corpus (Zens, Och, and Ney 2002; Koehn, Och, and
Marcu 2003). On the other hand, as for AT, the weights λi in Equation (13) are usually
optimized using held-out data.

3.2 Stochastic Finite-State Transducers

SFSTs constitute an important framework in syntactic pattern recognition and nat-
ural language processing. The simplicity of finite-state models has given rise to some
concerns about their applicability to real tasks. Specifically in the field of language
translation, it is often argued that natural languages are so complex that these simple
models are never able to cope with the required source-target mappings. However, one
should take into account that the complexity of the mapping between the source and
target domains of a transducer is not always directly related to the complexity of the
domains themselves. Instead, a key factor is the degree of monotonicity or sequentiality
between source and target subsequences of these domains (Casacuberta, Vidal, and
Picó 2005). Finite-state transducers have been shown to be adequate to handle complex
mappings efficiently (Berstel 1979) and SFSTs are closely related to monotone PBMs.

In Equation (4), Pr(s, t) can be modeled by an SFST T, which is defined as a tuple
〈Σ,∆,Q, q0, p, f 〉, where Σ is a finite set of source symbols, ∆ is a finite set of target symbols
(Σ ∩ ∆ = ∅), Q is a finite set of states, q0 is the initial state, p and f are two functions
p : Q × Σ × ∆� × Q → [0, 1] (for the probabilities of transitions) and f : Q → [0, 1] (for the
probabilities of final states) that satisfy ∀q ∈ Q:

f (q) +
∑

(s,̃t,q′ )∈Σ×∆�×Q

p(q, s, t̃, q′) = 1 (15)

Given T, a path with J transitions associated with the translation pair (s, t) ∈
Σ∗ × ∆∗ is a sequence of transitions φ = (q0, s1 , t̃1, q1) (q1, s2 , t̃2, q2) (q2, s3 , t̃3, q3) . . .
(qJ−1, sJ , t̃J, qJ ), such that s1 s2 . . . sJ = s and t̃1 t̃2 . . . t̃J = t. The probability of a path is
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the product of its transition probabilities, times the final-state probability of the last
state in the path:

PT(φ) =
J∏

j=1

p(qj−1, sj , t̃j, qj) · f (qJ ) (16)

The probability of a translation pair (s, t) according to T is then defined as the sum of
the probabilities of all the paths associated with (s, t):

PT(s, t) =
∑
φ

PT(φ) (17)

Learning finite-state transducers. There are different families of techniques to train an
SFST from a parallel corpus of source–target sentences (Casacuberta and Vidal 2007).
One of the techniques that has been adopted in this work is the grammatical inference
and alignments for transducer inference (GIATI) technique. This technique is in the
category of hybrid methods which use statistical techniques to guide the SFST structure
learning and simultaneously train the associated probabilities.

Given a finite sample of string pairs, the inference of SFSTs using the GIATI tech-
nique is performed as follows (Casacuberta and Vidal 2004; Casacuberta, Vidal, and
Picó 2005): i) Building training strings: Each training pair is transformed into a single
string from an extended alphabet to obtain a new sample of strings. ii) Inferring a
(stochastic) regular grammar. Typically, a smoothed n-gram is inferred from the sample
of strings obtained in the previous step. iii) Transforming the inferred regular grammar
into a transducer: The symbols associated with the grammar rules are converted back
into input/output symbols, thereby transforming the grammar inferred in the previous
step into a transducer. The transformation of a parallel corpus into a string corpus
is performed using statistical alignments. These alignments are obtained using the
GIZA++ software (Och and Ney 2003).

4. Searching

Searching is an important computational problem in SMT. Algorithmic solutions de-
veloped for SMT can be adapted to the IPMT framework. The main general search
procedures for each model in Section 3 are presented in the following subsections,
each followed by a detailed description of the necessary adaptations to the interactive
framework.

4.1 Searching with Alignment Templates

In offline MT, the generation of the best translation for a given source sentence s is
carried out by producing the target sentence in left-to-right order using the model of
Equation (10). At each step of the generation algorithm we maintain a set of active
hypotheses and choose one of them for extension. A word of the target language is
then added to the chosen hypothesis and its costs get updated. This kind of generation
fits nicely into a dynamic programming (DP) framework, as hypotheses which are
indistinguishable by both language and translation models (and that have covered
the same source positions) can be recombined. Because the DP search space grows
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Figure 2
Example of a word graph for the source German sentence was hast du gesagt? (English reference
translation: “what did you say?”).

exponentially with the size of the input, standard DP search is prohibitive, and we resort
to a beam-search heuristic.

4.1.1 Adaptation to the Interactive-Predictive Scenario. The most important modification
is to rely on a word graph that represents possible translations of the given source
sentence. This word graph is generated once for each source sentence. During the
process of human–machine interaction the system makes use of this word graph in
order to complete the prefixes accepted by the human translator. In other words, after
the human translator has accepted a prefix string, the system finds the best path in the
word graph associated with this prefix string so that it is able to complete the target
sentence. Using the word graph in such a way, the system is able to interact with the
human translator in a time efficient way. In Och, Zens, and Ney (2003), an efficient
algorithm for interactive generation using word graphs was presented. A word graph
is a weighted directed acyclic graph, in which each node represents a partial translation
hypothesis and each edge is labeled with a word of the target sentence and is weighted
according to the language and translation model scores. In Ueffing, Och, and Ney (2002),
the authors give a more detailed description of word graphs and show how they can be
easily produced as a by-product of the search process. An example of a word graph is
shown in Figure 2.

The computational cost of this approach is much lower, as the whole search for the
translation must be carried out only once, and the generated word graph can be reused
for further completion requests.

For a fixed source sentence, if no pruning is applied in the production of the word
graph, it represents all possible sequences of target words for which the posterior
probability is greater than zero, according to the models used. However, because of
the pruning generally needed to render the problem computationally feasible, the
resulting word graph only represents a subset of the possible translations. Therefore,
it may happen that the user sets prefixes which cannot be found in the word graph. To
circumvent this problem some heuristics need to be implemented.

First, we look for the node with minimum edit distance to the prefix except for
its last (partial) word.5 Then we select the completion path which starts with the last

5 The edit distance concept for finding the prefix string in a word graph could be refined by casting the edit
distance operations into a suitable probabilistic model.
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(partial) word of the prefix and has the best backward score—this is the score associated
with a path going from the node to the final node. Now, because the original word graph
may not be compatible with the new information provided by the prefix, it might be
impossible to find a completion in this word graph due to incompatibility with the
last (partial) word in the prefix. This problem can be solved to a certain degree by
searching for a completion of the last word with the highest probability using only the
language model. This supplementary heuristic to the usual search increases the perfor-
mance of the system, because some of the rejected words in the pruning process can
be recovered.

A desirable feature of an IPMT system is the possibility of producing a list of
alternative target suffixes, instead of only one. This feature can be easily added by
computing the n-best hypotheses. Of course, these n-best hypotheses do not refer to
the whole target sentence, but only to the suffixes. However, the problem is that in
many cases the sentence hypotheses in the n-best list differ in only one or two words.
Therefore, we introduce the additional requirement that the first four words of the n-
best hypotheses must be different.

4.2 Searching with Phrase-Based Models

The generation of the best translation with PBMs is similar to the one described in the
previous section. Each hypothesis is composed of a prefix of the target sentence, a subset
of source positions that are aligned with the positions of the prefix of the target sentence,
and a score. In this case, we adopted an extension of the best-first strategy where the
hypotheses are stored in several sorted lists, depending on which words in the source
sentence have been translated. This strategy is related to the well-known multi-stack-
decoding algorithm (Berger et al. 1996; Tomás and Casacuberta 2004). In each iteration,
the algorithm extends the best hypothesis from each available list.

While target words are always generated from left to right, there are two alter-
natives in the source word extraction: Monotone search, which takes the source words
from left to right, and non-monotone search, which can take source words in any
order.

4.2.1 Adaptation to the Interactive-Predictive Scenario. Only a simple modification of this
search algorithm is necessary: If the new extended hypothesis is not compatible with
the fixed target prefix, tp, then this hypothesis is not considered. This compatibility is
verified at the character level; therefore the user does not need to type the whole target
word at the end of the target prefix.

In the interactive scenario, speed is a critical aspect. In the PBM approach, monotone
search is much faster than non-monotone search in the tasks which are considered in this
work (Tomás and Casacuberta 2006). However, monotone search presents a problem for
interactive operation: If a user introduces a prefix that cannot be obtained in a monotone
way from the source, the search algorithm is not able to complete this prefix. In order
to solve this problem without losing computational efficiency, we use the following ap-
proach: Non-monotone search is used for target prefixes, whereas completions (suffixes)
are generated using monotone search.

As for AT models, a list of target suffixes can also be produced. This list can be
obtained easily by keeping the n-best hypotheses in each sorted list. To avoid generating
very similar hypotheses in the n-best list, we apply the following procedure: Starting
from the n-best list resulting from the normal search, we first add hypotheses obtained
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by translating a single untranslated word from the source, along with hypotheses
consisting of a single high-probability word according to the target language model; we
then re-order the hypotheses, maximizing the diversity at the beginning of the suffixes,
and keep only the n first hypotheses in the re-ordered list.

4.3 Searching with Stochastic Finite-State Transducers

As discussed by Picó and Casacuberta (2001), the computation of Equation (4) for SFSTs
under a maximum approximation (i.e., using maximization in Equation (17) instead
of the sum) amounts to a conventional Viterbi search. The algorithm finds the most
probable path among those paths in the SFST which are compatible with the source
sentence s. The corresponding translation, t̃, is simply obtained by concatenating the
target strings of the edges of this path.

4.3.1 Adaptation to the Interactive-Predictive Scenario. Here, Equation (7) is used wherein
the optimization is performed over the set of target suffixes (completions) rather than
the set of complete target sentences. To solve this maximization problem, an approach
similar to that proposed for AT in Section 4.1 has been adopted.

First, given the source sentence, a word graph is extracted from the SFST. In this
case, the word graph is just (a pruned version of) the Viterbi search trellis obtained when
translating the whole source sentence. The main difference between the word graphs
generated with ATs and SFSTs is how the nodes and edges are defined in each case. On
the one hand, the nodes are defined as partial hypotheses of the search procedure in
the AT approach, whereas the nodes in the case of SFSTs can be directly mapped into
states in the SFST representing a joint (source word/target string) language model. On
the other hand, the scores associated with the edges in the AT approach are computed
from a combination of the language and translation models, whereas in the case of
SFSTs these scores simply come from the joint language model estimated by the GIATI
technique.

Once the word graph has been generated, the search for the most probable com-
pletion as stated in Equation (6) is carried out in two steps, in a similar way to that
explained for the AT approach. In this case, the computation entailed by both the edit-
distance (prefix error-correcting) and the remaining search is significantly accelerated
by visiting the nodes in topological order and by the incorporation of the beam-search
technique (Amengual and Vidal 1998). Moreover, the error-correcting algorithm takes
advantage of the incremental way in which the user prefix is generated, parsing only
the new suffix appended by the user in the last interaction.

It may be the case that a user prefix ends in an incomplete word during the inter-
active translation process. Therefore, it is necessary to start the translation completion
with a word whose prefix matches this unfinished word. The proposed algorithm thus
searches for such a word. First, it considers the target words of the edges leaving
the nodes returned by the error-correcting algorithm. If this initial search fails, then
a matching word is looked up in the word-graph vocabulary. Finally, as a last resort,
the whole transducer vocabulary is taken into consideration to find a matching word;
otherwise this incomplete word is treated as an entire word.

This error-correcting algorithm returns a set of nodes from which the best comple-
tion would be selected according to the best backward score. Moreover, n-best com-
pletions can also be produced. Among many weighted-graph n-best path algorithms
which are available, the recursive enumeration algorithm presented in Jiménez and
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Marzal (1999) was adopted for its simplicity in calculating best paths on demand and its
smooth integration with the error-correcting algorithm.

5. Experimental Framework

The models and search procedures introduced in the previous sections were assessed
through a series of IPMT experiments with different corpora. These corpora, along with
the corresponding pre- and post-processing and assessment procedures, are presented
in this section.

5.1 Pre- and Post-Processing

Usually, MT models are trained on a pre-processed version of an original corpus. Pre-
processing provides a simpler representation of the training corpus which makes token
or word forms more homogeneous. In this way automatic training of the MT models is
boosted, and the amount of computation decreases.

The pre-processing steps are: tokenization, removing unnecessary case information,
and tagging some special tokens like numerical sequences, e-mail addresses, and URLs
(“categorization”). In translation from a source language to a target language, there are
some words which are translated identically (because they have the same spelling in
both languages). Therefore, we identify them in the corpus and replace them with some
generic tags to help the translation system.

Post-processing takes place after the translation in order to hide the internal repre-
sentation of the text from the user. Thus, the user will only work with an output which
is very similar to human-generated texts. In detail, the post-processing steps are: de-
tokenization, true-casing, and replacing the tags with their corresponding words.

In an IPMT scenario, the pre-/post-processing must run in real-time and should be
reversible as much as possible. In each human–machine interaction, the current prefix
has to be pre-processed for the interactive-predictive engine and then the generated
completion has to be post-processed for the user. It is crucial that the pre-processing of
prefixes is fully compatible with the training corpus.

5.2 Xerox and EU Corpora

Six bilingual corpora were used for two different tasks and three different language
pairs in the framework of the TT2 project (SchlumbergerSema S.A. et al. 2001).
The language pairs involved were English–Spanish, English–French, and English–
German (Khadivi and Goutte 2003), and the tasks were Xerox (Xerox printer manuals)
and EU (Bulletin of the European Union).

The three Xerox corpora were obtained from different user manuals for Xerox print-
ers (SchlumbergerSema S.A. et al. 2001). The main features of these corpora are shown
in Table 1. Dividing the corpora into training and test sets was performed by randomly
selecting (without replacement) a specified amount of test sentences and leaving the
remaining ones for training. It is worth noting that the manuals were not the same in
each pair of languages. Even though all training and test sets have similar size, this
probably explains why the perplexity varies considerably over the different language
pairs. The vocabulary size was computed using the tokenized and true-case corpus.

The three bilingual EU corpora were extracted from the Bulletin of the European
Union, which exists in all official languages of the European Union (Khadivi and Goutte
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Table 1
The Xerox corpora. For all the languages, the training/test full-sentence overlap and the rate of
out-of-vocabulary test-set words were less than 10% and 1%, respectively. Trigram models were
used to compute the test word perplexity. (K and M denote thousands and millions,
respectively.)

English/Spanish English/German English/French

Tr
ai

n Sent. pairs (K) 56 49 53
Running words (M) 0.7/0.7 0.6/0.5 0.6/0.7
Vocabulary (K) 15/17 14/25 14/16

Te
st

Sentences (K) 1.1 1.0 1.0
Running words (K) 8/10 12/12 11/12
Running chars. (K) 46/59 63/73 56/65
Perplexity 99/58 57/93 109/70

2003) and is publicly available on the Internet. The corpora used in the experiments
which are described subsequently were again acquired and processed in the framework
of the TT2 project. The main features of these corpora are shown in Table 2. The
vocabulary size and the training and test set partitions were obtained in a similar way
as with the Xerox corpora.

5.3 Assessment

In all the experiments reported in this article, system performance is assessed by
comparing test sentence translations produced by the translation systems with the
corresponding target language references of the test set. Some of the computed assess-
ment figures measure the quality of the translation engines without any system–user
interactivity:

� Word error rate (WER): The minimum number of substitution, insertion,
and deletion operations needed to convert the word strings produced by
the translation system into the corresponding single-reference word
strings. WER is normalized by the overall number of words in the
reference sentences (Och and Ney 2003).

Table 2
The EU corpora. For all the languages, the training/test full-sentence overlap and the rate of
out-of-vocabulary test-set words were less than 3% and 0.2%, respectively. Trigram models were
used to compute the test word perplexity. (K and M denote thousands and millions,
respectively.)

English/Spanish English/German English/French

Tr
ai

n Sent. pairs (K) 214 223 215
Running words (M) 5.2/5.9 5.7/5.4 5.3/6.0
Vocabulary (K) 84/97 86/153 84/91

Te
st

Sentences (K) 0.8 0.8 0.8
Running words (K) 20/23 20/19 20/23
Running chars. (K) 119/135 120/134 119/134
Perplexity 58/46 57/87 58/45
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� Bilingual evaluation understudy (BLEU): This is based on the coverage of
n-grams of the hypothesized translation which occur in the reference
translations (Papineni et al. 2001).

Other assessment figures are aimed at estimating the effort needed by a human
translator to produce correct translations using the interactive system. To this end, the
target translations which a real user would have in mind are simulated by the given
references. The first translation hypothesis for each given source sentence is compared
with a single reference translation and the longest common character prefix (LCP) is
obtained. The first non-matching character is replaced by the corresponding reference
character and then a new system hypothesis is produced. This process is iterated until
a full match with the reference is obtained.

Each computation of the LCP would correspond to the user looking for the next
error and moving the pointer to the corresponding position of the translation hypothesis.
Each character replacement, on the other hand, would correspond to a keystroke of
the user. If the first non-matching character is the first character of the new system
hypothesis in a given iteration, no LCP computation is needed; that is, no pointer
movement would be made by the user. Bearing this in mind, we define the following
interactive-predictive performance measures:

� Keystroke ratio (KSR): Number of keystrokes divided by the total number
of reference characters.

� Mouse-action ratio (MAR): Number of pointer movements plus one more
count per sentence (aimed at simulating the user action
needed to accept the final translation), divided by the total number of
reference characters.

� Keystroke and mouse-action ratio (KSMR): KSR plus MAR.

Note that KSR estimates only the user’s actions on the keyboard whereas MAR
estimates actions for which the user would typically use the mouse. From a user
point of view the two types of actions are different and require different types of
effort (Macklovitch, Nguyen, and Silva 2005; Macklovitch 2006). In any case, as an
approximation, KSMR accounts for both KSR and MAR, assuming that both actions
require a similar effort.

In the case of SMT systems, it is well known that an automatically computed
quality measure like BLEU correlates quite well with human judgment (Callison-Burch,
Osborne, and Koehn 2006). In the case of IPMT, we should keep in mind that the
main goal of (automatic) assessment is to estimate the effort of the human translator.
Moreover, translation quality is not an issue here, because the (simulated) human
intervention ensures “perfect” translation results. The important question is whether
the (estimated) productivity of the human translator can really be increased or not by
the IPMT approach. In order to answer this question, the KSR and KSMR measures will
be used in the IPMT experiments to be reported in the next section.

In order to show the statistical significance of the results, all the assessment figures
reported in the next section are accompanied by the corresponding 95% confidence
intervals. These intervals have been computed using bootstrap sampling techniques, as
proposed by Bisani and Ney (2004), Koehn (2004), and Zhang and Vogel (2004).
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6. Results

Two types of results are reported for each corpus and for each translation approach.
The first are conventional MT results, obtained as a reference to give an idea of the
“classical” MT difficulty of the selected tasks. The second aim is to assess the interactive
MT (IPMT) approach proposed in this article.

The results are presented in different subsections. The first two subsections present
the MT and IPMT results for the 1-best translation obtained by the different techniques
in the Xerox and EU tasks, respectively. The third subsection presents further IPMT
results for the 5-best translations on a single pair of languages.

Some of these results may differ from results presented in previous works (Cubel
et al. 2003; Och, Zens, and Ney 2003; Civera et al. 2004a; Cubel et al. 2004; Bender
et al. 2005). The differences are due to variations in the pre-/post-processing procedures
and/or recent improvements of the search techniques used by the different systems.

6.1 Experiments with the Xerox Corpora

In this section, the translation results obtained using ATs, PBMs, and SFSTs for all six
language pairs of the Xerox corpus are reported. Word-based trigram and class-based
five-gram target-language models were used for the AT models (the parameters of the
log-linear model are tuned so as to minimize WER on a development corpus); word-
based trigram target-language models were used for PBMs and trigrams were used to
infer GIATI SFSTs.

Off-line MT Results. MT results with ATs, PBMs, and SFSTs are presented in Figure 3.
Results obtained using the PBMs are slightly but consistently better that those achieved
using the other models. In general, the different techniques perform similarly for the
various translation directions. However, the English–Spanish language pair is the one
for which the best translations can be produced.

IPMT Results. Performance has been measured in terms of KSRs and MARs (KSR and
MAR are represented as the lower and upper portions of each bar, respectively, and
KSMR is the whole bar length). The results are shown in Figure 4.

Figure 3
Off-line MT results (BLEU and WER) for the Xerox corpus. Segments above the bars show the
95% confidence intervals. En = English; Sp = Spanish; Fr = French; Ge = German.
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Figure 4
IPMT results for the Xerox corpus. In each bar, KSR is represented by the lower portion, MAR by
the upper portion, and KSMR is the whole bar. Segments above the bars show the 95%
confidence intervals. En = English; Sp = Spanish; Fr = French; Ge = German.

According to these results, a human translator assisted by an AT-based or a SFST-
based interactive system would only need an effort equivalent to typing about 20% of
the characters in order to produce the correct translations for the Spanish to English
task; or even less than 20% if a PBM-based system is used.

For the Xerox task, off-line MT performance and IPMT results show similar tenden-
cies. The PBMs show better performance for both the off-line MT and for the IPMT
assessment figures. The AT and SFST models perform more or less equivalently. In
both scenarios, the best results were achieved for the Spanish–English language pair
followed by French–English and German–English.

The computing times needed by all the systems involved in these experiments were
well within the range of the on-line operational requirements. The average initial time
for each source test sentence was very low (less than 50 msec) for PBMs and SFSTs
and adequate for ATs (772 msec). In the case of ATs and SFSTs, this included the time
required for the generation of the initial word-graph of each sentence. Moreover, the
most critical times incurred in the successive IPMT iterations were very low in all
the cases: 18 msec for ATs, 99 msec for PBMs, and 9 msec for SFSTs. Note, however,
that these average times are not exactly comparable because of the differences in the
computer hardware used by each system (2 Ghz AMD, 1.5 Ghz Pentium, and 2.4 Ghz
Pentium for ATs, PBMs, and SFSTs, respectively).

6.2 Experiments with the EU Corpora

The translation results using the AT, PBM, and SFST approaches for all six language
pairs of the EU corpus are reported in this section. As for the Xerox corpora, in the AT
experiments, word-based trigram and class-based five-gram target-language models
were used; in the PBM experiments, word-based trigram and class-based five-gram
target-language models were also used and five-grams were used to infer GIATI SFSTs.

Off-line MT Results. Figure 5 presents the results obtained using ATs, PBMs, and SFSTs.
Generally speaking, the results are comparable to those obtained on the Xerox corpus
with the exception of the English–Spanish language pair, which were better. With these
corpora, the best results were obtained with the ATs and PBMs for all the pairs and the
best translation direction was French-to-English with all the models used.
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Figure 5
Off-line MT results (BLEU and WER) for the EU corpus. Segments above the bars show the 95%
confidence intervals. En = English; Sp = Spanish; Fr = French; Ge = German.

IPMT Results. Figure 6 shows the performance of the AT, PBM, and SFST systems in
terms of KSRs and MARs in a similar way as for the Xerox corpora.

As in the MT experiments, the results are comparable to those obtained on the Xerox
corpus, with the exception of the English–Spanish pair. Similarly, as in MT, the best
results were obtained for the French-to-English translation direction.

Although EU is a more open-domain task, the results demonstrate again the poten-
tial benefit of computer-assisted translation systems. Using PBMs, a human translator
would only need an effort equivalent to typing about 20% of the characters in order
to produce the correct translations for French-to-English translation direction, whereas
for ATs and SFSTs the effort would be about 30%. For the other language pairs, the
efforts would be about 20–30% and 35% of the characters for PBMs and ATs/SFSTs,
respectively.

The systemwise correlation between MT and IPMT results on this corpus is not
as clear as in the Xerox case. One possible cause is the much larger size of the EU
corpus compared to the Xerox corpus. In order to run the EU experiments within rea-
sonable time limits, all the systems have required the use of beam search and/or other

Figure 6
IPMT results for the EU corpus. In each bar, KSR is represented by the lower portion, MAR by
the upper portion and KSMR is the whole bar. Segments above the bars show the 95%
confidence intervals. En = English; Sp = Spanish; Fr = French; Ge = German.
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Table 3
IPMT results (%) for the Xerox corpus (English–Spanish) using ATs, PBMs, and SFSTs for the
1-best hypothesis and 5-best hypotheses. 95% confidence intervals are shown.

1-best 5-best
Technique KSR KSMR KSR KSMR

AT 12.9±0.9 23.2±1.3 11.1±0.8 20.3±1.2
PBM 8.9±0.8 16.7±1.2 7.3±0.6 15.4±1.1
SFST 13.0±1.0 21.8±1.4 11.2±1.0 19.2±1.3

suboptimal pruning techniques, although this was largely unnecessary for the Xerox
corpus. Clearly, the pruning effects are different in the off-line (MT) and the on-line
(IPMT) search processes and the differences may lead to wide performance variations
for the AT, PBM, and SFST approaches.

Nevertheless, as can be seen in Bender et al. (2005), the degradation in system
performance due to pruning is generally not too substantial and sufficiently accurate
real-time interactive operation could also be achieved in the EU task with the three
systems tested.

6.3 Results with n-Best Hypotheses

Further experiments were carried out to study the usefulness of n-best hypotheses in
the interactive framework. In this scenario, the user can choose one out of n proposed
translation suffixes and then proceed as in the usual IPMT paradigm. As with the
previous experiments, the automated evaluation is based on a selected target sentence
that best matches a prefix of the reference translation in each IPMT iteration (therefore
KSR is minimized).

Here, only IPMT results for the English-to-Spanish translation direction are re-
ported for both Xerox and EU tasks, using a list of the five best translations. These results
are shown in Tables 3 and 4.

In all the cases there is a clear and significant accuracy improvement when moving
from single-best to 5-best translations. This gain in translation quality diminishes in a
log-wise fashion as we increase the number of best translations. From a practical point
of view, the improvements provided by using n-best completions would come at the
cost of the user having to ponder which of these completions is more suitable. In a
real operational environment, this additional user effort may or may not outweigh the

Table 4
IPMT results (%) for the EU corpus (English–Spanish) using ATs, PBMs, and SFSTs for the 1-best
hypothesis and 5-best hypotheses. 95% confidence intervals are shown.

1-best 5-best
Technique KSR KSMR KSR KSMR

AT 20.2±0.9 32.6±1.3 18.5±0.8 29.9±1.2
PBM 16.3±0.7 27.8±1.1 13.2±0.6 25.0±1.1
SFST 21.3±0.9 33.0±1.3 19.3±0.9 29.9±1.3
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benefits of the n-best increased accuracy. Consequently, this feature should be offered to
the users as an option.

7. Practical Issues

IPMT results reported in the previous section provide reasonable estimations of potential
savings of human translator effort, assuming that the goal is to obtain high quality
translations. In real work, however, several practical issues not discussed in this article
may significantly affect the actual system usability and overall user productivity.

One of the most obvious issues is that a carefully designed graphical user interface
(GUI) is needed to let the users actually be in command of the translation process, so
that they really feel the system is assisting them rather than the other way around. In
addition, an adequate GUI has to provide adequate means for the users to easily and
intuitively change at will IPMT engine parameters that may have an impact on their
way of working with the system. To name just a few: The maximum length of system
hypotheses, the value of n for n-best suggestions, or the “interaction step granularity”;
that is, whether the system should react at each user keystroke, or at the end of each
complete typed word, or after a sufficiently long typing pause, and so on.

Clearly, all these important issues are beyond the scope of the present article. But
we can comment that, in the TT2 project, complete prototypes of some of the systems
presented in this article, including the necessary GUI, were actually implemented and
thoroughly evaluated by professional human translators in their working environ-
ment (Macklovitch, Nguyen, and Silva 2005; Macklovitch 2006).

The results of these field tests showed that the actual productivity depended not
only on the individual translators, but also on the given test texts. In cases where these
texts were quite unrelated to the training data, the system did not significantly help
the human translators to increase their productivity. However, when the test texts were
reasonably well related to the training data, high productivity gains were registered—
close to what could be expected according to the KSR/MAR empirical results.

8. Concluding Remarks

The IPMT paradigm proposed in this article allows for a close collaboration between a
human translator and a machine translation system. This paradigm entails an iterative
process where, in each iteration, a data-driven machine translation engine suggests a
completion for the current prefix of a target sentence which a human translator can
accept, modify, or ignore.

This idea was originally proposed in the TransType project (Langlais, Foster, and
Lapalme 2000), where a simple engine was used which only supported single-token
suggestions. Furthering these ideas, in the TransType2 project (SchlumbergerSema S.A.
et al. 2001), state-of-the-art statistical machine translation systems have been developed
and integrated in the IPMT framework.

In a laboratory environment, results on two different tasks suggest that the pro-
posed techniques can reduce the typing effort needed to produce a high-quality transla-
tion of a given source text by as much as 80% with respect to the effort needed to simply
type the whole translation. In real conditions, a high productivity gain was achieved in
many cases.

We have studied here IPMT from the point of view of a standalone CAT tool.
Nevertheless, IPMT can of course be easily and conveniently combined with other
popular translator workbench tools. More specifically, IPMT lends itself particularly
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well to addressing the typical lack of generalization capabilities of translation memories.
When used as a CAT tool, translation memories allow the human translator to keep
producing increasingly long segments of correct target text. Clearly, these segments can
be used by an IPMT engine to suggest to the translator possible translations for source
text segments that are not found in the translation memories as exact matches.
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Inference of finite-state transducers from
regular languages. Pattern Recognition,
38:1431–1443.

Casacuberta, F., E. Vidal, A. Sanchis, and
J. M. Vilar. 2004b. Pattern recognition
approaches for speech-to-speech
translation. Cybernetic and Systems: an
International Journal, 35(1):3–17.

Civera, J., J. M. Vilar, E. Cubel, A. L. Lagarda,
S. Barrachina, E. Vidal, F. Casacuberta,
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Computación, Universidad Politécnica
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